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Abstract

Immunotherapies that block inhibitory checkpoint receptors on T cells have transformed the 

clinical care of cancer patients1. However, whether the T cell response to checkpoint blockade 

relies on reinvigoration of pre-existing tumor infiltrating T cells (TILs) or on recruitment of novel 

T cells remains unclear2–4. Here, we performed paired single-cell RNA (scRNA) and T cell 

receptor (TCR)- sequencing on 79,046 cells from site-matched tumors from patients with basal 

cell carcinoma (BCC) or squamous cell carcinoma (SCC) pre- and post-anti-PD-1 therapy. 

Tracking TCR clones and transcriptional phenotypes revealed a coupling of tumor-recognition, 

clonal expansion, and T cell dysfunction marked by clonal expansions of CD8+CD39+ T cells, 

which co-expressed markers of chronic T cell activation and exhaustion. However, this expansion 

did not derive from pre-existing TIL clones; rather, it was comprised of novel clonotypes not 

previously observed in the same tumor. Clonal replacement of T cells was preferentially observed 

in exhausted CD8+ T cells and evident in BCC and SCC patients. These results demonstrate that 

pre-existing tumor-specific T cells may have limited reinvigoration capacity, and that the T cell 

response to checkpoint blockade derives from a distinct repertoire of T cell clones that may have 

just recently entered the tumor.

Main

We generated droplet-based 5’ scRNA- and TCR-seq libraries from 11 patients with 

advanced BCC before and after anti-PD-1 treatment in site-matched primary tumors (Fig. 

1a, Supplementary Table 1, Methods). CD3 immunohistochemistry (IHC) and whole exome 

sequencing (WES) supported an immunological response to checkpoint blockade, including 

increased CD3+ T cell infiltration (Fig. 1b) and mutational loss following treatment affecting 

both clonal and sub-clonal mutations and neoepitopes, suggestive of tumor immunoediting 

(Fig. 1c, Extended Data Fig. 1a–c, Supplementary Tables 1–3)5.

In total, we obtained scRNA-seq profiles from 53,030 malignant, immune, and stromal cells 

with paired TCR sequences in 28,371/33,106 T cells (86%; Fig. 1d–e, Extended Data Fig. 

1d, Methods). We identified 19 cell clusters based on scRNA-seq profiles, including 2 

malignant clusters, 6 T cell clusters, 4 stromal clusters, 3 myeloid clusters, 3 B cell clusters, 

and 1 NK cell cluster. Immune cell classifications were consistent with surface markers used 

to isolate cells and bulk RNA-seq from reference populations6 (Fig. 1e, Extended Data Fig. 

2a–d). Notably, immune cells from different patients clustered together, indicating 

consistency in TME immune cell types across patients. Single-cell copy number variation 

(CNV) estimation revealed patient-specific CNVs only in malignant cells, which were 

consistent with CNVs detected by WES and previously described CNVs in BCC7 (Fig. 1f, 

Extended Data Fig. 3a, Methods).

Re-clustering of 3,548 malignant cells revealed clustering by patient and BCC subtype (Fig. 

1g–h), indicating significant intertumoral heterogeneity as observed in other cancers8,9. We 

identified a shared malignant gene expression program that included EPCAM, BCAM and 

TP63, known markers of BCC (Extended Data Fig. 3b)10–12. We identified 577 genes 

differentially expressed between patient tumors, which included Ras signaling genes, 

suggesting aberrant squamous cell pathway activation in BCC, as previously reported13. 
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Scoring of malignant cells for enrichment of BCC and SCC expression signatures from bulk 

RNA-seq14,15 revealed a differentiation continuum with basal signature enrichment in 

nodular BCCs and squamous signature enrichment in infiltrative and metatypical BCCs (Fig. 

1i). Altogether, these results demonstrate that gene expression in BCC is driven by patient-

specific malignant pathways, but largely does not influence immune cell phenotypes in the 

TME.

We next focused on TILs to understand the clonal T cell response to checkpoint blockade. 

First, we re-clustered 33,106 TILs and identified 9 distinct T cell clusters containing cells 

from multiple patients and pre- and post-treatment timepoints (Methods, Fig. 2a–b, 

Extended Data Fig. 4a–d). CD4+ clusters included regulatory T cells (Tregs), follicular 

helper T cells (Tfh), and T helper 17 cells (Th17). CD8+ clusters included naïve cells, 

memory cells, effector memory cells, activated cells, chronically activated/exhausted cells, 

hereafter referred to as exhausted cells, and intermediate ‘exhausted/activated’ cells, which 

co-expressed activation and exhaustion associated genes3. Notably, we observed an 

increased frequency of Tfh cells and activated, exhausted, and exhausted/activated CD8+ T 

cells post-treatment, supporting reports that PD-1 blockade primarily impacts CD8+ T cells 

(Fig. 2b)16,17.

We used diffusion maps to visualize the relationship between CD8+ T cell clusters and order 

cells in pseudotime (Methods, Fig. 2c)18. The first diffusion component separated activated 

and exhausted cells and was highly correlated with T cell exhaustion genes, including 

PDCD1 and HAVCR2, while the second diffusion component separated naïve and memory 

cells from activated and exhausted cells and was highly correlated with T cell activation 

genes, including IFNG and TNF (Fig. 2c, Extended Data Fig. 5a,b). We used co-expression 

analysis to identify a core T cell exhaustion signature in the context of checkpoint blockade, 

which included known exhaustion markers (HAVCR2, TIGIT), tissue resident memory T 

cell (Trm) markers (ITGAE, CXCR6)19,20, and markers of tumor-reactive CD8+ TILs 

including CD39 (ENTPD1)21–24 (Fig. 2d). These results suggest that exhausted CD8+ TILs 

increase after PD-1 blockade and express gene signatures of chronic activation, T cell 

dysfunction, and tumor reactivity.

Since tumor antigen-specific CD8+ T cells expand clonally during a productive immune 

response, we analyzed single-cell TCR sequences to identify clonally-expanded cells as an 

indicator of tumor-specificity. We grouped cells by TCRα and TCRβ sequence and noted 

large clone sizes in exhausted T cells compared to other CD8+ clusters (Fig. 2e). We 

measured clonality using Gini index and observed significantly higher clonality in exhausted 

T cells compared to all other CD8+ T cells (Fig. 2e). Analysis of CD4+ T cells demonstrated 

increased clonality in Tfh cells post-treatment, which in one patient was accompanied by an 

increase in B cells expressing germinal center markers (Extended Data Fig. 5c–g).

To examine the link between clonal expansion and exhaustion, we scored all CD8+ cells for 

activation and exhaustion signatures based on the top 50 genes correlated with IFNG and 

HAVCR2 expression, respectively (Methods, Fig. 2f). We found that T cells with a high 

exhaustion signature exhibited gene expression patterns associated with tumor reactivity, 

including CD39 (ENTPD1) and CD103 (ITGAE) expression, and absence of KLRG1 
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expression21–24. To characterize individual clones, we averaged exhaustion and activation 

scores for all cells in a clone and observed high exhaustion gene signatures in the largest 

clones (Fig. 2g). Exhausted clones also exhibited a high proliferation signature, as reported 

in melanoma (Methods, Fig. 2g)23.

We next analyzed lineage relationships between T cell phenotypes and clonotypes. Globally, 

we found that cells grouped by clonotype were more likely to share a common phenotype 

and were more correlated in gene expression than randomly grouped cells, in line with prior 

studies (Fig. 3a–c, Extended Data Fig. 6a–c)25–27. We used GLIPH (grouping of lymphocyte 

interactions by paratope hotspots) to identify ‘TCR specificity groups,’ clusters of distinct 

TCR sequences that likely recognize common antigens via shared motifs in CDR3 

sequence28. T cells expressing distinct TCRs within a specificity group were more likely to 

share a common phenotype and exhibit highly correlated gene expression, compared to 

randomly grouped clones (Fig. 3a–c, Extended Data Fig. 6d). These results suggest that 

clonally-expanded TILs are highly correlated in cellular phenotype and that PD-1 blockade 

does not promote phenotype instability within a clone. Moreover, specificity group analysis 

suggests that antigen specificity also contributes to T cell fate.

