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Abstract. Numerous studies have shown that the formation 
of foam cells is of vital importance in the process of athero‑
sclerosis. The aim of the present study was to assess the effects 
of metformin on foam cell formation in oxidized low‑density 
lipoprotein (ox‑LDL)‑treated THP‑1 cells and explore its associ‑
ated mechanism of action. Human monocytic THP‑1 cells were 
pretreated with metformin for 2 h and subsequently treated with 
ox‑LDL for 24 h. The data indicated that metformin signifi‑
cantly inhibited lipid accumulation in ox‑LDL‑treated THP‑1 
cells by decreasing the expression of scavenger receptor A, 
cluster of differentiation 36 and adipocyte enhancer‑binding 
protein 1. In addition, metformin increased the expression 
levels of scavenger receptor B1 and ATP binding cassette trans‑
porter G1 and suppresses the esterification of free cholesterol. 
Furthermore, it markedly inhibited ferroptosis (reflected by the 
upregulation of glutathione peroxidase glutathione peroxidase 
4 and the downregulation of Heme oxygenase‑1). In addition, it 
caused a marked suppression in the expression levels of cyste‑
inyl aspartate specific proteinase‑1, IL‑1β, NOD‑like receptor 
protein 3, IL‑18 secretion and in the levels of oxidative stress. 
Metformin attenuated the activation of ERK and facilitated 

the phosphorylation of 5' adenosine monophosphate‑activated 
protein kinase (AMPK). Treatment of THP‑1 cells with an ERK 
inhibitor reversed these effects, while inhibition of AMPK 
activity exacerbated the effects noted in ox‑LDL‑treated THP‑1 
cells. In conclusion, the present study suggested that metformin 
suppressed foam cell formation, inflammatory responses and 
inhibited ferroptosis in ox‑LDL‑treated macrophages via the 
AMPK/ERK signaling pathway.

Introduction

Atherosclerosis is a chronic disease and a major contributing 
factor to high morbidity and mortality worldwide (1). Foam 
cells are essential components of atherosclerosis (2). In the 
process of arteriosclerosis, monocytes adhere to endothe‑
lial cells, invade the subendothelial layer and differentiate 
into macrophages. The macrophages, in turn, engulf lipids, 
secrete proinflammatory cytokines and promote foam cell 
formation (3). This leads to lipid overload, inflammation and 
oxidative stress in oxidized LDL (ox‑LDL)‑treated macro‑
phages  (4‑6). All these factors result in plaque formation, 
rupture, bleeding and blockage of the vascular cavity, which 
promote the development of serious cardiovascular events (7). 
Therefore, it is beneficial to decrease the levels of lipids in 
macrophages to suppress the process of atherosclerosis.

Ferroptosis is a recently defined form of programmed cell 
death that is induced by iron‑dependent lipid peroxidation 
and differs from apoptosis, cell necrosis and autophagy (8). 
It is characterized by iron deposition, lipid peroxidation and 
decreased expression of glutathione peroxidase 4 (Gpx4) in 
cells (9,10). The induction of oxidative stress and lipid peroxi‑
dation caused by ferroptosis indicates a possible correlation 
between ferroptosis and atherosclerosis. Recently, a number 
of studies have demonstrated that ferroptosis is involved in 
the pathophysiological process of atherosclerosis (11,12). A 
previous study suggests that iron overload and incubation with 
ox‑LDL and lipopolysaccharide/IFN‑γ increase the number of 
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M1 proinflammatory‑phenotype macrophages produced and 
the inflammatory response (13), resulting in the induction of 
ferroptosis in atheroma (14).

Metformin is a therapeutic drug used for type 2 diabetes (15). 
Studies have shown that metformin can reduce the risk of 
breast cancer (16), cervical cancer (17,18), prostate cancer (19), 
gastric cancer  (20) and other types of cancer. Metformin 
promotes an anti‑inflammatory effect on macrophages by 
suppressing fatty acid synthase‑dependent palmitoylation of 
AKT (21). Clinical trials have also demonstrated the protective 
role of metformin against abdominal aortic aneurysms (22). 
Studies have suggested that metformin can alleviate angio‑
tensin‑induced cardiomyocyte hypertrophy (23) and prevent 
excessive myocardial fibrosis and ventricular remodeling 
following myocardial infarction (24). Furthermore, metformin 
mitigates the progression of atherosclerosis by suppressing 
monocyte‑to‑macrophage differentiation, induction of inflam‑
matory responses and smooth muscle cell migration (25‑27).

