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Background. Accurate human immunodeficiency virus (HIV) risk assessment can guide optimal HIV prevention. We evaluated 
the performance of risk prediction models incorporating geospatial measures.

Methods. We developed and validated HIV risk prediction models in a population-based cohort in South Africa. Individual-
level covariates included demographic and sexual behavior measures, and geospatial covariates included community HIV prevalence 
and viral load estimates. We trained models on 2012–2015 data using LASSO Cox models and validated predictions in 2016–2019 
data. We compared full models to simpler models restricted to only individual-level covariates or only age and geospatial covariates. 
We compared the spatial distribution of predicted risk to that of high incidence areas (≥ 3/100 person-years).

Results. Our analysis included 19 556 individuals contributing 44 871 person-years and 1308 seroconversions. Incidence among 
the highest predicted risk quintile using the full model was 6.6/100 person-years (women) and 2.8/100 person-years (men). Models 
using only age group and geospatial covariates had similar performance (women: AUROC = 0.65, men: AUROC = 0.71) to the full 
models (women: AUROC = 0.68, men: AUROC = 0.72). Geospatial models more accurately identified high incidence regions than 
individual-level models; 20% of the study area with the highest predicted risk accounted for 60% of the high incidence areas when 
using geospatial models but only 13% using models with only individual-level covariates.

Conclusions. Geospatial models with no individual measures other than age group predicted HIV risk nearly as well as models 
that included detailed behavioral data. Geospatial models may help guide HIV prevention efforts to individuals and geographic areas 
at highest risk.
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Despite progress in expanding access to treatment and pre-
vention services, human immunodeficiency virus (HIV) in-
cidence in sub-Saharan Africa remains high. An estimated 
870 000 people were newly infected in 2020, and annual inci-
dence among adults exceeds 5 per 1000 population in several 
countries [1]. HIV prevention programs that prioritize services 
such as pre-exposure prophylaxis (PrEP) to individuals at the 
highest risk of infection will maximize benefits given avail-
able resources. The World Health Organization (WHO) has 

recommended that PrEP be offered to populations with HIV 
incidence of at least 3 per 100 person-years [2].

Accurate and efficient identification of individuals at high risk 
remains a key challenge for HIV prevention programs. Several 
model-based HIV risk prediction tools have been developed for 
women [3–5], men who have sex with men [6], serodiscordant 
couples [7], pregnant women [8], and the general population 
[9]. Existing tools rely primarily on age, sexual behavior, alcohol 
and drug use, and testing for sexually transmitted infections 
(STIs). These individual-level measures have several limitations. 
Behavioral risk factors are dynamic, require frequent reassess-
ment, and are generally self-reported and thus prone to mis-
classification [10, 11]. Nucleic acid amplification testing for STIs 
is often not available outside of research studies or specialized 
clinics. The importance of specific individual risk factors may 
also vary across settings [12], which may diminish the perfor-
mance of risk scores when applied in new populations [13].

Community-level measures of HIV prevalence, viral load, 
and treatment coverage offer an alternative approach to 
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identifying individuals at elevated HIV risk. These measures are 
associated with HIV incidence [14–16] and act as proxies for 
local HIV transmission potential. Models based on geospatial 
measures may allow prioritization of prevention interventions 
to individuals and communities without the need to collect de-
tailed behavioral data. However, existing HIV risk scores have 
generally not incorporated community-level HIV indicators, 
and the utility of geospatial measures in HIV risk prediction 
is unclear.

Using population-based data from a large prospective HIV 
cohort in South Africa, we developed and evaluated the pre-
dictive performance of gender-specific HIV risk prediction 
models. We compared the performance of models including 
both geospatial and individual-level covariates (full models) 
with models using only individual-level covariates (individual-
level models) and models restricted to age and geospatial 
covariates (geospatial models). We also mapped the geospatial 
distribution of predicted risk from each model and compared 
the alignment with high incidence areas, as defined by the 2015 
WHO PrEP guidelines (≥3 per 100 person-years ).

METHODS

Study Population

We used data from a large demographic surveillance system 
(DSS) run by the Africa Health Research Institute (AHRI) in 
the Hlabisa sub-district of KwaZulu-Natal, South Africa [17]. 
The southern surveillance area of the AHRI DSS, which has 
been followed since 2000, contains about 90  000 individuals 
in 11 000 households over a 438 square kilometer area. We ex-
cluded data from a northern surveillance area that was added in 
2017. The study area is primarily rural with several peri-urban 
settlements and a single urban township. All households in 
the study area are contacted 3 times each year to interview the 
household head, who provides information on household at-
tributes, births, deaths, and migration of residents. Since 2004, 
field workers have conducted annual surveys among household 
participants aged 15 years or older to assess demographics, 
sexual health, relationship history, and use of HIV prevention 
strategies. Participants then provide a dried blood spot (DBS) 
sample for anonymized HIV testing. Viral load testing has been 
conducted since 2011. In 2017, HIV prevalence among individ-
uals aged 15–54 years was 20% for men and 41% for women, 
and overall HIV incidence was 2.3 per 100 person-years [18].