We asked whether divergent phenotypes within clones could inform lineage transitions 

between T cell phenotypes. We aggregated all clonotypes in a given cluster (‘primary 

phenotype’) and measured the fraction shared with another cluster (‘secondary phenotype’) 

(Fig. 3d). Broadly, we noted significant overlaps between CD8+ T cell phenotypes, including 

memory and activated T cells, suggesting common transitions between activation states. We 

detected minimal clonotype sharing between exhausted and effector cells, supporting a strict 

bifurcation between these phenotypes23. CD4+ T cell clones were largely restricted to single 

phenotypes, suggesting limited plasticity between CD4+ cell states. We also observed a non-

random distribution of phenotypes of individual clones within specificity groups, suggesting 

that specific T cell phenotypes may result from different TCR signal strength thresholds 

(Extended Data Fig. 6e). We noted overlaps between CD8+ and CD4+ phenotypes within 

specificity groups, such as specificity groups containing CD8+ exhausted, and CD4+ Treg 

and Tfh clones, suggesting that CD4+ and CD8+ TILs responding to the same antigen may 

arise from distinct clonotypes.

To track clonal cell fates following PD-1 blockade, we matched clonotypes between 

treatment timepoints based on TCRβ sequences and compared the primary phenotypes at 

each timepoint for all matched clones (Fig. 3e, Extended Data Fig. 7b). We observed 

stability among CD4+ clusters and frequent transitions among CD8+ clusters, similar to 

clonotype sharing in individual timepoints. While we observed frequent transitions between 

memory and effector to activated states, pre-treatment exhausted clones did not transition to 

non-exhausted phenotypes post-treatment, suggesting that exhausted TILs have limited 

capacity for phenotype transition after PD-1 blockade.

Prior studies have identified stem-like T cells expressing the transcription factor TCF7 that 

proliferate following PD-1 blockade17,29–32. To ask whether similar cells existed in our 

dataset, we scored CD8+ cells for exhaustion or TCF7+ stem-like signatures (Fig. 3f). We 

observed a small population of cells (28% of exhausted cells, 1.5% of CD8+ T cells) with 
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both TCF7+ and exhaustion signatures. We found that for both memory and exhausted 

phenotypes, persistent clones had a significantly higher TCF7+ signature pre-treatment 

compared to clones that contracted (Fig. 3f). However, this analysis was limited to only two 

exhausted clones that significantly expanded, prompting us to identify 10 exhausted clones 

that increased in frequency post-therapy but were previously excluded due to low clone size 

and limited expansion (Fig. 3g). The majority of these clones remained exhausted, but those 

with a high TCF7+ signature pre-treatment expanded more substantially. Nevertheless, only 

a small fraction (10.3%) of post-therapy exhausted clones were derived from clones 

containing TCF7+ cells, suggesting that post-treatment exhausted clones may be derived 

from additional sources (Fig. 3h).

Since few pre-existing exhausted T cells showed expansion post-therapy, we asked how 

clone abundance changed globally following treatment by comparing pre- and post-

treatment frequencies of each clone (Fig. 4a). We identified significantly expanded clones 

post-therapy, many of which were not detected prior to treatment (68% of significantly 

expanded clones). Integration of scRNA-seq data revealed strikingly different persistence 

patterns for each phenotype. Namely, post-therapy exhausted clones were significantly 

enriched for novel clonotypes; on average 84% of exhausted clones were derived from novel 

clonotypes for each patient, compared to only 40% of naïve, activated, memory, or effector 

memory clones (Fig. 4a–b). Across all patients, 55% of post-treatment exhausted clones 

containing at least 5 cells were derived from novel clonotypes, compared to 20% of memory 

clones (Fig. 4c). We next asked how expansion of novel clones, a phenomenon we termed 

‘clonal replacement,’ contributed to exhausted T cell frequency in each patient (Fig. 4d, 

Extended Data Fig. 8a). We found that 7/11 patients had an increased exhausted CD8+ T cell 

frequency following treatment, and in 6/7 patients, the majority were derived from novel 

clonotypes (Fig. 4d). Interestingly, post-treatment exhausted clones were enriched for novel 

TCR specificity groups, suggesting that novel clones may represent new antigen specificities 

(Extended Data Fig. 8b).

To increase sensitivity for detecting rare clonotypes, we performed bulk TCR-seq on 

remaining biopsy material from 8/11 patients (Methods, Fig. 4e). Similar to scTCR-seq 

analysis, we observed a substantial number of novel expanded clones that were either not 

expanded (<5 cells) or undetected pre-treatment. Compared to all other CD8+ phenotypes, 

exhausted cells had a higher proportion of significantly expanded clones following 

treatment, and the majority of expanded clones were derived from novel clonotypes, which 

was consistently observed across patients with expanded exhausted cells post-therapy (Fig. 

4f, Extended Data Fig. 8c). To address whether this resulted from sampling bias, we 

performed bulk TCR-seq on site-matched samples from one patient twice pre-therapy and 

twice post-therapy at approximately two-month intervals (Extended Data Fig. 8d). We only 

observed clonal replacement of exhausted clones when comparing pre- to post-treatment 

samples, suggesting that TCR dynamics of exhausted cells were mainly influenced by PD-1 

blockade, not tumor biopsy timing or location.

To determine whether novel clonally-expanded TILs could be detected in peripheral blood, 

we performed bulk TCR-seq on 10 blood samples from 5 patients. Overall, 41% of TIL TCR 

clonotypes could also be detected in blood, but only represented 6% of blood clonotype 
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diversity (Fig. 4g, Extended Data Fig. 9a). Importantly, blood clonotypes represented all TIL 

phenotypes, including novel exhausted TILs (Extended Data Fig. 9a,b). Overall, 35.5% of 

novel exhausted TIL clonotypes were detected in the peripheral blood post-treatment, and 

surprisingly, 11.8% of novel exhausted TIL clonotypes were detected in peripheral blood 

pre-treatment, despite being undetectable by deep TCR sequencing in the tumor pre-

treatment (Fig. 4g). We compared clonotype enrichment in the tumor over peripheral blood 

by comparing clonotype frequency in each location. We noted a significant increase in the 

enrichment of exhausted clones and specificity groups relative to other phenotypes post-

treatment, suggesting preferential expansion and retention in the tumor, supporting their 

tumor-specificity (Fig. 4h, Extended Data Fig. 9c). These results suggest that it may be 

feasible to monitor the clonal tumor-specific T cell response to checkpoint blockade in the 

blood and that novel TIL clones may be recruited from peripheral sources33,34.

Finally, we asked whether clonal replacement of exhausted cells could be observed in a 

different cancer type. We generated scRNA+TCR-seq profiles of 26,016 TILs from serial 

tumor biopsies in 4 patients with SCC treated with anti-PD-1 (Fig. 4i, Extended Data Fig. 

10a). SCC samples were obtained on average 31 days post-treatment, enabling analysis of 

TIL dynamics relatively early after treatment. We first confirmed our prior findings 

regarding: 1) TIL phenotypes, including clonal expansion of exhausted CD8+ T cells which 

expressed tumor-specificity markers, including CD3921–24 (Extended Data Fig. 10b–d) and 

2) TIL clonotype dynamics including stability of clone phenotypes (Extended Data Fig. 

10e–i). Next, we observed that a considerable proportion of exhausted cells detected post-

treatment were derived from novel clonotypes (Fig. 4j). Integration of scRNA-seq data with 

bulk TCR-seq confirmed clonal replacement preferentially in exhausted T cells compared to 

other phenotypes, with overall 50% of expanded exhausted clones derived from novel 

clonotypes compared to only 29% of other expanded CD8+ clones (Extended Data Fig. 10j, 

Fig. 4k). Notably, we observed a similar degree of expansion of pre-existing clones at early 

timepoints in SCC as we did at later timepoints in BCC.

Here, we performed single-cell profiling of clinical tumor biopsies including integration of 

TCR clonotype and scRNA-seq phenotype which revealed that: 1) clonally-expanded cells 

were highly enriched in exhausted CD8+ T cells and expressed markers of tumor specificity, 

including CD39 and CD10321–24, and 2) the clonal repertoire of exhausted CD8+ T cells 

was largely replaced by novel clones after therapy compared to other phenotypes. These 

results suggest that chronic activation and exhaustion of pre-existing TILs limits their re-

invigoration following checkpoint blockade4, and that the T cell response to immunotherapy 

derives from a distinct repertoire of tumor-specific T cell clones.