However, the specific mechanism by which metformin 
affects the formation of foam cells remains to be elucidated. 
Therefore, the purpose of the present study was to determine 
whether metformin acts as a protective factor in the formation 
of foam cells and to identify its potential mechanism of action.

Materials and methods

Cell culture. The human monocytic cell line (THP‑1 cells; 
American Type Culture Collection) was cultured in RPMI 
1640 medium (HyClone; Cytiva), supplemented with 10% 
FBS (Gibco; Thermo Fisher Scientific, Inc.) and 1% peni‑
cillin/streptomycin solution, at 37˚C in the presence of 5% 
CO2. To induce macrophage differentiation, THP‑1 cells 
were incubated with 100 nM phorbol 12‑myristate 13‑acetate 
(PMA; MilliporeSigma) for 48 h in 6‑well plates at a density 
of 5x105 cells/ml (28). Subsequently, the cells were pretreated 
for 2 h prior to incubation with ox‑LDL (Guangzhou Yiyuan 
Biological Technology Co. Ltd.) for 24 h with one of the 
following compounds each time: Metformin, PD98059 
(a MAPK/ERK inhibitor), compound C [5' adenosine mono‑
phosphate‑activated protein kinase (AMPK) inhibitor], erastin 
(a ferroptosis agonist), or ferrostatin‑1 (a ferroptosis inhibitor).

Cytotoxicity test with metformin. THP‑1 cells were seeded in 
96‑well plates at a density of 1x105 cells/well and incubated 
with different concentrations (5, 10, 25, 50 and 100 µM) of 
metformin. To explore the time point of metformin pretreat‑
ment in an ox‑LDL stimulated macrophage model, THP‑1 
cells were also incubated at different time points (0, 2, 4, 6, 
8, 12 and 24 h) of metformin. Cell Counting kit‑8 (CCK‑8) 
assay (Nanjing Jiancheng Bioengineering Institute) was used 
to measure the cytotoxicity of metformin (Beijing Jialin 
Pharmaceutical Co., Ltd.).

Western blot analysis. After incubation with oxLDL for 24 h, 
the supernatant was removed and the total protein extraction 
reagent (Boster Biological Technology) added. The protein 
was determined by using a BCA Protein Concentration Assay 
kit (Beijing Solarbio Science & Technology Co., Ltd.). A total 
of 20 µg protein was separated by 10 or 12% SDS‑PAGE gels 
and subsequently blotted onto a nitrocellulose membrane. 

The membrane was blocked with 5% bovine serum albumin 
(BSA; Beijing Solarbio Science & Technology Co., Ltd.) at 
room temperature for 2 h, and subsequently incubated with 
primary antibodies overnight. These included anti‑Gpx4 (cat. 
no.  ER1803‑15; 1:1,000), anti‑scavenger receptor A (SRA; 
cat. no. ER1913‑21; 1:1,000), anti‑adipocyte enhancer‑binding 
protein 1 (AEBP1; cat. no. ER61507; 1:1,000), anti‑IL‑1β (cat. 
no. ET1701‑39; 1:1,000) and anti‑GAPDH (cat. no. ER1706‑83; 
1:1,000; all from Huabio); anti‑heme oxygenase‑1 (Hmox‑1; cat. 
no. ab269503; 1:1,000), anti‑scavenger receptor class B type 
1 (SR‑B1; cat. no. ab217318; 1:1,000) and anti‑ATP binding 
cassette transporter G1 (and ABCG1; cat. no. EP1366Y; 1:1,000; 
all from Abcam); anti‑cluster of differentiation (CD) 36 (cat. 
no. 14347; 1:1,000), anti‑caspase 1 (cat. no. 24232; 1:1,000), 
anti-phos-ERK (cat. no. 4695S; 1:1,000), anti-ERK (cat. no. 
4370S; 1:1,000) and anti‑NOD‑like receptor protein 3 (NLRP3; 
cat. no. 13158; 1:1,000; all from Cell Signaling Technology, 
Inc.) and anti‑AMPK (cat. no.  AF6423; 1:1,000, Affinity), 
anti‑phosphorylated (p) AMPK (cat. no. AF3423; 1:1,000; both 
from Affinity Biosciences, Ltd.) in 1% BSA overnight at 4˚C. 
The membranes were washed and incubated with horseradish 
peroxidase‑conjugated secondary antibodies (cat. no. NB101H; 
1:2,000; Huabio). Proteins were visualized by the Tinon ECL 
chemiluminescent reagent (Tanon Science and Technology 
Co., Ltd.). The results were analyzed using the Tanon 5200 and 
ImageJ 1.52a software (National Institutes of Health).