Eligible individuals for this analysis were aged 15–54 years 
with an initial HIV-negative test and at least 1 subsequent HIV 
test. For individuals with a subsequent positive HIV test, we 
randomly imputed a single seroconversion date from a uni-
form distribution defined between the last HIV-negative test 
and first HIV-positive test [19]. Follow-up time was right cen-
sored at the earliest of the last HIV negative test, first HIV pos-
itive test, date of death, or 55th birthday. To train the HIV risk 

prediction models, we used follow-up time occurring between 
1 January 2012 and 31 December 2015 (development data set). 
We validated the models using follow-up time occurring be-
tween 1 January 2016 and 31 December 2019 (validation data 
set).

Covariates

We constructed our models using a suite of time-varying 
individual-level and geospatial covariates. Individual-level pre-
dictors included 5-year age group, gender, marital status, ed-
ucation, employment, migration history, prior pregnancies or 
children, circumcision status, contraception use, number of 
sexual partners, and characteristics of the most recent partner. 
A full list of covariates and missingness frequency is available 
in the Supplementary Material (Supplementary Table 1). We es-
timated missing covariate values using multiple imputation by 
chained equations with 10 imputations [20]. Multiple imputa-
tion was carried out separately for the development and vali-
dation data sets to avoid bias from contamination between the 
two datasets [21]. Geospatial covariates included local estimates 
of HIV prevalence and population prevalence of detectable vi-
remia (PPDV) [15], urban or rural designation, and distances 
from residence to the nearest roads, clinic, and schools. We 
produced annual estimates of local HIV prevalence and PPDV 
using moving 2-dimensional Gaussian kernels of a 3-kilometer 
search radius [22]. We chose the kernel radius a priori based 
on extensive previous work in the study area [14, 15, 23]. For 
each calendar year of follow-up time, we defined HIV preva-
lence and PPDV covariates by extracting the value of the prior 
year’s estimated surface at the coordinates of each individual’s 
residence.

Model Development and Validation

We modeled time to seroconversion separately for men and 
women using Cox proportional hazards with least absolute 
shrinkage and selection operator (LASSO) penalties [24]. We 
selected optimal LASSO penalties via 10-fold cross-validated 
mean area under the receiver operating characteristic curve 
(cv-AUROC) evaluated at 1 year [25]. We fit 4 models with 
different covariate restrictions: all covariates (full model), 
only individual-level covariates, only age group and geospatial 
covariates, and only age group and local HIV prevalence. We 
finalized our models by fitting to the full development dataset 
using the optimal LASSO penalties and averaging the estimated 
hazard ratios across the 10 imputed data sets.

We validated each of the models by predicting hazard ratios 
in the validation dataset, and we evaluated model discrimina-
tion using AUROC. We evaluated model sensitivity by calcu-
lating the proportion of incident infections that occur within 
fixed percentiles of predicted risk for each model. We also cal-
culated HIV incidence rates across quintiles of predicted HIV 
risk for each model.
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Geospatial Distribution of Risk

We evaluated how well our models identified geographic areas 
of high HIV risk by comparing the spatial distribution of pre-
dicted risk to the areas in which observed incidence exceeded 
3 per 100 person-years. We estimated the spatial distribution 
of incidence by separately smoothing counts of cases and total 
person-time at risk using Gaussian kernels and then dividing 
the value from the cases surface by the value of the person-time 
surface across the study area. Because the number of incident 
cases is smaller and therefore leads to noisier geospatial esti-
mates, we generated a single incidence surface across the study 
area by combining data from both men and women from 2012 
to 2019 and increased the kernel bandwidth to 10 kilometers. 
We compared this surface to the spatial distribution of pre-
dicted risk over the same time period from each of the 4 models. 
For each modeled surface, we calculated the percentage of the 
area with incidence at least 3 per 100 person-years that was con-
tained within the 20%, 40%, or 60% of the area with the highest 
predicted risk. We varied the incidence kernel bandwidth in 
sensitivity analyses. Geospatial analyses were conducted using 
ArcGIS (ESRI Inc, Redlands, USA), whereas all other analyses 
used R version 4.0.2.