Clonal replacement of tumor-specific T cells is consistent with several prior findings in the 

context of PD-1 blockade, including limited reinvigoration of exhausted T cells due to broad 

epigenetic remodeling4,35, proliferation of CXCR5+CD8+ T cells in lymphoid organs but not 

other tissues29, and loss of anti-tumor T cell responses following chemical inhibition of T 

cell migration36. Importantly, our study did not identify the source of novel T cell clones, 

and clones could derive from tumor-extrinsic sources, including lymphoid organs, or rare 

unexpanded clones within the TME or tumor periphery. Although our bulk TCR sequencing 

supports the first possibility, further work will be required to identify the source of novel T 
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cell clones and their impact on clinical response. Importantly, both possibilities are 

compatible with the potential derivation of these cells from a TCF7+ precursor 

population17,29–32.

Furthermore, expansion of novel TCR clones and specificity groups following PD-1 

blockade, coupled with neoepitope loss, suggests that novel T cell clones may initiate a 

distinct immuno-editing wave37. The antigen identities recognized by each wave require 

further investigation, perhaps using high-throughput tumor specificity assays38,39. Finally, 

our results suggest that improved checkpoint blockade activity in immune-infiltrated (‘hot’) 

vs immune-desert (‘cold’) tumors may result from an intrinsic ability to constantly attract 

new T cells40, rather than reactivation of pre-existing TILs. In summary, this study reveals 

insights into the clonal T cell response to checkpoint blockade in human cancer, which has 

important implications for the design of checkpoint blockade immunotherapies.

Methods

Human subjects

This study was approved by the Stanford University Administrative Panels on Human 

Subjects in Medical Research, and written informed consent was obtained from all 

participants. All patients had histologically-proven advanced or metastatic BCC or SCC and 

were not good candidates for surgical resection41. Exclusion criteria included 1) prior 

exposure to checkpoint blockade agents, 2) systemic immunosuppressant use, treatment with 

radiotherapy or other anti-cancer agents within 4 weeks of first biopsy41. Patients were 

treated with 200 mg pembrolizumab every 3 weeks or 350 mg cemiplimab every 2 weeks. A 

subset of patients received ongoing treatment with 150 mg vismodegib daily (Supplementary 

Table 1). Response was assessed by RECIST version 1.142.

Sample Collection and Processing

Fresh biopsies were collected from the primary tumor site. A portion of the tumor was 

stored in RNAlater for whole exome sequencing and bulk TCR sequencing. The remaining 

tissue was processed for single cell RNA sequencing.

H&E and Immunohistochemical (IHC) staining

For H&E staining, formalin-fixed, paraffin-embedded tissue cut at 4 microns and stained 

using the Tissue-Tek Prisma automated slide stainer. Immunostaining was performed on the 

Ventana Benchmark Ultra platform (CD3) and the Leica Bond platform (CD8, PD-L1). 

Antibodies used include anti-human CD3 (cat. no. 103A-76, Cell Marque), anti-human CD8 

(cat. no. M7103, Dako) and anti-human PD-L1 (cat. no. 13684S, Cell Signaling 

Technology).

Exome Sequencing

Exome capture was performed by Accuracy and Content Enhanced (ACE) augmented 

exome strategy (Personalis) and sequenced on an Illumina HiSeq 2500 with paired-end 100-

bp sequencing, with an average of 110-fold coverage (range 82–138).
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HLA Typing

All samples were genotyped for HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 

and -DRB3/4/5 loci using the MIA FORA NGS FLEX HLA Typing 11 Kit 96 Tests 

(Immucor, Inc. Norcross, GA, USA), following manufacturer’s semi-automated protocol and 

as described previously43,44. Briefly, paired-end sequence reads were generated using an 

NGS-based HLA genotyping method targeting 11 HLA genes with extensive coverage of the 

HLA genomic region by long-range polymerase chain reaction (PCR). Coverage for HLA 

class I loci is >200 bp 5’UTR to 3’UTR ~200–400 bp. In the case of HLA-DQA1 locus is 

~200 bp of the 5’UTR to ~200 bp of the 3’UTR and for HLA-DQB1 locus is ~70bp of the 

5’UTR to ~100 bp of the 3’UTR. For the remaining class II loci specific key regions of the 

gene were amplified. For HLA-DPA1 locus, this coverage is from exon 1 to exon 4 and for 

HLA-DPB1 locus from exon 2 to exon 4. All HLA-DRB1/3/4/5 genes were co-amplified in 

two separate reactions. The coverage for HLA-DRB1/3/4 loci included ~300–500 bp of the 

5’UTR to the first ~270 bp of intron-1 and the 3’ end of intron-1 (~250 bp) to exon-6. For 

the HLA-DRB5 gene exon 2 to exon 6 were amplified. All libraries were sequenced on an 

Illumina MiSeq. For assignment of HLA genotypes, NGS paired-end reads were analyzed 

using the MIA FORA FLEX v3.0 software (Immucor, Inc.). Final HLA genotyping calls 

were confirmed by manual review.

Bulk TCR Sequencing

Deep sequencing of the TCRβ gene was performed using the immunoSEQ platform 

(Adaptive Biotechnologies) on genomic DNA extracted from tumor biopsies or peripheral 

blood with input amounts ranging from 616 ng to 6,004 ng. Only data from productive 

rearrangements was exported from the immunoSEQ Analyzer for further analysis. On 

average, 26,066 TCR templates were detected from tumor samples (range 554–99,264), 

representing an average of 6,041 unique clonotypes (range 237–17,181), ~20-fold increase 

in sampling depth compared to scTCR-seq. For peripheral blood samples, on average 

113,528 TCR templates were detected (range 24,679–257,772), representing an average of 

36,536 unique clonotypes (range 7,041–71,462).

Tumor Dissociation

Fresh tumor biopsies were minced and digested in 5 mL digestion media (DMEM/F12 

media + 250 μg/mL Liberase TL + 200 U/mL DNAse I) in a C-tube using the gentleMACS 

Octo system at 37°C for 3 hours at 20 rpm. Following digestion, 50 μL of 500 mM EDTA 

was added and sample collected by centrifugation at 300xg for 5 minutes. The cell 

suspension was then passed through a 70 μm filter and pelleted by centrifugation at 300xg at 

4°C for 10 minutes. Cells were then resuspended in 1 mL of RPMI media and cryopreserved 

in FBS supplemented with 10% DMSO until further processing.

Cell Sorting

Cells were categorized as peri-tumoral T cells (CD45+CD3+), other peri-tumoral 

lymphocytes (CD45+CD3−) and malignant/stromal cells (CD45−CD3−). For patients su009, 

su010, su011, su012, su013, and su014, only peri-tumoral T cells were isolated and used for 

scRNA-seq. For sample su010-S, we additionally isolated CD8+CD39+ peri-tumoral T cells 
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(CD45+CD3+CD8+CD39+). For bulk RNA-seq datasets, CD4+ T helper cells were sorted as 

naive T cells (CD4+CD25−CD45RA+), Treg (CD4+CD25+IL7Rlo), Th1 

(CD4+CD25−IL7RhiCD45RA−CXCR3+CCR6−), Th2 (CD4+CD25−IL7RhiCD45RA
−CXCR3−CCR6−), Th17 (CD4+CD25−IL7RhiCD45RA−CXCR3−CCR6+), Th1–17 

(CD4+CD25−IL7RhiCD45RA−CXCR3+CCR6+), and Tfh subsets (CXCR5+ counterparts of 

each). Antibodies used included anti-human-CD45 conjugated to V500 (clone HI30, cat. no. 

560779, lot no. 7172744, BD Biosciences), anti-human-CD3 conjugated to FITC (clone 

OKT3, cat. no. 11–0037-41, lot no. 2007722, Invitrogen), anti-human-CD8 conjugated to 

Pacific Blue (clone 3B5, cat. no. MHCD0828, lot no. 1964935, Invitrogen), anti-human-

CD39 conjugated to APC (clone A1, cat. no. 328210, lot no. B268898, BioLegend), anti-

human-PD-1 conjugated to APC/Cy7 (clone EH12.2H7, cat. no. 329921, lot no. B245235, 

BioLegend) and anti-human-HLA-DR conjugated to eVolve 605 (clone LN3, cat. no. 83–

9956-41, lot no. 1949784, Affymetrix-Ebioscience), anti-human-CD45RA conjugated to 

PERCP-Cy5.5 (clone HI100, cat. no. 304107, lot no. B213966, BioLegend), anti-human-

CD127 conjugated to Brilliant Violet 510 (clone A019D5, cat. no. 351331, lot no. B197159, 

BioLegend), anti-human-CD4 conjugated to APC/Cy7 (clone OKT4, cat. no. 317417, lot no. 