Oil Red O staining. Ox‑LDL was purchased from Guangzhou 
Yiyuan Biotechnology Co., Ltd. Following incubation with 
ox‑LDL at 37˚C for 24 h, the cells were washed with PBS thrice 
and fixed with 4% paraformaldehyde at room temperature for 
20 min. The cells were stained with 60% Oil Red O solution 
and incubated for 20 min at room temperature according to 
the manufacturer's instructions. The excess dye solution was 
subsequently removed by washing with 60% isopropanol 
alcohol. Images were captured of the stained cells by a fluores‑
cent microscope (magnification, x400; Olympus Corporation). 
A total of four fields of view were randomly observed in each 
group.

Dil‑labeled‑ox‑LDL (dil‑ox‑LDL) uptake assay. Dil‑ox‑LDL 
was purchased from Guangzhou Yiyuan Biotechnology Co., 
Ltd. THP‑1 cells were incubated with dil‑ox‑LDL (50 µg/ml) 
at 37˚C for 24 h. Subsequently, the cells were washed with PBS 
thrice prior to mounting with 4',6‑diamidino‑2‑phenylindole 
in the dark for 5 min. Images were captured of the stained cells 
by a fluorescent microscope (magnification, x400; Olympus 
Corporation). A total of four fields of view were randomly 
observed in each group.

Cholesterol content analysis. Following incubation with 
ox‑LDL at 37˚C for 48 h, the cells were collected for the 
measurement of cholesterol content using a commercial tissue 
cell free cholesterol enzymatic assay kit and a tissue cell total 
cholesterol enzymatic assay kit Applygen Technologies, Inc. 
A microplate reader was also used to record the absorbance 
readings. Finally, the free cholesterol content was subtracted 
from the total cholesterol content to determine the cholesterol 
ester content and the cholesterol ester/total cholesterol ratio 
was estimated.
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Detection of superoxide dismutase (SOD) activity and 
malondialdehyde (MDA) levels. THP‑1 cells were treated as 
previously described. The cells were washed thrice with PBS 
and the activity levels of SOD and the concentration levels of 
MDA in the cells were measured using the corresponding kits 
(Beyotime Institute of Biotechnology).

Cytokine measurements. The expression levels of IL‑1β and 
IL‑18 in ox‑LDL‑treated THP‑1 cells were detected by specific 
ELISA kits (BP‑E10081 and BP‑E10092; Shanghai Boyun 
Bio). The final concentration levels were calculated from the 
absorbance values of each of the samples based on the plot 
obtained from the standard curve.