Ethics Approval

All participants provided written informed consent prior to the 
household-based interview and collection of dried blood spots. 
Approval for data collection and use was obtained from the 
biomedical and ethics committee (BREC) of the University of 
KwaZulu-Natal, Durban, South Africa (BREC approval number 
BE290/16).

Role of the Funding Source

The funders of the study had no role in study design, data collec-
tion, data analysis, data interpretation, or writing of the report.

RESULTS

The development datasets contained 9623 individuals (5910 
women and 3713 men) with 841 seroconversions (679 among 
women and 162 among men) (Table 1). The validation data 

sets included 9933 individuals (6023 women and 3910 men) 
and 467 seroconversions (381 among women and 86 among 
men). Descriptive characteristics were similar between devel-
opment and validation data sets, except for increases in educa-
tional attainment, circumcision, and contraception use (Table 
2). Missingness was less than 5% for most variables but ranged 
as high as 46% for condom use at last sex (Supplementary Table 
1). HIV incidence was 3.34/100 person-years in the develop-
ment data set and 2.37/100 person-years in the validation data 
set, reflecting recent declines in incidence in the study area [18].

The full models retained 38 predictors for men and 28 pre-
dictors for women (Supplementary Table 2). The strongest pre-
dictors included age group, marital status, circumcision (men), 
contraception use (women), sexual debut, number of partners 
in the last 12 months, number of current relationships (men), 
most recent partner residing outside of the household, and 
PPDV (men). The cv-AUROC for the full model in the devel-
opment data was estimated as 0.74 (men) and 0.71 (women) 
(Supplementary Table 3). Models with covariate restrictions 
had cv-AUROC values ranging from 0.71 to 0.73 among men 
and 0.68 to 0.71 among women. In validation, the full models 
(AUROC = 0.72 for men and 0.68 for women) and models re-
stricted to individual-level covariates (AUROC = 0.72 for men 
and 0.68 for women) had similar performance. Models restricted 
to age and geospatial covariates (AUROC = 0.71 for men and 
0.65 for women) or age and HIV prevalence (AUROC = 0.68 
for men and 0.64 for women) had slightly lower performance.

The sensitivity of the models at varying predicted risk 
thresholds is shown in Figure 1. Among the 40% of individ-
uals with the highest predicted risk, the full model identified 
77% of all new infections among men and 65% of new infec-
tions among women. Sensitivity at the 40% threshold was the 
same for models with only individual-level covariates (men: 
77%, women: 65%) and slightly lower for geospatial models 
without individual-level covariates other than age (men: 
68–72%, women: 60%). Incidence rates increased monotoni-
cally with increasing predicted risk quintiles (Table 3). Among 
men, the incidence rate in the validation data (per 100 person-
years) among the 20% of individuals with the highest predicted 

Table 1. Cohort Sizes and HIV Incidence Rates

  Development (2012–2015) Validation (2016–2019) 

Women No. of individuals 5910 6023

No. of seroconversions 679 381

No. of PY 16 183 12 239

Incidence rate (per 100 PY) 4.20 3.11

Men No. of individuals 3713 3910

No. of seroconversions 162 86

No. of PY 9013 7436

Incidence rate (per 100 PY) 1.80 1.16
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risks ranged from 2.1 (95% confidence interval [CI]: 1.4–2.9) 
using the age + HIV prevalence model to 2.8 (95% CI: 1.9–3.6) 
using the full model. Among women, incidence in the highest 

predicted risk quintile ranged from 4.9 (95% CI: 4.0–5.7) 
using the age and geospatial covariates model to 6.6 (95% CI: 
5.4–7.5) in the full model (Table 3). These incidence rates were 

Table 2. Descriptive Characteristics of Individuals in the Development and Validation Data Sets

  Men Women

Dev. Val. Dev. Val. 

