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There is increasing interest in the effect of energy metabolism on oxidative

stress, but much ambiguity over the relationship between the rate of oxygen

consumption and the generation of reactive oxygen species (ROS). Production

of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily

inferred indirectly from measurements in vitro, which may not reflect actual

ROS production in living animals. Here, we measured in vivo H2O2 content

using the recently developed MitoB probe that becomes concentrated in the

mitochondria of living organisms, where it is converted by H2O2 into an

alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level

of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested

whether this measurement of in vivo H2O2 content over a 24 h-period was

related to interindividual variation in standard metabolic rate (SMR). We

showed that the H2O2 content varied up to 26-fold among fish of the same

age and under identical environmental conditions and nutritional states.

Interindividual variation in H2O2 content was unrelated to mitochondrial

density but was significantly associated with SMR: fish with a higher mass-

independent SMR had a lower level of H2O2. The mechanism underlying

this observed relationship between SMR and in vivo H2O2 content requires

further investigation, but may implicate mitochondrial uncoupling which

can simultaneously increase SMR but reduce ROS production. To our knowl-

edge, this is the first study in living organisms to show that individuals with

higher oxygen consumption rates can actually have lower levels of H2O2.
1. Introduction
Oxidative stress occurs when the generation of reactive oxygen species (ROS)

exceeds the capacity of antioxidant defence and repair mechanisms, thereby gen-

erating oxidative damage to lipids, DNA and proteins [1]. Given their potential

role in cellular senescence, ROS are proposed as being one of the main mediators

of life-history trade-offs [2,3]. Most of the ROS present in cells are produced within

the mitochondria as natural by-products of aerobic respiration [1]. This has led to

the pervasive idea that increased energy expenditure towards one life-history trait

will result in greater ROS production, leading to accelerated senescence [4–6].

However, it is still unclear whether higher aerobic respiration actually alters

in vivo ROS levels [7,8].

Some of the oxygen consumed by the mitochondria (mtVO2) is subsequently

reduced to superoxide and other ROS such as hydrogen peroxide (H2O2) and
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Figure 1. The MitoP/MitoB ratio, a proxy of in vivo mitochondrial H2O2 levels,
as a function of mass-independent SMR in brown trout (Salmo trutta) at
128C. Values for the MitoP/MitoB ratio are adjusted to control for the
random effects of processing batch; see the electronic supplementary material
for calculation of the MitoP/MitoB ratio. Solid line indicates the regression
line; see text for statistical analysis.
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hydroxyl radicals [1]. Despite the long-held belief that individ-

ual organisms consuming more oxygen have higher ROS

production, the relationship between mtVO2 and in vitro
ROS production is unclear, with studies reporting positive,

negative or no correlation between mtVO2 and ROS among

individuals [8]. However, several recent studies have raised

reservations over the measurement of ROS production in
vitro [8–10], since artificially high levels of metabolic substrates

[11] and very high partial pressures of oxygen (20% in contrast

to approx. 5% in vivo [10]) make extrapolations of in vitro results

to the in vivo situation potentially problematic [7,8]. This is

especially true when examining among-individual variation

in mitochondrial traits, given that the in vitro conditions stan-

dardize the mitochondrial environment among individuals,

which may hide the actual sources of variability in the relation-

ship between oxygen consumption in vivo and mitochondrial

ROS production [11].

To avoid some of these potential confounding effects

in vitro, a ratiometric probe called MitoB has recently been

developed to infer the level of mitochondrial H2O2 in vivo
[12]. When this artificial probe compound is administered

to the organism, it becomes concentrated within the mito-

chondria, where it is converted to its alternative form

MitoP by H2O2. The level of mitochondrial H2O2 can then

be expressed as the rate at which MitoB is converted to

MitoP [12]. Here, we use the MitoB probe to directly quantify

variation in H2O2 content in living animals and relate this

to variation in whole animal oxygen consumption among

individuals of similar age and under identical environmental

and nutritional states, using brown trout (Salmo trutta), a

species known to exhibit consistent individual differences in

oxygen consumption [13].
2. Material and methods
Juvenile brown trout S. trutta were collected from the wild and

then kept in individual compartments for 22 weeks under

standard conditions of temperature (mean+ actual range:

11.5+18C) and photoperiod (12 L : 12 D), as described for

these same individuals in [14]. Forty fish were randomly

assigned to eight batches of five and fed daily with a specific

ration calculated for each fish based on its weight [15].

At week 21, the standard metabolic rate (SMR), defined as

the oxygen consumption of a resting and post-absorptive

ectotherm at a given temperature, was measured over a 20 h

period using flow-through respirometry (further details in [14]

and electronic supplementary material). The SMR was calculated

as the mean of the lowest 10th percentile of oxygen consumption

measurements after controlling for body mass and is described

hereafter as the residual SMR (rSMR), in mg O2 h2 1.

Each fish was allowed a week of recovery after its

SMR measurement before being injected with 50 nmol of MitoB

(initial concentration of MitoB: 5.44+0.21 nmol g2 1 of fish).