Statistical analysis. The data are presented as mean ± standard 
error of the mean. The statistical significance of the differ‑
ences between the groups was determined using GraphPad 
Pro Prism 6.0 (GraphPad Software, Inc.). The comparison 
of multiple groups was performed using one‑way analysis of 
variance followed by Tukey's test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Metformin hinders the formation of foam cells in ox‑LDL‑treated 
THP‑1 cells. Initially, the cytotoxicity of metformin was 
assessed against THP‑1 cells using the CCK‑8 assay. As shown 
in Fig. 1A, incubation of the cells with 25 µM metformin for 24 h 
caused no effect on cell viability, whereas THP‑1 cells treated 
with 50 and 100 µM metformin exhibited a significant reduction 
in cell viability. Consequently, the concentration of 25 µM was 
selected for further analyses. As shown in Fig. 1B, there was 
no decrease in cell viability as time was prolonged, so 2 h was 
selected for further analyses. THP‑1 cells were seeded in 6‑well 
plates at a concentration of 1x105 cells/well and subsequently 
incubated in the presence of 100 nM PMA. The cells were then 
exposed to 50 nM ox‑LDL for 24 h and the lipid content in 
THP‑1 cells was detected by Oil Red O staining. The images 
were observed using light microscopy. THP‑1 cells exposed to 
ox‑LDL indicated higher lipid accumulation compared with that 
of the control PMA group; conversely, THP‑1 cells pretreated 
with metformin prior to exposure to ox‑LDL exhibited lower 
lipid content compared with the ox‑LDL group (Fig.  1C). 
The measurement of the dil‑oxLDL confirmed these results 
(Fig. 1E), indicating that metformin suppressed the formation of 
foam cells in ox‑LDL‑treated THP‑1 cells.

Metformin reduces cholesterol content in foam cells. To 
measure the cholesterol content in foam cells, THP‑1 cells were 
seeded in 6‑well plates at a concentration of 5x105 cells/well. 
THP‑1 cells pretreated with metformin indicated lower contents 
of cholesterol ester and total cholesterol content and higher 
content of free cholesterol compared with the corresponding 
cholesterol contents noted in the ox‑LDL group (Fig. 1D); 
consequently, it was inferred that metformin suppressed the 
esterification of free cholesterol in ox‑LDL‑treated foam cells 
and decreased total cholesterol levels in macrophages.

Metformin increases cholesterol efflux and decreases choles‑
terol influx in foam cells. THP‑1 cells were pretreated with 

metformin for 2 h prior to their exposure to ox‑LDL for 24 h 
and the expression levels of SRA, CD36, AEBP1, SR‑B1 and 
ABCG1 were examined by western blotting. The results indi‑
cated that metformin increased the expression levels of SR‑B1 
and ABCG1 (Fig. 2E and F), while decreasing the expression 
levels of SRA, CD36 and AEBP1 (Fig. 2B‑D). This indicated 
that metformin inhibited foam cell formation by increasing and 
decreasing cholesterol efflux in ox‑LDL‑treated foam cells.

Metformin decreases inflammation levels in ox‑LDL‑treated 
macrophages. To measure the inflammation levels of foam 
cells, the expression levels of caspase‑1, IL‑1β and NLRP3 
were examined by western blotting; additionally, IL‑1β and 
IL‑18 levels in 48‑h culture supernatants were measured by 
ELISA. The data indicated that a 2‑h pretreatment period 
of the cells with metformin resulted in a reduction of the 
ox‑LDL‑mediated increase in caspase‑1, IL‑1β, NLRP3 
(Fig. 3B‑D), IL‑1β and IL‑18 levels (Fig. 3E and F), illustrating 
that metformin could attenuate the levels of inflammation in 
ox‑LDL‑treated foam cells.

Metformin inhibits ferroptosis in ox‑LDL‑treated macro‑
phages. The cells were treated as previously described and 
the expression levels of Gpx4 and Hmox‑1 were examined by 
western blotting. The concentration levels of MDA and the 
activity levels of SOD were detected using the lipid oxidation 
detection kit and the total SOD activity detection kit, respec‑
tively. The results indicated that the expression levels of Gpx4 
and SOD were higher in metformin‑pretreated macrophages 
compared with those noted in the ox‑LDL group, while the 
expression levels of Hmox‑1 and MDA were lower compared 
with those of the ox‑LDL group (Fig. 4A‑C). Moreover, when 
the cells were co‑incubated with erastin or ferrostatin‑1 
and ox‑LDL, metformin treatment Partially improved cell 
viability and indicated lower ferroptosis levels (reflected by 
the decreased levels of Hmox‑1 and MDA and the increased 
expression levels of Gpx4 and SOD (Fig. 4D‑G). These find‑
ings indicated that metformin could alleviate ferroptosis in 
foam cells.