Age 15–19 36.1% 33.9% 23.8% 25.3%

20–29 38.0% 37.5% 32.1% 32.0%

30–39 11.7% 15.7% 14.0% 16.3%

40–54 14.3% 12.8% 30.0% 26.5%

Education Less than primary 7.1% 4.6% 8.1% 4.9%

Primary 47.5% 39.6% 37.7% 31.0%

Secondary or greater 45.5% 55.8% 54.2% 64.1%

Married 5.8% 4.3% 17.3% 15.3%

Employed 27.4% 22.7% 22.5% 17.0%

Prior outmigration 8.3% 13.5% 8.3% 11.7%

Ever had sex 59.3% 59.4% 76.5% 75.5%

Ever fathered children 24.7% 27.7% - -

Ever pregnant - - 64.4% 64.9%

Circumcised 7.4% 28.7% - -

Prior contraception use - - 19.6% 44.1%

≥1 partners in last 12 months 53.9% 52.7% 65.7% 65.2%

MRP casuala 30.1% 25.9% 18.4% 16.6%

MRP member of householda 20.6% 16.5% 39.9% 35.2%

Ruralb 68.0% 66.0% 72.9% 70.0%

Mean local HIV prevalencec 24.6% 34.6% 23.8% 34.0%

Mean local PPDVc 15.3% 14.5% 14.7% 14.1%

Percentages are averaged across 10 imputed data sets. 

Abbreviations: Dev, development data set (2012–2015); HIV, human immunodeficiency virus; MRP, most recent partner; PPDV, population prevalence of detectable viremia; Val, validation 
data set (2016–2019). 
aEvaluated among those reporting ever having sex. 
b < 400 residents per square km. 
cEstimated from a 2-dimensional Gaussian kernel with 3 km bandwidth.

Figure 1. Percentage of new infections identified (sensitivity) within varying percentages of the population with the highest predicted risks. Estimated in the validation data 
set (2016–2019). Abbreviations: Age + Geo, only age group and geospatial covariates; Age + HIV prev, only age group and local HIV prevalence; Full, no covariate restriction; 
HIV, human immunodeficiency virus; Individual, only individual-level covariates;.
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between 5 and 11 times higher than the incidence rates in the 
lowest predicted risk quintile among women and 7–9 times 
higher among men.

The geographic distribution of predicted risk from models 
incorporating geospatial covariates aligned much more closely 
to the geographic distribution of observed HIV incidence than 
predictions from models using only individual-level covariates 
(Figure 2). The 20% of the map with the highest predicted risk 
captured 60% of the area with high incidence (≥3/100 person-
years) when using the full model and 59–60% when using the 
models with only age and geospatial covariates (Supplementary 
Figure 1). In contrast, the geospatial distribution of predicted 
risk using the individual model did not align closely with inci-
dence, and the 20% of the map with the highest predicted risk 
only accounted for 13% of the area with high incidence. These 
results were robust to varying the incidence kernel bandwidth 
(Supplementary Figure 2).

DISCUSSION

We developed and validated human immunodeficiency 
virus type 1 (HIV-1) risk prediction models using a suite of 
individual-level and geospatial covariates to identify men and 
women at very high risk for HIV acquisition in rural KwaZulu-
Natal, South Africa. Men and women within the top 20% of 
predicted risk had incidence rates of at least 2.1 and 4.9 per 100 
person-years, respectively, across all models. Simple models 
using only age group and geospatial covariates (including a 
model with only age and local HIV prevalence) predicted 
individual-level risk of HIV infection nearly as accurately as 
models that included demographic, sexual behavioral, and 
socioeconomic predictors. Furthermore, spatially smoothed 
predictions from models that included geospatial covariates 
aligned closely with high incidence areas while predictions 
from models with only individual-level covariates did not.

Table 3. Incidence Rate (per 100 Person-Years) in Validation Data Set by Quintiles of Predicted Risk 

  Full Individual Age + Geo Age + HIV Prev 

Men Predicted risk quintile

1 (low) 0.3 (0, .5) 0.3 (0, .6) 0.3 (0, .6) 0.3 (0, .5)

2 0.5 (.1, .9) 0.4 (.1, 0.8) 0.3 (0, .5) 0.3 (0, .5)

3 0.6 (.1, 1.0) 0.6 (.2, 1.0) 1.0 (.5, 1.6) 1.3 (.7, 1.9)

4 1.7 (1.0, 2.5) 1.8 (1.0, 2.5) 1.7 (1.0, 2.3) 1.8 (1.1, 2.5)

5 (high) 2.8 (1.9, 3.6) 2.8 (1.8, 3.7) 2.4 (1.7, 3.2) 2.1 (1.4, 2.9)

Women

1 (low) 0.6 (.3, .9) 0.5 (.2, .8) 0.9 (.5, 1.2) 0.8 (.5, 1.2)

2 1.9 (1.3, 2.5) 2.2 (1.6, 2.8) 2.0 (1.4, 2.5) 2.1 (1.5, 2.7)

3 3.0 (2.3, 3.8) 2.9 (2.2, 3.6) 3.3 (2.6, 4.0) 3.3 (2.6, 4.1)

4 3.9 (3.0, 4.7) 4.1 (3.2, 5.0) 4.8 (4.0, 5.7) 4.6 (3.7, 5.4)

5 (high) 6.6 (5.4, 7.5) 6.2 (5.1, 7.2) 4.9 (4.0, 5.7) 5.0 (4.1, 5.9)

Parentheses indicate 95% confidence intervals. Abbreviations: Age + Geo, only age group and geospatial covariates; Age + HIV prev, only age group and local HIV prevalence; Full, no 
covariate restriction; HIV, human immunodeficiency virus; Individual, only individual-level covariates.