B207751, BioLegend), anti-human-CCR6 conjugated to PE (clone G034E3, cat. no. 353409, 

lot no. B203239, BioLegend), anti-human-CD25 conjugated to FITC (clone BC96, cat. no. 

302603, lot no. B168869, BioLegend), anti-human-CXCR3 conjugated to Brilliant Violet 

421 (clone G025H7, cat. no. 353715, lot no. B206003, BioLegend), anti-human-CXCR5 

conjugated to Alexa-Fluor-647 (clone RF8B2, cat. no. 558113, lot no. 5302868, BD 

Pharmingen), and anti-human-CD3E conjugated to Pacific Blue (clone UCHT1, cat. no. 

558117, lot no. 4341657, BD Biosciences). All antibodies were used at a 1:200 dilution, 

with the exception of anti-CD45 and anti-HLA-DR antibodies which were used at a 1:100 

dilution. Propidium iodine (cat. no. P3566, Invitrogen) was used for live/dead staining at a 

final concentration of 2.5 μg/mL.

Single-cell RNA-seq Library Preparation

Single-cell RNA-seq and TCR-seq libraries were prepared using the 10X Single Cell 

Immune Profiling Solution Kit, according to the manufacturer’s instructions. Briefly, FACS 

sorted cells were washed once with PBS + 0.04% BSA and resuspended in PBS + 0.04% 

BSA to a final cell concentration of 100–800 cells/μL as determined by hemacytometer. 

Cells were captured in droplets at a targeted cell recovery of 500–7000 cells, resulting in 

estimated multiplet rates of 0.4–5.4%. Following reverse transcription and cell barcoding in 

droplets, emulsions were broken and cDNA purified using Dynabeads MyOne SILANE 

followed by PCR amplification (98°C for 45 sec; 13–18 cycles of 98°C for 20 sec, 67°C for 

30 sec, 72°C for 1 min; 72°C for 1 min). Amplified cDNA was then used for both 5’ gene 

expression library construction and TCR enrichment. For gene expression library 

construction, 2.4–50 ng of amplified cDNA was fragmented and end-repaired, double-sided 

size selected with SPRIselect beads, PCR amplified with sample indexing primers (98°C for 

45 sec; 14–16 cycles of 98°C for 20 sec, 54°C for 30 sec, 72°C for 20 sec; 72°C for 1 min), 

and double-sided size selected with SPRIselect beads. For TCR library construction, TCR 

transcripts were enriched from 2μL of amplified cDNA by PCR (primer sets 1 and 2: 98°C 

for 45 sec; 10 cycles of 98°C for 20 sec, 67°C for 30 sec, 72°C for 1 min; 72°C for 1 min). 

Following TCR enrichment, 5–50 ng of enriched PCR product was fragmented and end-

Yost et al. Page 9

Nat Med. Author manuscript; available in PMC 2020 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



repaired, size selected with SPRIselect beads, PCR amplified with sample indexing primers 

(98°C for 45 sec; 9 cycles of 98°C for 20 sec, 54°C for 30 sec, 72°C for 20 sec; 72°C for 1 

min), and size selected with SPRIselect beads.

Sequencing

Single-cell RNA libraries were sequenced on an Illumina NextSeq or HiSeq 4000 to a 

minimum sequencing depth of 25,000 reads/cell using the read lengths 26bp Read1, 8bp i7 

Index, 98bp Read2. Single-cell TCR libraries were sequenced on an Illumina MiSeq or 

HiSeq 4000 to a minimum sequencing depth of 5,000 reads/cell using the read lengths 

150bp Read1, 8bp i7 Index, 150bp Read2.

Data Processing of exome libraries

Whole exome sequencing was preprocessed using a standard GATK approach45. Briefly, 

both tumor and normal samples were aligned to GRCh37 using bwa-mem46 and further 

processed to remove duplicates and recalibrate base quality scores. All processing was 

performed in FireCloud47.

Mutation calling and neoepitope prediction

Small somatic variants were identified using Mutect248 and further annotated with the 

GATK. Somatic copy number variants were identified using the GATK best practices 

pipeline. HLA typing was performed on the germline whole exome sample using xHLA49. 

Neoepitopes were identified using pVAC-seq50, where a peptide-MHC pair was considered a 

neoepitope if the peptide was found to bind to the MHC allele with less than 500 nM 

binding strength and its wildtype cognate bound to the same allele with greater than 500 nM 

binding strength. We also examined additional neoepitope filters in Extended Data Fig. 1b 

including mutant peptide binding strength less than 500 or 50 nM and observed similar 

trends across patients and treatment conditions.

Tumor Clonal Composition Analysis

For the clonal evolution analysis, somatic single-nucleotide variants (SNVs) were called 

using Mutect 1.1.748 and the variant assurance pipeline (VAP)51 for filtering and rescuing. 

The VAP filters for FFPE and other artifacts and also leverages sequencing data from related 

samples to salvage false-negatives that would otherwise occur due to limits of the variant 

caller. VAFs (variant allele frequencies) were calculated for the detected and rescued 

variants by dividing the number of reads carrying the variant by the total number of reads 

spanning that position. For each case, mutations covered by less than 20 reads in any sample 

were removed, as were mutations where the alternate allele was not supported by at least 

four reads in at least one sample. TitanCNA52 was utilized to define local copy number and 

purity of the tumor samples. Observed VAFs were adjusted for local copy number and purity 

using the CHAT53 framework in order to generate CCF (cancer cell fraction) estimates for 

each mutation in each sample. Case su002 was excluded from further clonal evolution 

analysis because it had a purity of < 15% (as inferred by TitanCNA) in both the pre-

treatment and post-treatment samples, reducing the accuracy of imputed CCF values. Next, 

we used PyClone54 to define mutational clusters and assess changes in cluster frequencies 
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across treatment. PyClone’s Dirichlet process clustering was carried out on the functional 

mutations identified in each case. For case su006, since fewer functional mutations were 

identified compared to the other cases, all filtered mutations (i.e. including synonymous 

SNVs) that passed the depth of coverage thresholds described above were used to define 

mutational clusters. The PyClone beta binomial model was run using default parameters for 

10,000 iterations with a burn-in of 1000. For visualization of each case, we plotted PyClone 

clusters comprising at least 1% of the total number of utilized mutations.

Data Processing of single-cell RNA-seq libraries

Single-cell RNA-seq reads were aligned to the GRCh38 reference genome and quantified 

using cellranger count (10X Genomics, version 2.1.0). Filtered gene-barcodes matrices 

containing only barcodes with UMI counts passing threshold for cell detection were used for 

further analysis. On average, we obtained reads from 1,862 genes per cell (median: 1,716) 

and 6,304 unique transcripts per cell (median: 4,777), comparable to prior droplet based 

scRNA-seq studies of human cancers.

Principal component analysis (PCA) and UMAP clustering

All additional analysis was performed using Seurat (version 2.3.4)55. Cells with less than 

200 genes detected or greater than 10% mitochondrial RNA content were excluded from 

analysis, with 79,046/83,583 cells passing filter (95%).

For clustering of all cell types in BCC TME, raw UMI counts were log normalized and 

variable genes called on each dataset independently based on average expression greater 

than 0.1 and average dispersion greater than 1. Variable T cell receptor and immunoglobulin 

genes were removed from the list of variable genes to prevent clustering based on variable 

V(D)J transcripts. To remove batch effects between samples associated with a heat shock 

gene expression signature, we assigned a heat shock score using the AddModuleScore 

function based on genes annotated with the GO biological process ontology term ‘cellular 

response to heat’. Additionally, we assigned scores for S and G2/M cell cycle phase based 

on previously defined gene sets8 using the CellCycleScoring function. Scaled z-scores for 

each gene were calculated using the ScaleData function and regressed against number of 

UMIs per cell, mitochondrial RNA content, S phase score, G2/M phase score and heat shock 

score. Scaled data was used an input into PCA based on variable genes. Clusters were 

identified using shared nearest neighbor (SNN) based clustering based on the first 20 PCs 

with k = 30 and resolution = 0.4. The same principal components were used to generate the 

UMAP projections56,57, which were generated with a minimum distance of 1 and 20 

neighbors.