Metformin decreases the activation of ERK and increases 
the phosphorylation of the AMPK signaling pathway. 
THP‑1 cells were pretreated with metformin for 2 h prior 
to exposure to ox‑LDL for 24 h and the expression levels of 
AMPK, pAMPK, ERK and pERK were detected. Metformin 
decreased the activation of the ERK signaling pathway and 
increased the phosphorylation of the AMPK signaling pathway 
(Fig. 5A and B). Subsequently, the direct effects of both the 
AMPK and ERK signaling pathways were investigated. In 
ox‑LDL‑treated THP‑1 cells, the AMPK inhibitor increased 
lipid accumulation (Fig. 5C) by decreasing the downregulation 
of ABCG1 and SR‑B1 expression levels and by increasing the 
upregulation of SRA1, CD36 and AEBP1 expression levels 
(Fig. 6A and B). Concomitantly, it improved the expression 
levels of inflammatory indicators (caspase‑1, IL‑1β, NLRP3; 
Fig. 6C and D) as well as the levels of ferroptosis (reflected by 
the decreased levels of Gpx4 and SOD and the increased levels 
of Hmox‑1 and MDA; Fig. 6E‑G). In contrast to these findings, 
administration of an ERK inhibitor produced the opposite 
results (Fig. 6A‑G).
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Figure 1. Effects of metformin on the formation of foam cells. (A and B) Cell viability was assessed by the CCK‑8 assay. (C) The formation of foam cells was 
detected by Oil Red O staining. (D) The levels of cholesterol ester/total cholesterol in ox‑LDL‑treated macrophages were detected by a commercial tissue cell 
free cholesterol enzymatic assay kit and a tissue cell total cholesterol enzymatic determination kit. (E) Cholesterol uptake, detected by the dil‑ox‑LDL assay. 
Scale bar=50 µM. *P<0.05 vs. the control group, **P<0.01 vs. the control group, ***P<0.001 vs. the PMA group, #P<0.05 vs. the ox‑LDL group. CCK‑8, Cell 
Counting Kit‑8; ox‑LDL, oxidized low‑density lipoprotein; dil‑ox‑LDL, dil‑labeled‑ox‑LDL; PMA, phorbol 12‑myristate 13‑acetate. 
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Figure 2. Effects of metformin on SRA, CD36, AEBP1, SR‑B1 and ABCG1 expressions in ox‑LDL‑treated macrophages. (A) Western blot analysis was used 
to measure the expression levels of SRA, CD36, AEBP1, SR‑B1 and ABCG1 proteins following application of the indicated treatments; GAPDH was used as a 
control for the standardization of the total cellular protein. (B) Quantitative analysis of SRA levels. (C) Quantitative analysis of CD36 levels. (D) Quantitative 
analysis of AEBP1 levels. (E) Quantitative analysis of SR‑B1 levels. (F) Quantitative analysis of ABCG1 levels. The data are expressed as mean ± standard 
deviation and are representative of three independent experiments. **P<0.01 vs. the PMA group, ***P<0.001 vs. the PMA group, #P<0.05 vs. the ox‑LDL group, 
##P<0.01 vs. the ox‑LDL group and ###P<0.001 vs. the ox‑LDL group. SRA, scavenger receptor A; CD36, cluster of differentiation 36; AEBP1, adipocyte 