Figure 2. Geospatial distribution of predicted risk. A, Full model (no covariate restriction); B, only individual covariates; C, only age group and geospatial covariates. Maps 
include predictions for both men and women from 2012 to 2019. Model predictions were spatially smoothed using a 2-dimensional Gaussian kernel. Colors indicate quantiles 
of spatially smoothed model predictions. Solid lines enclose areas with estimated incidence ≥ 3 per 100 person-years.
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Few HIV risk prediction models have incorporated geospa-
tial measures, but those that have considered HIV prevalence 
have consistently found it to be predictive. An analysis from the 
communities in the vicinity of Rakai District in rural Uganda 
found that a 1 percentage point increase in community HIV 
prevalence was associated with a three percent increase in the 
hazard for HIV acquisition [26]. A risk score developed from 
the ECHO study, which used data from 9 South African sites 
spanning 5 provinces, found site-level HIV prevalence to be 
one of the strongest predictors of HIV risk [4]. Our analysis, 
which used micro-scale spatial variation in HIV prevalence and 
community viral load, extends these findings to a much smaller 
geographic scale, allowing identification of “corridors of HIV 
transmission” with high incidence [27]. Although community 
viral load has been strongly associated with HIV incidence in 
multiple settings [15, 16], georeferenced viral load data is not 
widely available, and we found that predictive performance was 
largely maintained in a model with only age and HIV preva-
lence. This result may reflect that PPDV is a function of HIV 
prevalence, and the 2 measures tend to be closely correlated in 
settings with low antiretroviral therapy (ART) coverage such as 
AHRI (51% among women and 38% among men in 2017) [18]. 
However, as ART scales up, PPDV may become a more sensitive 
measure of local transmission potential.

Risk scores based on detailed clinical and sexual behavior 
measures rely on accurate reporting of sensitive and potentially 
stigmatizing behaviors. Such approaches are best suited to clin-
ical settings with sufficient resources for lengthy individual-
based assessment. Our results indicate that similar predictive 
performance may be obtained from models using age group 
and smoothed HIV test results from population-based sur-
veys. These models enable HIV prevention strategies focused 
more on geographic context than on individual risk behaviors. 
Additional investment in routine population-based HIV and 
viral load testing could facilitate resource prioritization to com-
munities with the highest need.

Although our model identified individuals and geographic 
areas at the highest risk, incidence was still elevated among 
women even at lower predicted risk thresholds. Women in the 
second lowest quintile of predicted risk using the full model ex-
perienced an incidence rate of 1.9/100 person-years between 
2016 and 2019, and women in the middle quintile had an in-
cidence rate of 3/100 person-years. Our results indicate that, 
in a hyperendemic South African setting, incidence was high 
even among women who reported few individual-level risk fac-
tors. Similar gender disparities have been demonstrated across 
sub-Saharan Africa [28], and our findings underscore the con-
tinuing need for widespread coverage of combination HIV pre-
vention services, especially for women.

Our analysis has several strengths. We used a robust in-
ternal validation strategy on a large dataset to develop our 
models, and we validated our predictions on data from 

subsequent years that were not used in model development. 
This validation strategy was chosen to estimate performance 
in prospective prediction, and our models performed well 
despite temporal changes in incidence and risk factor dis-
tribution. For future predictions, the models can easily be 
retrained using the same methods on an updated dataset. 
Additionally, our suite of models with different covariate re-
strictions allows for prediction in a variety of settings with 
different data availability. Models based solely on individual-
level covariates could be applied in a clinical setting where ge-
ospatial covariates may not be available. In contrast, models 
based on age and geospatial covariates could guide geo-
graphic prioritization of interventions, such as focused com-
munity HIV testing campaigns, home-based ART delivery, 
or community PrEP services [29–31]. Approaches that com-
bine both geographic and individual factors may be needed 
to achieve both widespread coverage to those at risk, as well 
as efficient resource allocation. Additional research is needed 
to optimize implementation of risk prediction tools in low-
resource settings.