For malignant cell and T cell specific clustering in BCC samples, we isolated subsets of cells 

from the complete data set identified as either malignant or T cells based on broad 

clustering. Cells were then re-clustered as described above, with the following 

modifications: For malignant cells, we did not observe cell-cycle associated effects and did 

not regress out cell cycle scores. Variable genes were called on the merged dataset based on 

average expression greater than 0.1 and average dispersion greater than 1.8. For UMAP 

visualization, we used the first 10 PCs, a minimum distance of 0.15 and 15 neighbors. For T 
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cell clustering, we called variable genes on each dataset independently based on average 

expression greater than 0.15 and average dispersion greater than 3, and used the merged 

variable gene set for PCA. T cell clusters were identified using SNN-based clustering based 

on the first 16 PCs with k = 30 and resolution = 0.3. For UMAP visualization, we used the 

same PCs, a minimum distance of 0.05 and 20 neighbors.

T cell clustering of SCC samples was performed as described above with the following 

modifications: Variable genes were called on each dataset independently based on average 

expression greater than 0.15 and average dispersion greater than 2 and the merged variable 

gene set used for PCA. We observed three small outlier clusters based on initial clustering 

which expressed B cell and macrophage marker genes which were removed from further 

analysis. T cell clusters were identified using SNN-based clustering based on the first 16 

PCs with k = 30 and resolution = 0.3. For UMAP visualization, we used the first 16 PCs, a 

minimum distance of 0.05 and 20 neighbors.

Cell Cluster Annotation

Clusters were annotated based on expression of known marker genes, including CD3G, 

CD3D, CD3E, CD2 (T cells), CD8A, GZMA (CD8+ T cells), CD4, FOXP3 (CD4+ T cells/

Tregs), KLRC1, KLRC3 (NK cells), CD19, CD79A (B cells), SLAMF7, IGKC (Plasma 

cells), FCGR2A, CSF1R (Macrophages), FLT3 (Dendritic cells), CLEC4C (Plasmacytoid 

Dendritic cells), COL1A2 (Fibroblasts), MCAM, MYLK (Myofibroblasts), FAP, PDPN 
(CAFs), EPCAM, TP63 (Malignant cells), PECAM1, VWF (Endothelial cells), PMEL, 

MLANA (Melanocytes). Clusters were also confirmed by identifying differentially 

expressed marker genes for each cluster and comparing to known cell type marker genes. 

Finally, we downloaded bulk RNA-seq count data from sorted immune cell populations from 

Calderon et al., 20186 and compared bulk gene expression to pseudo-bulk expression 

profiles from single cell clusters. UMI counts were summed for all cells in each cluster to 

generate pseudo-bulk profiles. Gene counts from aggregated single-cell and bulk data were 

then normalized and depth corrected using variance stabilizing transformation in DESeq2 

(version 1.18.1). Genes with a coefficient of variation greater than 20% across bulk RNA-

seq datasets were used to calculate the Pearson correlation between bulk datasets and 

pseudo-bulk profiles.

Data Processing of single-cell TCR-seq libraries

TCR reads were aligned to the GRCh38 reference genome and consensus TCR annotation 

was performed using cellranger vdj (10X Genomics, version 2.1.0). TCR libraries were 

sequenced to a minimum depth of 5,000 reads per cell, with a final average of 15,341 reads 

per cell. On average, 12,335 reads mapped to either the TRA or TRB loci in each cell. TCR 

annotation was performed using the 10X cellranger vdj pipeline as described. 85% of 

annotated T cells were assigned a TCR and only 0.18% of cells not annotated as T cells 

were assigned a TCR. For cells with two confident TCRs, both were considered in the 

analysis. Overall, 5.5% of T cells with TCR reads were assigned two productive TRB 
sequences and 5.7% of T cells with TCR reads were assigned two productive TRA 

sequences and both sequences were assigned to each cell and used for clonotype grouping. 

Only 1.6% of all cells were assigned two TRB sequences and two TRA sequences. We 
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detected an average of 1,863 unique clonotypes on average in each patient (range 151 – 

4,081). Of 27,956 total clonotypes detected, an average of 1.84 cells were assigned to each 

clonotype, 5,291 clonotypes comprised of greater than one cell, and clonotype sizes ranging 

from 1 cell to 564 cells.

GLIPH Analysis

To identify TCR specificity groups, GLIPH analysis was carried out as described 

previously28. GLIPH clusters TCRs based on two similarity indexes: 1) global similarity, 

meaning that CDR3 sequences differ by up to one amino acid, and 2) local similarity, 

meaning that two TCRs contain a common CDR3 motif of 2, 3, or 4 amino acids (enriched 

over random sub-sampling of unselected repertoires). We performed GLIPH with the 

following modifications: 1) for clusters based on global similarity, CDR3b fragments within 

the same cluster are required to be at most one amino acid different, and this difference must 

be at the same amino acid location in all fragments within the cluster, and 2) for clusters 

based on local motifs, the starting positions of motifs of the same cluster within CDR3b 

fragments must be within 3 amino acids to be considered.

Single-cell CNV detection

Single-cell CNVs were detected using HoneyBADGER58. Log-transformed UMI counts 

were used as input, after removing genes with mean expression lower than 0.1 normalized 

counts (7,189 genes passing filter, 75–753 genes per chromosome). Non-immune, non-

malignant cells were used as a normal reference, including fibroblasts, endothelial cells and 

melanocytes (n = 2,122). CNVs were detected based on the average gene expression in 

sliding windows across each chromosome (n = 101 genes/window) relative to average 

expression in normal reference cells. CNV profiles of malignant and reference cells were 

visualized with z-score limits of −0.6 and 0.6.

Generation and Data Processing of bulk RNA-seq libraries

For bulk CD4+ T cell subset RNA-seq, cDNA library construction was performed using the 

SMART-Seq v4 Ultra Low Input RNA Kit (Clontech) with 2 ng of input RNA. Sequencing 

libraries were prepared using the Nextera XT DNA Library Prep Kit (Illumina), quantitated 

using the Qubit dsDNA HS Kit (Thermo Fisher Scientific), and pooled in equimolar ratios. 

Final pooled libraries were sequenced on an Illumina HiSeq 2500 with paired-end 50-bp 

read lengths. Paired end RNA-seq libraries from basal cell carcinoma tumors (Atwood et al., 
201514), cutaneous squamous cell carcinoma tumors (Hoang, et al., 201715) and T cell 

subsets (Simoni, et al. 201821 and this study) were aligned to the GRCh38 reference genome 

using STAR (version 2.6.1a) following adapter trimming by cutadapt (version 1.17). 

Uniquely-mapped reads were counted using featureCounts (version 1.6.2) using Ensembl 

GRCh38 GTF transcript annotations. Differential expression analysis was performed using 

DESeq2 to identify cell-type specific expression programs (version 1.18.1).

Gene expression signature scoring

Individual cells were scored for bulk RNA-seq expression programs derived from bulk 

RNA-seq data as follows. Raw UMI counts were used as input into the AUCell package to 
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score each cell for gene set enrichment based on AUC scores to correct for gene dropout and 

library size differences59. After building a gene expression ranking for each cell, the gene set 

enrichment was calculated for each cell using the area under the recovery curve using 

default parameters.

Activation and exhaustion signatures were derived by identifying variable genes across all 

CD8+ T cells using the FindVariableGenes function in Seurat with an average expression 

cutoff of 0.05 and dispersion cutoff of 0.5. The Pearson correlation between reference genes 

IFNG (activation signature) and HAVCR2 (exhaustion signature) and all variable genes 

across all CD8+ T cells was computed using scaled expression values. Exhaustion and 

activation signature genes were comprised of the top 50 genes with the highest correlation 

with reference genes IFNG and HAVCR2. The TCF7+/stem-like signature was obtained 

from processed data from Im et al., 201629. Individual cells were scored for enrichment of 

gene signatures using the function AddModuleScore in Seurat. Cell cycle scoring was 

performed as previously described8. Briefly, cells were scored for enrichment of cell cycle 

associated genes using the CellCycleScoring function in Seurat.

Diffusion map and pseudotime analysis

Single cells from BCC samples assigned to CD8+ T cell clusters were used for diffusion 

map and pseudotime analysis. Differentially expressed genes were used to recalculate 

principal components. Data was then exported to Scanpy (version 1.2.2)60 for diffusion map 

and pseudotime analysis. Data was preprocessed by computing a neighborhood graph using 

40 neighbors, the first 20 PCs. The first three components of the diffusion map were then 

computed. A randomly selected naïve T cell was used as the root cell for diffusion 

psuedotime computation using the first 3 diffusion components and a minimum group size 

of 10.