enhancer‑binding protein 1; SR‑B1, scavenger receptor B1; ABCG1, ATP binding cassette transporter G1; ox‑LDL, oxidized low‑density lipoprotein; PMA, 
phorbol 12‑myristate 13‑acetate. 
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Figure 3. Effects of metformin on the induction of inflammation in ox‑LDL‑treated macrophages. (A) Western blot analysis indicating the expression levels 
of caspase‑1, IL‑1β and NLRP3 following the indicated treatments; GAPDH was used as a control for the standardization of the total cellular protein. 
(B) Quantitative analysis of caspase‑1 levels. (C) Quantitative analysis of IL‑1β levels. (D) Quantitative analysis of NLRP3 levels. (E) The expression levels 
of the cytokine IL‑1β were measured in cell culture supernatants by ELISA. (F) The expression levels of the cytokine IL‑18 were measured in the cell culture 
supernatants by ELISA. The data are expressed as mean ± standard deviation and are representative of three independent experiments. ***P<0.001 vs. the PMA 
group, #P<0.05 vs. the ox‑LDL group, ##P<0.01 vs. the ox‑LDL group and ###P<0.001 vs. the ox‑LDL group. ox‑LDL, oxidized low‑density lipoprotein; NLRP3, 
NOD‑like receptor protein 3; PMA, phorbol 12‑myristate 13‑acetate. 
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Figure 4. Effects of metformin on the induction of ferroptosis in ox‑LDL‑treated macrophages. (A) Western blot analysis was used to measure the expression 
levels of Gpx4 and Hmox‑1 proteins following application of the indicated treatments; GAPDH was used as a control for the standardization of the total cellular 
protein. (B) Quantitative analysis of Gpx4 and Hmox‑1 levels. (C) The SOD activity levels in macrophages were detected by the total SOD activity detection 
kit, The MDA level levels in macrophages were detected by the lipid oxidation (MDA) detection kit. The data are expressed as mean ± standard deviation 
and were representative of three independent experiments. (D) Western blot analysis was used to measure the expression levels of Gpx4 and Hmox‑1 proteins 
following the indicated treatments; GAPDH was used as a control for the standardization of the total cellular protein. (E) Cell viability was assessed by the 
CCK‑8 assay. (F) Quantitative analysis of GPX4 and Hmox‑1 levels. (G) Determination of the SOD and MDA levels in macrophages. ***P<0.001 vs. the PMA 
group and #P<0.05 vs. the ox‑LDL group, ##P<0.01 vs. the ox‑LDL group, ̂ ^P<0.01 vs. the erastin + ox‑LDL group, $P<0.05 vs. the ferrostatin‑1 + ox‑LDL group, 
$$P<0.01 vs. the ferrostatin‑1 + ox‑LDL group. ox‑LDL, oxidized low‑density lipoprotein; GPX4, glutathione peroxidase 4; Hmox‑1, heme oxygenase‑1; SOD, 
superoxide dismutase; MDA, malondialdehyde; PMA, phorbol 12‑myristate 13‑acetate.
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Discussion