Our analysis also has limitations. Some of the sexual beha-
vior variables had high amounts of missing data, and we lacked 
other indicators that have been previously incorporated into 
risk scoring tools, such as alcohol use, whether sex partners 
provide financial support, and whether sex partners have other 
partners [3]. Therefore, our models based on individual-level 
covariates may have lower performance than ones trained on 
richer data. We did not have STI testing, which has been incor-
porated into risk scores trained using clinical trial data but is 
not widely available, even in routine clinical care settings. We 
did not compare other algorithms for training our predictive 
models. Even so, the predictive performance of our individual-
level covariate models (AUROC 0.68–0.71) was similar to the 
performance of models developed in other sub-Saharan Africa 
settings (AUROC 0.67–0.73) [3, 4, 9]. We also did not vali-
date our models using data from other settings, so the gener-
alizability of our findings is uncertain. Further research could 
evaluate predictions in other locations with routine population-
based HIV surveillance at small spatial scales, such as ALPHA 
Network sites or universal test-and-treat trial locations [32, 33]. 
Additionally, small area HIV prevalence estimates have been 
generated for all of sub-Saharan Africa [34]; however, these 
estimates derive from sparser data, and their predictive per-
formance at small geographic scales is unknown. Additional 
investment in population-based surveys and surveillance may 
be needed to improve estimates of local HIV prevalence and vi-
remia in other settings. In addition to informing HIV risk pre-
diction, these measures are directly applicable to HIV treatment 
targets and would have tangible benefits to ART programs [35].

In summary, we developed and validated a suite of risk pre-
diction models informed by individual-level and geographic 
covariates that identified individuals and geographic areas at 
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high risk for HIV acquisition. These results may guide efforts to 
prioritize HIV prevention resources to maximize impact.
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Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding author.

Notes
Acknowledgments. The authors thank the AHRI staff for their involvement 

in data collection and data management, as well as all research participants 
for contributing their time, survey responses, and biological samples. They 
acknowledge Clinton Collins from the Institute for Disease Modeling (Seattle, 
Washington, USA) for providing computational support. The data sets used 
in this analysis are contained in the AHRI data repository (https://data.ahri.
org/index.php/home). To access the licensed data sets, the applicant must 
agree to the terms and conditions of use by completing an application for 
access to a licensed data set. This request will be reviewed by the AHRI Data 
Release Committee, who may decide to approve the request, to deny access to 
the data, or to request additional information from the applicant.

Financial support. The AHRI’s Demographic Surveillance System is 
funded by the Wellcome Trust (grant number 201433/Z/16/Z) and the 
South Africa Population Research Infrastructure Network (funded by 
the South African Department of Science and Technology and hosted by 
the South African Medical Research Council). This work is based on re-
search funded in part by the Bill & Melinda Gates Foundation, including 
models and data analysis performed by the Institute for Disease Modeling 
at the Bill & Melinda Gates Foundation. D. A. R. received support from the 
Infectious Diseases Society of America Grants for Emerging Researchers 
Mentorship Program and the US National Institute of Mental Health 
(NIMH) (grant number F30MH122300). This research was also supported 
by the University of Washington/ Fred Hutch Center for AIDS Research, a 
National Institutes of Health (NIH)-funded program under award number 
AI027757, which is supported by the following NIH Institutes and Centers: 
National Institute of Allergy and Infectious Diseases (NIAID), National 
Cancer Institute (NCI), NIMH,  National Institute on Drug Abuse (NIDA), 
National Institute of Child Health and Human Development (NICHD), 
National Heart, Lung, and Blood Institute (NHLBI), National Institute on 
Aging (NIA), National Institute of General Medical Sciences (NIGMS), 
and National Institute of Diabetes and Digestive and Kidney Diseases 
(NIDDK).

Potential conflicts of interest. R. V. B. reports grants from the Bill & 
Melinda Gates Foundation (BMGF) and the NIH; participation on a 
Data Safety Monitoring Board or Advisory Board for HIV Vaccine Trials 
Network (HVTN), University of California, San Francisco (USCF), and 
London School of Hygiene & Tropical Medicine (LSHTM); and Regeneron 
Pharmaceuticals for conference abstract and manuscript writing support, 
outside the submitted work. All other authors report no potential conflicts. 
All authors have submitted the ICMJE Form for Disclosure of Potential 
Conflicts of Interest. Conflicts that the editors consider relevant to the con-
tent of the manuscript have been disclosed.

References
 1. UNAIDS. UNAIDS estimates (2020). Available at: https://aidsinfo.unaids.org/. 

Accessed 14 January 2021.
 2. WHO. WHO expands recommendation on oral pre-exposure prophylaxis of HIV 

infection (PrEP). WHO. 2018. Available at: https://www.who.int/hiv/pub/prep/
policy-brief-prep-2015/en/.