Sources for bulk RNA sequencing data

Reference bulk RNA-seq from sorted immune populations were obtained from GEO 

(GSE118165). Reference bulk RNA-seq data from CD8+ T cells were obtained from GEO 

(GSE113590). Reference bulk RNA-seq data from basal cell carcinomas were obtained from 

GEO (GSE58377). Reference bulk RNA-seq data from squamous cell carcinomas were 

obtained from the ArrayExpress database (E-MTAB-5678).

Statistical analysis

The statistical methods used for each analysis are described within the figure legends and in 

the Life Science Reporting Summary linked to this article.

Code Availability

All custom code used in this work is available upon request.

Reporting Summary

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.
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Data Availability

All ensemble and single-cell RNA sequencing data have been deposited in the Gene 

Expression Omnibus (GEO) and are available under accession GSE123814. Exome 

sequencing data has been deposited in the Sequence Read Archive (SRA) and are available 

under accession PRJNA533341. Bulk TCR sequencing data can be accessed through 

Adaptive Biotechnologies’ ImmuneACCESS database (doi:10.21417/KY2019NM; https://

clients.adaptivebiotech.com/pub/yost-2019-natmed). All other relevant data are available 

from the corresponding author upon reasonable request.

Extended Data
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Extended Data Fig. 1. Mutational landscape of BCC tumors following PD-1 blockade, Related to 
Figure 1.
(a) Summary of mutation burden, potential driver mutations, and mutation frequencies 

detected in WES data. Potential driver mutations were selected based on frequently mutated 

genes in BCC identified by Bonilla et al., 2015. (b) Bar plots of nonsynonymous mutation 

burden pre- and post-treatment detected by exome sequencing (top) and predicted 

neoepitope burden using only the predicted binding strength of the mutant peptide, for 

peptides with <500 nM binding strength (left), or <50 nM binding strength (right). (c) 
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Changes in clonal mutation composition detected in exome sequencing data following 

treatment, with persistent mutation clusters in grey, mutation clusters decreasing in cellular 

prevalence following treatment in blue or green, and mutation clusters increasing in cellular 

prevalence following treatment in red. For clonal composition analysis, variant allele 

information from matched pre- and post-treatment tumor samples was leveraged to rescue 

shared low-frequency variants that did not pass standard variant filtering (Methods). Bar 

plots of the ratio of predicted neoepitopes to nonsynomymous mutations in each mutation 

cluster (right), with two novel tumor subclones emerging post-treatment devoid of predicted 

neoepitopes. Predicted neoepitopes were based on binding strength of <500 nM binding 

strength for the mutant peptide and >500 nM binding strength of the corresponding WT 

peptide (as in Fig. 1c). (d) Representative flow cytometry staining of dissociated BCC cells. 

Similar results were obtained for each sorted sample (including SCC samples, n = 32). Cells 

were stained for expression of the indicated markers, and two-color histograms are shown 

for cells pregated as indicated by the arrows and above each diagram. Numbers represent the 

percentage of cells within the indicated gate. Bottom panels demonstrate cell size 

differences between tumor and stromal cells, immune cells (non-T cells), and T cells.
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Extended Data Fig. 2. Characterization of cell types present in BCC TME, Related to Figure 1.
(a) Heatmap of differentially expressed genes (rows) between cells belonging to each cell 

type cluster (columns). All malignant cells were treated as one cluster. (b) Correlation 

between aggregated expression profiles from immune cell type clusters identified in BCC 

TME and bulk RNA-seq profiles from sorted reference populations (from Calderon et al., 
2018, n = 1–4 biologically independent samples from different donors). (c) UMAP of all 

BCC TME cells colored by cell type-specific markers. (d) Bar plots indicating relative 

proportions of sort markers detected in each cluster (excluding cells that were not sorted on 
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any markers), relative proportions of cells for which a TCR sequence was detected in each 

cluster, relative proportions of each non-malignant cell type detected per patient, relative 

proportions of cells from each patient detected in each cluster, and relative proportions of 

pre- and post-treatment cells detected in each cluster.
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Extended Data Fig. 3. Copy number alterations and gene expression of individual BCC tumors, 
Related to Figure 1.
(a) Inferred CNV profiles for malignant cells separated by patient based on scRNA-seq 

(scCNV) and WES. Dashed line indicates a potential subclone identified by scCNV 

highlighted for su005. For all patients, pre and post-treatment malignant cells were analyzed 

together and exhibited similar CNV profiles, with the exception of su006. For su006, 

differences between timepoints were apparent in CNV profiles obtained from both scRNA-

seq as well as exome, analogous to the changes in mutation composition identified in 
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Extended Data Fig. 1a. (b) Heatmap of differentially expressed genes (rows, n = 577) across 

malignant BCC cells (n = 3,548) aggregated by patient (columns, n = 8). Cutoffs for 

differential expression were less than 0.01 adjusted P-value (Wilcoxon rank sum test, two-

tailed, Bonferroni corrected), greater than 0.3 average log fold change and greater than 0.3 

difference in fraction of positive cells. Core BCC genes that are differentially expressed 

between all malignant cells and other TME cells are shown in top cluster. Genes 

differentially expressed between patients are shown in the bottom clusters. Specific genes 

associated with cancer-associated pathways are highlighted.
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Extended Data Fig. 4. Characterization of T cell subtypes present in BCC TME, Related to 
Figure 2.
(a) Enrichment of bulk T cell subtype signatures for each T cell cluster identified in the BCC 

TME. T cell subtype signatures were derived from bulk datasets (from this study and Simoni 

et al., 2018, n = 3–7 biologically independent samples from different donors) and single T 

cells from BCC dataset were scored for signature enrichment. Heatmaps represents the z-

scored average signature enrichment for each cluster. (b) Heatmap of Pearson correlation 

between T cell clusters based on first 20 PCs used for clustering (n = 33,106 cells). (c) 
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UMAP of all T cells colored by marker gene expression. (d) UMAP of all T cells separated 

by patient and colored by anti-PD-1 treatment status.
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Extended Data Fig. 5. Characterization of activation/exhaustion trajectories and increase in Tfh 
cell clonality accompanied by B cell expansion, Related to Figure 2.
(a) Violin plots of cell coordinates in diffusion components 1 and 2 separated by cluster 

identity (left, middle). Violin plot of pseudotime values separated by cluster identity (right). 

N = number of cells. (b) Heatmap of expression of genes with highest correlation with 

diffusion components 1 and 2 (rows) across cells belonging to each cell type cluster 

(columns). (c) Boxplot of Gini indices for each CD4+ T cell cluster separated by timepoint, 

showing clonal expansion of Tfh cells following treatment. Each point represents a patient 
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with more than 10 cells belonging to a cluster at that timepoint, with the size proportional to 

the number of cells. (d) UMAP of all cells detected for patient su001 colored by treatment 

timepoint (left) and relative proportions of each immune cell type (right), showing increased 

frequency of B cells posttreatment. (e) UMAP of T cells detected for patient su001 colored 

by treatment timepoint (left) and relative proportions of CD4+ phenotype (right), showing 

increased frequency of Tfh cells post-treatment. (f) Bar plot of percent AICDA positive B 

cells, separated by patient. (g) H&E staining of post-treatment BCC tumor from patient 

su001 post-treatment demonstrating islands of BCC in sclerotic stroma with a peripheral 

cuff of dense lymphoid tissue. Scale bar for top image represents 400 μm and scale bar for 

bottom image represents 100 μm. H&E staining was performed once for each sample.
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Extended Data Fig. 6. Correlations between T cell clones or TCR specificity groups and scRNA-
seq phenotype, Related to Figure 3.
(a) Distributions of the proportion of cells within each clone (>=3 cells) that share a 

common cluster identity, separated by patient (for patients with >3 clones with >=3 cells), 

compared to randomly selected and size matched groups of T cells (n = number of clones, 

unpaired t-test, two-tailed). (b) Distribution of the proportion of CD4+ cells (left) and CD8+ 

cells (right) within each clone or TCRβ clones within each TCR specificity group (>=3 

cells) that share a common cluster identity, separated by treatment timepoint, compared to 
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randomly selected and size matched groups of T cells from the same sample (left, n = 

number of clones, unpaired t-test, two-tailed). (c) Bar plot of T cell cluster assignments for 

all clones with greater than 10 cells, separated by patient and treatment status. (d) Bar plot 

of T cell cluster assignments for the largest 10 TCR specificity groups, separated by TCRβ 
clone. Conserved motifs between TCRβ clones identified by GLIPH highlighted in red. 