In the present study, metformin inhibited the formation of 
foam cells in ox‑LDL‑treated macrophages by decreasing the 
expression levels of SRA, CD36 and AEBP1 and by increasing 
the expression levels of SR‑B1 and ABCG1. Metformin further 
suppressed free cholesterol esterification. Pretreatment of the 
cells with metformin attenuated the inflammatory response 
in ox‑LDL‑treated macrophages. In addition, metformin 
also alleviated the levels of ferroptosis, as demonstrated by 
the upregulation in the activity levels of Gpx4, the increased 
activity of SOD, the downregulation noted in the expression 
levels of Hmox‑1 and the decreased concentration levels of 
MDA. Furthermore, metformin partly reversed the upregu‑
lation noted in the levels of ferroptosis caused by erastin 
and further decreased the downregulation of the levels of 
ferroptosis in ferrostatin‑1‑treated macrophages. Moreover, in 
ox‑LDL‑stimulated macrophages, metformin induced the acti‑
vation of AMPK and alleviated the phosphorylation of ERK. 
The AMPK inhibitor exacerbated these effects, while the ERK 
inhibitor reversed them.

Foam cell formation is an essential factor in the progres‑
sion of atherosclerosis  (29). The foam cells under the 
endothelium tend to secrete inflammatory factors to promote 
local inflammation and the development of an immune 
response, thereby facilitating the formation of atherosclerotic 
plaques that contribute to the manifestation of symptoms and 
inhibit the recovery of patients with atherosclerosis  (30). 
Metformin is a hypoglycemic agent that has been reported 

to exert a protective role in the development of cardiovas‑
cular diseases  (31). Previous studies have suggested that 
metformin inhibits the process of atherosclerosis via the 
AMPK‑PDZ and LIM Domain 5 pathway in diabetic ApoE‑/‑ 
male mice (26) and reduces the induction of inflammation as 
demonstrated by the downregulation of the NLRP3 inflam‑
masome (25,32). In the present study, the data indicated that 
metformin pretreatment inhibited foam cell formation in 
ox‑LDL‑treated macrophages. Subsequently, the potential 
mechanism of this process was examined. The main factor 
promoting foam cell formation is the accumulation of exces‑
sive lipoproteins in monocyte‑derived macrophages, which 
is reflected by cholesterol uptake (SRA, CD36 and AEBP1), 
cholesterol efflux (SR‑B1 and ABCG1) and free choles‑
terol esterification (33). Therefore, the expression levels of 
the aforementioned indices and the cholesterol ester/total 
cholesterol ratio were assessed in the metformin‑pretreated 
ox‑LDL‑treated macrophage model. The results indicated 
that metformin inhibited the formation of foam cells by 
decreasing both the uptake of cholesterol and the esteri‑
fication of free cholesterol, thereby increasing its efflux in 
oxLDL‑treated THP‑1 cells. This result was consistent with 
the finding reported by a previous study indicating that 
metformin serves an inhibitory role in cholesterol uptake 
mediated by sterol regulatory element‑binding protein 
(SREBP) 2 and promotes lipid homeostasis by suppressing 
oxidative stress induced by AMPK activation (34). Moreover, 
co‑treatment with metformin and the liver X receptor (LXR) 
agonist T317 increases the expression levels of ABCG1 and 
ABCA1, reduces monocyte adhesion and proliferation of 
macrophages, decreases foam cell formation, increases plaque 
stability and ameliorates progression of atherosclerosis (35). 
These results suggest that metformin plays a protective effect 
on foam cell formation in ox‑LDL‑stimulated macrophages. 
Consequently, the inhibitory action of metformin on foam cell 
formation suggested a putative function for this compound as 
a novel therapeutic agent for atherosclerosis.

In addition, chronic inflammation is a key factor in 
promoting the process of atherosclerosis  (36). A previous 
study suggests that metformin can reduce macrophage hypoxia 
inducible factor‑1α‑dependent proinflammatory signaling (37). 
The current study explored the specific anti‑inflammatory 
effects of metformin. The data indicated that the expression 
levels of caspase‑1, IL‑1β and NLRP3 were decreased and that 
the secretion of IL‑1β and IL‑18 was suppressed compared 
with those noted in the ox‑LDL group. This suggested that 
metformin could reduce the production and secretion of 
specific inflammatory factors.

The present study indicated that metformin could alle‑
viate the induction of ferroptosis. Moreover, a previous study 
indicated that iron accumulation in macrophages promoted 
the formation of foam cells by decreasing the expression 
levels of ABCA1, ABCG1, LXRα, while it had no effect on 
the expression of CD36 and lectin‑like low‑density lipopro‑
tein receptor‑1 (38). The present study concluded that iron 
accumulation ultimately aggravated the development of 
atherosclerosis. Combined with the results of the current study, 
it is hypothesized that metformin inhibits lipid accumulation 
by decreasing induction of ferroptosis in ox‑LDL‑stimulated 
macrophages.

