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Analyzing the dynamics of cell cycle processes 
from fixed samples through ergodic principles
Richard John Wheeler
Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom, and Max Planck 
Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany

ABSTRACT  Tools to analyze cyclical cellular processes, particularly the cell cycle, are of broad 
value for cell biology. Cell cycle synchronization and live-cell time-lapse observation are wide-
ly used to analyze these processes but are not available for many systems. Simple mathemat-
ical methods built on the ergodic principle are a well-established, widely applicable, and 
powerful alternative analysis approach, although they are less widely used. These methods 
extract data about the dynamics of a cyclical process from a single time-point “snapshot” of 
a population of cells progressing through the cycle asynchronously. Here, I demonstrate ap-
plication of these simple mathematical methods to analysis of basic cyclical processes—cycles 
including a division event, cell populations undergoing unicellular aging, and cell cycles with 
multiple fission (schizogony)—as well as recent advances that allow detailed mapping of the 
cell cycle from continuously changing properties of the cell such as size and DNA content. 
This includes examples using existing data from mammalian, yeast, and unicellular eukaryotic 
parasite cell biology. Through the ongoing advances in high-throughput cell analysis by light 
microscopy, electron microscopy, and flow cytometry, these mathematical methods are be-
coming ever more important and are a powerful complementary method to traditional syn-
chronization and time-lapse cell cycle analysis methods.

INTRODUCTION
Cyclical cellular processes, particularly the cell cycle, are central to 
cell biology. Three major methods are used to analyze these pro-
cesses: 1) analysis of individual cells over time (time-lapse analysis), 
2) analysis of synchronized populations of cells over time, and, less 
commonly, 3) use of mathematical methods to extract dynamic data 
from a single time point of an asynchronous population (Mitchison, 
1971). Each of these methods has particular advantages, and all 
three can be applied to any cyclical cellular process, not just the cell 
cycle.

There are many situations in which live-cell observation is imprac-
tical or impossible, as cells must remain confined and viable for a 
long period of time. Destructive analysis when tracking individual 
cells over time is not possible, preventing fixation for electron micro

scopy, immunofluorescence, flow cytometry, or techniques such as 
single-cell sequencing (Eberwine et al., 2014). Analysis of synchro-
nized populations of cells comes with limitations, as environmental 
(Scherbaum and Zeuthen, 1954; Williamson and Scopes, 1961) or 
chemical (Xeros, 1962; Stubblefield and Klevecz, 1965; Chowdhury 
et  al., 2008) synchronization treatments may have complex side-
effects or simply not have been developed for that system. Synchro-
nized populations achieved through purification of cells at a single 
cell cycle stage (Johnston and Johnson, 1997; Kabani et al., 2010; 
Archer et al., 2011) often rapidly loose synchrony.

An asynchronous population contains cells at all stages of a cy-
cle, and so it contains all the data need to analyze that cycle. Math-
ematical analyses of cyclical processes from an asynchronous popu-
lation are simple and well established (Mitchison, 1971) and provide 
a complementary set of tools for cell cycle analysis. This approach 
does not require exogenous synchronization treatments or tracking 
of individual cells over time, and destructive imaging/biochemical 
techniques can be used. Furthermore, the dynamics of an entire 
cyclical process can be determined from a single sample rather than 
a time series. However, some previous understanding of the cycle is 
required, as the order of events cannot always be determined ab 
initio from the single sample.
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stages in a snapshot of an asynchronous culture. Overrepresentation 
of early cell cycle stages has well-established mathematical descrip-
tions (Mitchison, 1971; Williams, 1971; Box 2, Eq. 2), which can be 
illustrated graphically (Figure 1A). To apply the equation, a measure-
ment of the proportion of cells up to and including a cell cycle stage 
(based on some classification criteria, such as DNA content to iden-
tify G1 and S phase) and the cell cycle length (the doubling time) are 
required. The time taken to reach that transition between them can 
then be calculated. The time taken to reach each of several cell cycle 
stages can be calculated for a more complete picture.

This simple and powerful technique was used for the earliest 
quantifications of timing and rate of DNA synthesis during S phase, 
derived from the proportion of cells in asynchronous exponential 
culture that had incorporated [3H]thymidine into DNA (Stanners and 
Till, 1960). More recently, it allowed the analysis of the cell cycle of 
the trypansomatids (Gull et al., 1990; Woodward and Gull, 1990; 
Elias et al., 2007; Ambit et al., 2011; Wheeler et al., 2011; Figure 
1B), unicellular protist parasites for which techniques for cell cycle 
synchronization are not efficient and cells are highly motile, making 
time-lapse microscopy impossible.

Analysis of the cell cycle by this method is subject to the two 
requirements of an ergodic analysis: progression through the cell 

This type of mathematical analyses of asynchronous populations 
can collectively be termed ergodic analysis (Kafri et  al., 2013). 
Although basic applications are well established, there have been 
recent powerful advances in this type of approach. This review fo-
cuses on providing an intuitive understanding of the concepts of 
ergodic analysis on an example-by-example basis, from basic con-
cepts to practical experimental analysis, and the opportunities the 
latest developments confer.