Representative TCRβ sequences shown for TCR specificity groups with more than four 

unique clonotypes. (e) Heatmap of the fraction of TCR specificity groups with clones 

belonging to a given primary phenotype (rows) that also contain clones belonging to a 

secondary phenotype (columns).
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Extended Data Fig. 7. Details of clone transitions, Related to Figure 3.
(a) Heatmap of TCRβ clonotype overlap between all samples, indicating correct pairing of 

samples and a significant number of overlapping clones between timepoint within individual 

patients with the exception of one pair with limited cell numbers and no clonotype overlap 

(su003) (b) Bar plot of T cell cluster assignments for matched TCRβ clones between 

timepoints for top 60 clones with at least 3 cells per timepoint. Related to Figure 3e.
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Extended Data Fig. 8. Clonal expansion in tumor and peripheral blood detected by bulk TCR 
sequencing, Related to Figure 4.
(a) Scatterplots comparing TCRβ clone frequencies pre- and post-treatment measured by 

single-cell RNA+TCR-seq, separated by patient. Clones where the majority of cells share an 

exhausted CD8+ phenotype (red) or a memory CD8+ phenotype (blue) are highlighted. 

Patient su003 without no clonotype overlap between timepoints excluded. In this and 

subsequent panels, exhausted refers to both exhausted and exhausted/activated clusters. (b) 
Boxplot of the fraction of novel TCR specificity groups within each cluster following 
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treatment for TCR specificity groups containing at least two distinct TCRβ sequences and at 

least 3 cells, separated by patient (n = number of patients). (c) Bar plot of fraction of clones 

with significant expansion post-treatment based on bulk TCRseq, separated by patient and 

phenotype and colored by replacement status. (d) Scatterplots comparing TCRβ clone 

frequencies between timepoints measured by bulk TCR-seq for sequential timepoints in 

patient su001, with clones where the majority of cells share an exhausted CD8+ phenotype 

(red) or a memory CD8+ phenotype (blue) highlighted. Novel clones emerging between 

timepoints are highlighted in dark red and are detected only in pre- and post-treatment 

comparisons, but not in comparisons between pre-treatment timepoints, suggesting that 

replacement is primarily a result of PD-1 blockade rather than time between sampling.
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Extended Data Fig. 9. TCR overlap between peripheral blood and tumor detected by bulk TCR 
sequencing, Related to Figure 4.
(a) Pie chart of percentage of TCRβ clones detected in peripheral blood that were also 

detected by scRNA-seq, expanded to show distribution of phenotypes in tumor, as well as 

fraction of exhausted clones detected in peripheral blood, colored by replacement status in 

tumor. In this and subsequent panels, the exhausted category includes both exhausted and 

exhausted/activated clusters. (b) Bar plot of percentage peripheral T cells matching tumor-

infiltrating TCRβ clones with exhausted phenotypes post-treatment as detected by scRNA-

seq. (c) Violin plot of TCR specificity group enrichment (tumor frequency / PBMC 

frequency) detected by bulk TCRseq, separated by phenotype and treatment status (n = 

number of TCR specificity groups, unpaired t-test, one-tailed).
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Extended Data Fig. 10. Clonal replacement analysis in SCC TILs following PD-1 blockade, 
Related to Figure 4.
(a) UMAP of tumor-infiltrating T cells present in SCC samples pre- and post-PD-1 blockade 

colored by patient (top right) and anti-PD-1 treatment status (bottom right). (b) Heatmap of 

correlation between averaged RNA expression between BCC and SCC T cell clusters. (c) 
Boxplot of Gini indices for each CD8+ T cell cluster calculated for each patient (n = number 

of patients). In this and subsequent panels, exhausted refers to both exhausted and 

exhausted/activated clusters, unless otherwise noted. (d) Abundance of the top 12 exhausted 
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clones in sample su010-S identified by unsupervised clustering compared to the abundance 

of the same clones in sorted CD8+ CD39+ T cells, colored by assigned phenotype. (e) 
Distribution of the proportion of cells within each clone or TCRβ clones within each TCR 

specificity group (>=3 cells) that share a common cluster identity, separated by treatment 

timepoint, compared to randomly selected and size matched groups of T cells from the same 

sample (left, n = number of TCRβ clones or TCR specificity groups, unpaired t-test, two-

tailed). (f) Heatmap of the fraction of clonotypes belonging to a given primary phenotype 

cluster (rows) that are shared with other secondary phenotype clusters (columns). (g) 
Heatmap of all observed phenotype transitions for matched clones during PD-1 blockade for 

clones with at least 3 cells for each timepoint. (h) TCF7+/stem-like score (from Im et al. 
2016) versus exhaustion score for all CD8+ T cells, colored by gene expression (left). 

TCF7+/stem-like score versus exhaustion score for exhausted cells and cells of other 

phenotypes belonging to primarily exhausted clones, colored by phenotype (top right). 

Violin plot of TCF7+/stem-like score for exhausted cells and cells of other phenotypes 

belonging to primarily exhausted clones, demonstrating that the highest TCF7+/stem-like 

score is observed in cells with an exhausted phenotype (bottom right, n = number of cells). 

(i) Violin plot of TCF7+/stemlike score for memory and exhausted cells separated by change 

in clone abundance following treatment (left, n = number of cells, unpaired t-test, two-

tailed). Clones were defined as expanded or contracted if they significantly changed in 

abundance by a Fisher exact test (P < 0.05 and fold change > 0.5), and persistent if they did 

not significantly change in abundance and at least one cell was detected at each timepoint. 

(j) Scatterplots comparing TCRβ clone frequencies pre- and post-treatment measured by 

single-cell TCR sequencing for all BCC patients. Clones that were significantly expanded or 

contracted post-treatment based on a binomial test (two-sided, Bonferroni corrected P value 

< 0.01) are highlighted on the left. Clones where the majority of cells share an exhausted 

CD8+ phenotype (middle, red) or a memory CD8+ phenotype (right, blue) are also 

highlighted.</Figure_Caption>
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Figure 1. Characterization of the BCC TME pre- and post-PD-1 blockade by single-cell RNA-
seq.
(a) Workflow for sample processing and scRNA-seq analysis of advanced BCC samples 

collected pre- and post-PD-1 blockade. Graphics courtesy of the Parker Institute for Cancer 

Immunotherapy. (b) Immunohistochemistry staining for CD3+ cells in representative BCC 

tumors before and after PD-1 blockade. Tumor boundaries denoted with dashed lines. All 

scale bars represent 100 μm. IHC staining was performed once for each sample (n = 16 

samples). (c) Bar plot of neoepitope burden pre- and post-treatment based on exome 

sequencing. Variants were classified as predicted neoepitopes if the peptide was found to 

bind to the MHC allele with less than 500 nM binding strength and its wildtype cognate 

bound to the same allele with greater than 500 nM binding strength. (d) UMAP of all tumor-

resident cells pre- and post-therapy for all 11 BCC patients. Clusters denoted by color are 

labeled with inferred cell types, which include 2 malignant clusters, 2 CD4+ T cell clusters, 
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3 CD8+ T cell clusters, and proliferating T cells, endothelial cells, melanocytes, 

myofibroblasts, and cancer-associated fibroblasts (CAFs), dendritic cells (DCs), 

macrophages, and plasmacytoid dendritic cells (pDCs), 3 B cell clusters, and 1 NK cell 

cluster. (e) UMAP of tumor-resident cells colored by patient identity (top left), FACS sort 

markers (top right), anti-PD1 treatment status (bottom left), and TCR detection (bottom 

right). (f) Inferred CNV profiles based on scRNA-seq data. Non-immune, non-malignant 

cells (fibroblasts and endothelial cells, n = 2,122) were used as normal reference for 

malignant cell CNV inference (n = 3,548). (g) Representative examples of hematoxylin and 

eosin (H&E) staining of different BCC subtypes. All scale bars represent 100 μm. H&E 

staining was performed once for each sample (n = 9 samples). (h) UMAP of malignant cells 

colored by patient (left) and clinical subtype (right). (i) UMAP of malignant cells colored by 

enrichment of basal and squamous cell carcinoma gene signatures (from Atwood et al., 2015 

and Hoang et al., 2017) (top). Malignant cells ordered based on the difference between basal 

and squamous signatures (bottom). The clinical diagnosis associated with each cell and 

expression of signature associated genes are indicated below.
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Figure 2. Exhausted CD8+ T cells are clonally expanded and express markers of tumor-
specificity.
(a) UMAP of tumor-infiltrating T cells present in BCC samples pre- and post-PD-1 

blockade. Clusters denoted by color labeled with inferred cell types (left). UMAP also 

colored by patient (top right) and anti-PD-1 treatment status (bottom right). (b) Heatmap of 

differentially expressed genes (rows) between cells belonging to different T cell subsets 