Figure 5. Effects of metformin on the AMPK/ERK signaling pathway 
in ox‑LDL‑treated macrophages. (A) Western blot analysis was used to 
measure the expression levels of AMPK, pAMPK, ERK and pERK proteins 
following the indicated treatments; GAPDH was used as a control for the 
standardization of the total cellular protein. (B) Quantitative analysis of the 
activation of the AMPK and ERK enzymes. (C) Formation of foam cells, as 
detected by Oil Red O staining. Scale bar=50 µM. ***P<0.001 vs. the PMA 
group and ###P<0.001 vs. the ox‑LDL group. AMPK, 5' adenosine mono‑
phosphate‑activated protein kinase; p, phosphorylated; ox‑LDL, oxidized 
low‑density lipoprotein; PMA, phorbol 12‑myristate 13‑acetate. 
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The AMPK signaling pathway is a major intracellular 
energy metabolism pathway, which serves a protective effect 
on atherosclerosis by inhibiting inflammation, regulating 

lipid metabolism, antioxidant activity, as well as suppressing 
immune responses  (39‑41). In addition, The ERK/MAPK 
signaling pathway serves an important role in the process of 

Figure 6. Effects of AMPK/ERK on foam cell formation, inflammation and ferroptosis in ox‑LDL‑treated macrophages. GAPDH was used as a control for the 
standardization of the total cellular protein. (A) Western blot analysis was used to measure the expression of cholesterol transport protein following application 
of the indicated treatments. (B) Quantitative analysis of SRA, CD36, AEBP1, SR‑B1 and ABCG1 levels. (C) Western blot analysis was used to measure the 
expression levels of the inflammatory indices following application of the indicated treatments. (D) Quantitative analysis of caspase‑1, IL‑1β and NLRP3 
levels. (E) Western blot analysis was used to measure the levels of ferroptosis indices following the indicated treatments. (F) Quantitative analysis of Gpx4 
and Hmox‑1 levels. (G) Determination of the SOD and MDA levels in macrophages. *P<0.05 vs. the PMA group, **P<0.01 vs. the PMA group and ^P<0.05, 
^^P<0.01 vs. the ox‑LDL group, #P<0.05 vs. the ox‑LDL group, ##P<0.01 vs. the ox‑LDL group. AMPK, 5' adenosine monophosphate‑activated protein kinase; 
ox‑LDL, oxidized low‑density lipoprotein; SRA, scavenger receptor A; CD36, cluster of differentiation 36; AEBP1, adipocyte enhancer‑binding protein 1; 
SR‑B1, scavenger receptor B1; ABCG1, ATP binding cassette transporter G1; NLRP3, NOD‑like receptor protein 3; GPX4, glutathione peroxidase 4; Hmox‑1; 
heme oxygenase‑1; PMA, phorbol 12‑myristate 13‑acetate.
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atherosclerosis (42). The present study investigated the AMPK 
and ERK signaling pathways and the data demonstrated that 
metformin could increase the activation of the AMPK signaling 
pathway, while decreasing the activation of the ERK pathway in 
ox‑LDL‑stimulated THP‑1 cells. Moreover, in ox‑LDL‑treated 
macrophages, application of an AMPK inhibitor to the cells 
promoted lipid accumulation, inflammation and increased the 
levels of ferroptosis, while application of an ERK inhibitor 
exhibited an opposite effect compared with that noted following 
treatment of the cells with the AMPK inhibitor.

Studies have shown that metformin moderates the 
process of atherosclerosis by inhibiting SREBP activity (43), 
vascular smooth muscle cell migration and autophagy induc‑
tion  (44,45) and it also promotes H2S production, which 
alleviates atherosclerosis (46). Following pretreatment of the 
cells with metformin, the data indicated that the AMPK and 
mammalian target of rapamycin signaling pathways, as well 
as the Krüppel‑like factor 2 protein, a key regulator of the 
autophagy‑lysosome pathway (47) that serves a vital role in 
regulating the process of atherosclerosis.

In conclusion, the present study provided strong evidence 
that metformin attenuated the formation of foam cells by 
downregulating SRA, CD36 and AEBP1 levels and by 
decreasing free cholesterol esterification, Metformin could 
also cause an upregulation in the levels of SR‑B1 and ABCG1, 
whereas it alleviated the levels of inflammation and the induc‑
tion of ferroptosis in ox‑LDL‑treated THP‑1 cells via the 
AMPK/ERK signaling pathway. These results not only illus‑
trated that metformin can hamper foam cell formation during 
atherosclerosis but also indicate a potential role for the use of 
this compound as a therapeutic agent for atherosclerosis.
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