OSCILLATIONS AND CYCLES
Oscillatory systems (a two-state cycle) concisely demonstrate the 
concept of ergodic analysis. For example, Escherichia coli oscillates 
between swimming and tumbling modes of movement (Berg, 2004), 
and from a short videomicrograph, the proportion of cells undergo-
ing each form of motion can be determined. Intuitively, a larger pro-
portion of cells undergoing a particular form of motility correspond 
to a larger time spent by cells in that state. This conclusion is valid 
only when the cells do not undergo the behaviors in synchrony; 
synchronization from the environment (as in the swimming response 
of Euglena gracillis to light; Diehn et al., 1975) or autosynchroniza-
tion (as in cardiomyocyte contraction; Viatchenko-Karpinski et al., 
1999) break this correspondence. If the process moving the cells 
between different states is cyclical, regular, and of a known length, 
then the proportion of cells in each successive cycle stage corre-
sponds to the timings of the progression of cells through these 
stages.

These requirements can be formally stated as weak and strong 
ergodic assumptions (Box 1). If these assumptions are correct, then 
the time a cell spends in each cycle stage is simply the proportion in 
that state multiplied by the cycle length (Box 2, Eq. 1). In an experi-
mental system, it is rare that the strong ergodic assumption can be 
completely met, due to cell-to-cell biological variability, with ergo-
dic analysis giving the average cell behavior. However, the more 
closely the strong ergodic assumption can be met, then the more 
closely will the average behavior of the population of cells match 
the behavior of any single cell.

CELL CYCLES
The most widely analyzed cyclical process is the proliferative cell 
cycle. Intuitively, it might be thought that (in an asynchronous popu-
lation) the proportion of cells in a cell cycle stage is proportional to 
the time spent during that stage of the cell cycle. However, during 
division, a cell typically generates two proliferating daughters, lead-
ing to twice as many cells immediately after division as immediately 
before it. This bias leads to a higher occurrence of early cell cycle 

Box 1

The weak ergodic assumption:

If the distribution of cells among different states does 
not change over time, then the proportion observed in 
any state is proportional to the time each cell spends, on 
average, in that state.

Strong ergodic assumption:

If all cells are going through an identical cycle of events, 
then the proportion of cells in any cycle stage observed 
in the population at a single time point is the same as the 
proportion of time spent in cycle stage as a single cell 
progresses through the cycle.

Box 2

If the ergodic assumptions are met, the timings of a series of 
stage-to-stage transitions in a cyclical process can be calcu-
lated using the following equations (derivations shown in the 
Supplemental Appendix).

For cycles with no offspring (cycles not linked with division 
events),

t≤n = p≤nT� (1)

where t≤n is the time spent in stages up to and including stage 
n of the cycle, T is the time taken for one complete cycle, and 
p≤n is the proportion of cells observed in stages up to and 
including stage n of the cycle.

For cycles with two offspring (binary fission),
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For cycles with an arbitrary number of proliferative offspring 
(multiple fission, or a chance of terminal differentiation),
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where q is the number of proliferative offspring per division.

For ergodic analyses based on classification of cells based 
on discrete features, p≤n is the proportion of cells that match 
the required features for that stage or any earlier stage of the 
cycle.

For ergodic analyses based on continuously varying features 
of cells, p≤n = r/k, where r is the rank position of that cell 
through the cycle and k is the total number of cells measured. 
Any set of continuously varying features, selected based on 
previous knowledge of the cycle, can be used to determine 
the rank position of the cell through the cycle.
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q that represents the number of proliferative offspring from the divi-
sion. For example, for a proliferating stem cell with a 70% chance of 
generating one nonproliferative daughter, q = 2 − 0.7 = 1.3, whereas 
for schizogenous division in Plasmodium with 20 offspring, q = 20.

CELLULAR SENESCENCE
Some experimental systems allow the separate analysis of the two 
progeny of a division event; for example, in Saccharomyces cerevi-
siae, division leaves a bud scar on the cell wall of one daughter cell, 
these accumulate over multiple divisions, and this “older” daughter 
divides more slowly (Steinkraus et al., 2008). This deviation from uni-
form cell cycle behavior across the population breaks the strong er-
godic assumption, meaning that any ergodic analysis will represent 
only an average cell cycle. The ability to test whether the population 
of cells is undergoing this form of unicellular aging is therefore im-
portant. The expected proportion of cells pn that have been through 
n divisions is pn = 2–n when there is no difference in cell cycle length 
between the daughter cells.

Any deviation from this value indicates that the population does 
not have the uniform behavior required for the strong ergodic as-
sumption. Data on the proportion of cells with different numbers of 
bud scars in liquid-phase culture of S. cerevisiae S288C cells illustrate 
this issue (Hagiwara et al., 2011; Figure 1C). Although deviation from 
uniform cell cycle length prevents the accurate analysis of the entire 
asynchronous population by ergodic principles, the behavior of a 

cycle analyzed must be completely asynchronous, and every cell 
must be progressing through the same cell cycle at the same rate. In 
practice, these requirements can be confirmed by showing that 
population growth is smoothly exponential, showing that the same 
result is obtained by analyzing a later time point/higher culture den-
sity, and ensuring that there is no quiescent population or cell death 
(Stanners and Till, 1960; Wheeler et al., 2011; Kafri et al., 2013).