(columns). Specific genes associated with different T cell clusters are highlighted. Bars at 

top of heatmap indicate the number of cells, post-therapy enrichment, and number of 
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patients in each cluster. (c) Diffusion map of naïve, memory, activated and exhausted CD8+ 

T cells using the first two diffusion components (left). Cells colored based on cluster 

identities from Fig. 2a. Cells are also colored by diffusion pseudotime and treatment status 

(top right). Average expression of selected core activation and exhaustion genes is quantified 

along diffusion components 1 and 2 (bottom right). (d) Co-expression analysis of 

differentially expressed genes (n = 146 genes) between activated, exhausted and activated/

exhausted CD8+ T cells (n = 5454 cells). Inset indicates core exhaustion module identified 

by hierarchical clustering, with canonical exhaustion genes highlighted. (e) Diffusion map of 

CD8+ T cell subsets colored by clone size (left) and boxplot of Gini indices for each CD8+ T 

cell cluster calculated for each patient (right), showing significant clonal expansion within 

exhausted CD8+ T cells (n = number of patients, unpaired t-test, one-tailed, relative to 

basemean; box center line, median; box limits, upper and lower quartiles; box whiskers, 

1.58× interquartile range, here and throughout). Exhausted refers to both exhausted and 

exhausted/activated clusters. (f) Activation score (based on expression of top 50 genes most 

correlated with IFNG expression) versus exhaustion score (based on expression of top 50 

genes most correlated with HAVCR2 expression) for all CD8+ T cells (n = 17,561), colored 

by expression levels of indicated genes. (g) Activation score versus exhaustion score 

enrichment for TCR clones with >1 cell (n = 6,422) based on average activation and 

exhaustion scores of individual cells belonging to that clone, colored by the most frequent 

assigned phenotype for cells belonging to that clone, and size based on clone size (top right) 

or cell cycle score (bottom right).
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Figure 3. Clonal dynamics and phenotype transitions of tumor-infiltrating T cells.
(a) UMAP of tumor-infiltrating T cells colored by selected TCR clones (left). UMAP of T 

cells colored by TCRβ clones belonging to the same TCR specificity (GLIPH) group (right). 

(b) Phenotypes of single cells belonging to the same TCR clone or TCR specificity group. 

Shown are the top five most abundant clones (top and middle) larger than 10 cells for each 

patient. Each bar is colored by individual phenotypes of single cells within the clone. The 

bottom plots show phenotypes of distinct TCR clones within a TCR specificity group. Both 

analyses show substantial phenotypic similarity among single cells belonging to a clone or 
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group. (c) Distribution of the proportion of cells within each clone, or TCRβ clones within 

each TCR specificity group, (>=3 cells) that share a common cluster identity compared to 

randomly selected and size matched groups of T cells from the same sample (left, n = 

number of TCRβ clones or TCR specificity groups, unpaired t-test, two-tailed). Distribution 

of cell-cell correlations between cells that belong to the same TCR clone or cells within the 

same TCR specificity group but different clonotypes, compared to randomly selected and 

size matched groups of T cells from the same sample (bottom, n = number of cells or clones, 

unpaired t-test, two-tailed). Cell-cell correlations were calculated using log-transformed 

expression of differentially expressed genes. (d) Heatmap showing the fraction of clonotypes 

belonging to a primary phenotype cluster (rows) that are shared with other secondary 

phenotype clusters (columns). (e) Heatmap of all observed phenotype transitions for 

matched clones during PD-1 blockade for clones with at least 3 cells for each timepoint. (f) 
TCF7+/stem-like score (from Im et al., 2016) versus exhaustion score for all CD8+ T cells (n 

= 17,561), colored by expression of indicated genes (left). TCF7+/stem-like score versus 

exhaustion score for cells belonging to primarily exhausted clones, colored by phenotype 

(top right). Violin plot of TCF7+/stem-like score for memory and exhausted clones separated 

by change in clone abundance following treatment (bottom right, n = number of clones, 

unpaired t-test, two-tailed). Clones were defined as expanded or contracted if they 

significantly changed in abundance by a Fisher exact test (P < 0.05 and fold change > 0.5), 

and persistent if they did not significantly change in abundance and at least one cell was 

detected at each timepoint. Exhausted refers to both exhausted and exhausted/activated 

clusters. (g) Pie charts showing clone size and distribution of phenotypes for matched clones 

pre- and post-therapy. Selected clones had a primarily exhausted phenotype pre-therapy and 

increased in abundance post-therapy, and are separated by the presence of a high TCF7+ 

signature prior to treatment. (h) Pie chart of all clones with an exhausted phenotype post-

treatment, colored by whether the clone contained TCF7 high cells pre-therapy.
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Figure 4. Clonal replacement of exhausted CD8+ T cells following PD-1 blockade.
(a) Scatterplots comparing TCRβ clone frequencies pre- and post-treatment measured by 

scRNA+TCR-seq for all BCC patients (n = 11 patients). Clones that were significantly 

expanded or contracted post-treatment based on a Fisher exact test (P < 0.05) are highlighted 

on the left. Clones where the majority of cells exhibit an exhausted CD8+ phenotype 

(middle, red) or a memory CD8+ phenotype (right, blue) highlighted. In this and subsequent 

panels, exhausted refers to both exhausted and exhausted/activated clusters. (b) Boxplot of 

the fraction of novel clones detected by scRNA+TCR-seq within each cluster following 
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treatment (n = number of patients, unpaired t-test, two-tailed). Clones with only one cell 

detected and cells from su003 with no clonotype overlap between timepoints were excluded. 

(c) Lorenz curve of TCRβ clone frequencies based on scRNA+TCR-seq for exhausted CD8+ 

T cell clones (left) and memory CD8+ T cell clones (middle) greater than or equal to 5 cells, 

colored by presence of each clone prior to treatment. Proportion of novel clones in each 

phenotype quantified on the right. (d) Fraction of exhausted cells out of total T cells detected 

by single cell RNA+TCR-seq for each patient, separated by treatment status. Cells belonging 

to novel clones detected post-treatment are highlighted. (e) Scatterplots comparing TCRβ 
clone frequencies pre- and post-treatment measured by bulk TCR-seq (n = 8 patients). 

Clones that were significantly expanded or contracted post-treatment based on a binomial 

test (two-sided, Bonferroni corrected P value < 0.01) are highlighted on the left, with 

expanded clones further separated based on their detection pre-treatment. Clones where the 

majority of cells share an exhausted CD8+ phenotype based on scRNA-seq (middle, red) or a 

memory CD8+ phenotype (right, blue) highlighted. (f) Bar plot of fraction of clones with 

significant expansion post-treatment based on bulk TCR-seq, separated by phenotype and 

colored by replacement status. (g) Overlap between TCRβ clones in peripheral blood and 

tumor infiltrating T cells detected by bulk TCR-seq (n = 5 patients, left). Fraction of TIL 

clones detected in peripheral blood, separated by sample (top right). Fraction of novel 

exhausted TIL clones detected in PBMCs, separated by treatment status (bottom right). (h) 
Violin plot of clone enrichment (tumor frequency / PBMC frequency) detected by bulk 

TCR-seq, separated by phenotype and treatment status (data from 5 patients, n = number of 

clones, unpaired t-test, one-tailed). (i) Characteristics of squamous cell carcinoma (SCC) 

samples treated with anti-PD-1 (left) and UMAP of tumor-infiltrating T cells present in SCC 

samples pre- and post-PD-1 blockade (right). Clusters denoted by color are labeled with 

inferred cell types. Graphics courtesy of the Parker Institute for Cancer Immunotherapy. (j) 
Fraction of exhausted cells out of total T cells detected by single-cell RNA+TCR-seq for 

each patient, separated by treatment status. Novel clones detected post-treatment are 

highlighted (bottom left). Sample su010-S derived from an SCC lesion from patient su010 

who presented with both BCC and SCC lesions. (k) Bar plot of fraction of clones with 

significant expansion based on bulk TCR sequencing post-treatment, separated by phenotype 

and colored by replacement status (bottom right).
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