 3. Balkus JE, Brown E, Palanee T, et al. An empiric HIV risk scoring tool to predict 
HIV-1 acquisition in African women. J Acquir Immune Defic Syndr 2016; 72:333–43.

 4. Peebles K, Palanee-Phillips T, Balkus JE, et al. Age-specific risk scores do not im-
prove HIV-1 prediction among women in South Africa. J Acquir Immune Defic 
Syndr 2020; 85:156–64.

 5. Ayton SG, Pavlicova M, Tamir H, Abdool Karim Q. Development of a prognostic 
tool exploring female adolescent risk for HIV prevention and PrEP in rural South 
Africa, a generalised epidemic setting. Sex Transm Infect 2020; 96:47–54.

 6. Wahome E, Thiong’o AN, Mwashigadi G, et al. An empiric risk score to guide 
PrEP targeting among MSM in Coastal Kenya. AIDS Behav 2018; 22:35–44.

 7. Kahle EM, Hughes JP, Lingappa JR, et al. An empiric risk scoring tool for 
identifying high-risk heterosexual HIV-1-serodiscordant couples for targeted 
HIV-1 prevention. J Acquir Immune Defic Syndr 2013; 62:339–47.

 8. Pintye J, Drake AL, Kinuthia J, et al. A risk assessment tool for identifying preg-
nant and postpartum women who may benefit from pre-exposure prophylaxis 
(PrEP). Clin Infect Dis 2016; 64:ciw850.

 9. Balzer LB, Havlir DV, Kamya MR, et al. Machine learning to identify persons 
at high-risk of human immunodeficiency virus acquisition in Rural Kenya and 
Uganda. Clin Infect Dis 2019; 71:2326–33. Available at: https://academic.oup.
com/cid/advance-article/doi/10.1093/cid/ciz1096/5614347.

 10. Minnis AM, Steiner MJ, Gallo MF, et al. Biomarker validation of reports of re-
cent sexual activity: results of a randomized controlled study in Zimbabwe. Am J 
Epidemiol 2009; 170:918–24.

 11. Roberts DA, Hawes SE, Bousso Bao MD, et al. Trends in reported sexual be-
havior and Y-Chromosomal DNA detection among female sex workers in the 
Senegal preexposure prophylaxis demonstration project. Sex Transm Dis 2020; 
47:314–20.

 12. Mavedzenge SN, Olson R, Doyle AM, Changalucha J, Ross DA. The epidemiology 
of HIV among young people in sub-Saharan Africa: know your local epidemic 
and its implications for prevention. J Adolesc Health 2011; 49:559–67.

 13. Giovenco D, Pettifor A, MacPhail C, et al. Assessing risk for HIV infection among 
adolescent girls in South Africa: an evaluation of the VOICE risk score (HPTN 
068). J Int AIDS Soc 2019; 22:e25359. Available at: https://onlinelibrary.wiley.
com/doi/abs/10.1002/jia2.25359.

 14. Tanser F, Bärnighausen T, Grapsa E, Zaidi J, Newell M-L. High coverage of ART 
associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South 
Africa. Science 2013; 339:966–71.

 15. Tanser F, Vandormael A, Cuadros D, et al. Effect of population viral load on pro-
spective HIV incidence in a hyperendemic rural African community. Sci Transl 
Med 2017; 9:eaam8012.

 16. Solomon SS, Mehta SH, McFall AM, et al. Community viral load, antiretroviral 
therapy coverage, and HIV incidence in India: a cross-sectional, comparative 
study. Lancet HIV 2016; 3:e183–90.

 17. Gareta D, Baisley K, Mngomezulu T, et al. Cohort profile update: Africa Centre 
Demographic Information System (ACDIS) and population-based HIV survey. 
Int J Epidemiol 2021; 50:33–4.

 18. Vandormael A, Akullian A, Siedner M, de Oliveira T, Bärnighausen T, Tanser 
F. Declines in HIV incidence among men and women in a South African 
population-based cohort. Nat Commun 2019; 10:5482.

 19. Vandormael A, Dobra A, Bärnighausen T, de Oliveira T, Tanser F. Incidence rate 
estimation, periodic testing and the limitations of the mid-point imputation ap-
proach. Int J Epidemiol 2017; 47:236–245. Available at: http://www.ncbi.nlm.
nih.gov/pubmed/29024978 http://academic.oup.com/ije/article/doi/10.1093/ije/
dyx134/4079903/Incidence-rate-estimation-periodic-testing-and-the.