The fish were then culled after 24 h, and aliquots of their liver

were immediately flash frozen for subsequent extraction and

quantification of the amounts of MitoB and MitoP [12]. The con-

tent in MitoP and MitoB was determined by high performance

liquid chromatography-tandem mass spectrometry and used to

estimate H2O2 levels as the ratio of MitoP/MitoB.

Citrate synthase (CS) and cytochrome c oxidase (COX) activi-

ties were measured to determine liver mitochondrial density [16].

We analysed the link between the rSMR and MitoP/MitoB ratio

using a general linear mixed model approach. The model

included the MitoP/MitoB ratio as the dependent variable and

rSMR, CS, COX and initial concentration of MitoB in the fish
as continuous predictors, with batch as a random effect (see

the electronic supplementary material for details of all assay

protocols and statistical analyses).
3. Results
The MitoP/MitoB ratio 24 h after injection with the MitoB

probe varied up to 26-fold among individual fish (2.29 �
1024–59.76 � 102 4). As the size of the fish at the time of injec-

tion ranged from 5.05 to 13.95 g (mean+ s.e. ¼ 9.56+0.29),

the initial concentration of MitoB varied three-fold among

individuals (3.59–9.90 nmol g2 1), but as in a previous

study [12], variation in this initial MitoB concentration

did not explain the subsequent variation in the MitoP/

MitoB ratio (F1,25.33 ¼ 0.81, p ¼ 0.38). However, a significant

effect of the rSMR on the MitoP/MitoB ratio was observed

(F1,30.55 ¼ 12.04, p ¼ 0.002; figure 1); fish with a higher

rSMR had a lower MitoP/MitoB ratio compared with indi-

viduals with a lower rSMR. MitoP/MitoB ratios were

independent of mitochondrial density, regardless of whether

this was quantified in terms of COX activity (F1,30.14 ¼ 1.78,

p ¼ 0.19) or CS activity (F1,25.17 ¼ 0.20, p ¼ 0.66).
4. Discussion
Measurement of ROS levels within living organisms make

it possible to avoid potential biases introduced when using

in vitro assays [17]. Development of the MitoB probe has

enabled in vivo estimations of H2O2 levels over a period of sev-

eral hours in mice, Drosophila and Caenorhabditis elegans [12].

We now demonstrate that this method can also be used suc-

cessfully in fish over a 24 h period. Our findings reveal for

the first time that individuals with a high SMR have a lower

level of H2O2. The negative relationship between SMR

and the level of H2O2 was independent of mitochondrial

density estimates.

The MitoP/MitoB ratio represents the H2O2 content

within the mitochondria and reflects the balance between
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the H2O2 generated by mitochondria during aerobic

respiration and that scavenged by antioxidants such as mito-

chondrial glutathione peroxidase (GPx) [1,3]. Consequently,

lower H2O2 levels may be attributed to a lower rate of mito-

chondrial H2O2 generation and/or greater antioxidant

scavenging capacity [1,3]. The synthesis of GPx, an endogen-

ous antioxidant, may be costly in term of resources [3,6].

Food intake in this experiment was limited and similar

between individuals, so it is feasible that individuals with a

lower H2O2 level may have allocated more resources towards

antioxidant defences. Alternatively, they may have had a

lower rate of ROS production. H2O2 arises in the mitochon-

dria from the enzymatic conversion of superoxide anions

that are produced by the respiratory chain. In order for the

mitochondria to reduce oxygen to the superoxide anion,

the mitochondrial respiratory chain must be in a highly

reduced state [7,8]. Previous studies have shown that natural

variation in mitochondrial function can have a significant

influence on mitochondrial H2O2 production, but also on

the relationship between oxygen consumption and H2O2 gen-

eration [7,8,18]. One key parameter capable of influencing

such a relationship is the degree of mitochondrial uncou-

pling: higher uncoupling can lead to lower membrane

potentials and greater rates of electron and oxygen flow in

the respiratory chain (so making it less reduced) [7]. Uncou-

pling is known to simultaneously increase SMR and decrease

ROS generation in vitro [7,19,20]. Our study is the first to

report a negative relationship between oxygen consumption

and H2O2 levels in vivo, but measurements of H2O2 pro-

duction and H2O2 scavenging are now required in order

to understand the mechanisms underlying variability in

H2O2 levels.
The SMR of brown trout varies considerably among indi-

viduals of the same age and size within a population

[13]; this level of interindividual variation in oxygen con-

sumption is common across a broad range of taxa [21]. We

demonstrate that a lower level of mitochondrial H2O2 is

associated with a higher respiration rate, which must increase

the rate at which energy substrates are oxidized. A lower

H2O2 may therefore carry a cost in terms of a decrease in

resources available for other traits such as body reserves or

growth [2,3,6]. However, alleviation of the accumulation of

oxidative damage may be a selective advantage for individ-

ual trout that have a higher rate of aerobic respiration and

less H2O2 [7,19,20]. If oxidative damage is an important

contributor to ageing [1], then those individuals with a

high SMR may benefit through slower ageing but at a cost

of reduced resource allocation to other traits, although this

requires further study [22].
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