 20. van Buuren S. Flexible imputation of missing data. Boca Raton, FL: Chapman and 
Hall/CRC, 2012. Available at: https://stefvanbuuren.name/fimd/.

 21. Wahl S, Boulesteix A-L, Zierer A, Thorand B, van de Wiel M, A. Assessment of 
predictive performance in incomplete data by combining internal validation and 
multiple imputation. BMC Med Res Methodol 2016; 16:144.

 22. Waller LA, Gotway CA. Applied spatial statistics for public health data. 
Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. Available at: http://doi.wiley.
com/10.1002/0471662682.

 23. Tanser F, Bärnighausen T, Cooke GS, Newell M-L. Localized spatial clustering 
of HIV infections in a widely disseminated rural South African epidemic. Int J 
Epidemiol 2009; 38:1008–16.

 24. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med 
1997; 16:385–95.

 25. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored sur-
vival data and a diagnostic marker. Biometrics 2000; 56:337–44.

 26. Kagaayi J, Gray RH, Whalen C, et al. Indices to measure risk of HIV acquisition in 
Rakai, Uganda. PLoS One 2014; 9:e92015.

 27. Tanser F, Bärnighausen T, Dobra A, Sartorius B. Identifying “corridors of HIV 
transmission” in a severely affected rural South African population: a case for a 
shift toward targeted prevention strategies. Int J Epidemiol 2018; 47:537–49.

 28. Joshi K, Lessler J, Olawore O, et al. Declining HIV incidence in sub-Saharan 
Africa: a systematic review and meta-analysis of empiric data. J Int AIDS Soc 
2021; 24:e25818.

 29. Medina-Marino A, Daniels J, Bezuidenhout D, et al. Outcomes from a multi-
modal, at-scale community-based HIV counselling and testing programme 
in twelve high HIV burden districts in South Africa. J Int AIDS Soc 2021; 
24:e25678.

 30. Koss CA, Charlebois ED, Ayieko J, et al. Uptake, engagement, and adherence to 
pre-exposure prophylaxis offered after population HIV testing in rural Kenya and 

1230 • CID 2022:75 (1 October) • Roberts et al

https://data.ahri.org/index.php/home
https://data.ahri.org/index.php/home
https://aidsinfo.unaids.org/
https://www.who.int/hiv/pub/prep/policy-brief-prep-2015/en/
https://www.who.int/hiv/pub/prep/policy-brief-prep-2015/en/
https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciz1096/5614347
https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciz1096/5614347
https://onlinelibrary.wiley.com/doi/abs/10.1002/jia2.25359
https://onlinelibrary.wiley.com/doi/abs/10.1002/jia2.25359
https://stefvanbuuren.name/fimd/
http://doi.wiley.com/10.1002/0471662682
http://doi.wiley.com/10.1002/0471662682


Uganda: 72-week interim analysis of observational data from the SEARCH study. 
Lancet HIV 2020; 7:e249–e261.

 31. Barnabas RV, Szpiro AA, van Rooyen H, et al. Community-based antiretro-
viral therapy versus standard clinic-based services for HIV in South Africa 
and Uganda (DO ART): a randomised trial. Lancet Glob Health 2020; 
8:e1305–15.

 32. Reniers G, Wamukoya M, Urassa M, et al. Data resource profile: network for 
analysing longitudinal population-based HIV/AIDS data on Africa (ALPHA 
Network). Int J Epidemiol 2016; 45:83–93.

 33. Petersen. Population-level Viremia Predicts HIV Incidence across Universal Test 
& Treat Studies [CROI Abstract 47]. In Special Issue: Abstracts From the 2020 
Conference on Retroviruses and Opportunistic Infections. Top Antivir Med. 
2020; 28:16. Available at: https://www.croiconference.org/abstract/population-
level-viremia-predicts-hiv-incidence-across-universal-test-treat-studies/.

 34. Dwyer-Lindgren L, Cork MA, Sligar A, et al. Mapping HIV prevalence in sub-Sa-
haran Africa between 2000 and 2017. Nature 2019; 570: 189–193.

 35. Jain V, Petersen M, Havlir DV. Population HIV viral load metrics for community 
health. Lancet HIV 2021; 8:e523–4.

1231• CID 2022:75 (1 October) •Geospatial HIV Risk Prediction

https://www.croiconference.org/abstract/population-level-viremia-predicts-hiv-incidence-across-universal-test-treat-studies/
https://www.croiconference.org/abstract/population-level-viremia-predicts-hiv-incidence-across-universal-test-treat-studies/