This approach is applicable to the analysis of the cell cycle of any 
cell that generates two proliferative daughters. Any feature of cells 
that can be used to classify them into particular cell cycle stages, 
including DNA content, levels of particular cyclins, cell size, and so 
on, can be used as the basis for this type of analysis. It is also appli-
cable to any other biological structure within a cell that undergoes 
replication by binary fission, parent organelle–templated formation, 
or ab initio assembly through standard intermediates.

Not all cell divisions generate two proliferative daughters. Gen-
eration of terminally differentiated cells in metazoans involves divi-
sion of a stem cell to generate one nonproliferative daughter (often 
associated with the daughter centriole; Wilson, 2008; Nigg and 
Stearns, 2011; Pelletier and Yamashita, 2012). In some organisms, 
most famously Plasmodium parasites (Arnot and Gull, 1998; 
Bannister et  al., 2000; Gerald et  al., 2011; Francia and Striepen, 
2014), multiple rounds of mitosis are followed by multiple fission 
(schizogony). In these situations, overrepresentation of early cell cy-
cle stages requires a different correction (Box 2, Eq. 3), with a factor 

FIGURE 1:  Application of ergodic analysis to find cell cycle timings from discrete cell properties. (A) Graphical 
representation of the correspondence between the proportion of cells observed up to and including an arbitrary cell 
cycle stage and the corresponding time through the cell cycle. (B) Application of the relationship in A as used to analyze 
the T. brucei cell cycle. The proportions of cells with a single (G1/S/G2) dividing (D) or duplicated (A) kinetoplast (K) or 
nucleus (N) are shown (Gull et al., 1990; Woodward and Gull, 1990). (C) The proportion of S288C S. cerevisiae cells of 
different ages seen in exponential liquid-phase culture (Hagiwara et al., 2011) relative to the expected proportion 
assuming no cellular senescence. (D) Relative time spent in different stages of the cell cycle for the cells of different 
ages shown in C. Significant changes from the cell cycle timings of the previous generation (p < 0.05, chi-squared test) 
are indicated with an asterisk.
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The cell-by-cell calculation of cell cycle progression on the basis 
of one parameter (new flagellum length) is possible when that pa-
rameter gradually increases or decreases through the cell cycle and 
allows the analysis of how any second parameter (e.g., DNA con-
tent) changes through the cell cycle. However, in this example, the 
ordering cells into cell cycle stage on the basis of flagellum length 
does not provide any information concerning cell cycle stage for 
cells within the first 40% of the cell cycle in which the new flagellum 
has not yet started to form (Figure 2C).

MULTIPLE CONTINUOUS VARIABLES
Because many properties of cells undergo gradual changes through 
the cell cycle, two or more of these parameters can be selected that 
undergo changes at different cell cycle stages. These can provide 
complementary information, allowing unambiguous determination 
of how far any individual cell has progressed through the cell cycle 
(so long as the ergodic assumptions are met). This measure of cell 
cycle stage of each individual cell can then be used to determine 
quantitatively the correlation of any other cellular property through 
the cell cycle. This approach has recently been developed indepen-
dently on three occasions: 1) in Leishmania mexicana, in which cell 
body length and total cellular DNA content measurements by light 
microscopy were used to derive cell cycle stage, from which the 
properties of mitochondrial and nuclear DNA S phase and cell body 
and flagellar morphogenesis were derived (Wheeler et al., 2011); 
2) in the MOLT-4 lymphoblastic leukemia cell line, in which cyclins 
A2 and B1, phosphor-S10-histone H3, DNA content and light scat-
ter measurements by flow cytometry were used illustrate that this 
concept was feasible (Jacobberger et al., 2012); and 3) in HeLa cells, 
in which DNA content and anaphase-promoting complex activity 
measurements by light microscopy were used to derive cell cycle 
stage, from which an analysis of the rate of growth of cell mass as a 
function of cell cycle and cell size and feedback mechanisms for cell 
size regulation were derived (Kafri et al., 2013).

When considering two or more gradually changing cellular prop-
erties, the strong ergodic assumption indicates there is a single path 
(a trajectory) through these data that describes how the properties 
of an individual cell change during progression through the cell cy-
cle (Figure 2C). This trajectory might be known from time-lapse or 
synchronization experiments (Jacobberger et  al., 2012) or be un-
known and need to be derived from the data. Both previous appli-
cations derived the trajectory from the data, using path-walking al-
gorithms from a known start point through regions of high point 
density in the data—from cell body length/DNA content (Wheeler 
et al., 2011) and geminin/DNA content (Kafri et al., 2013) data, re-
spectively. Correct definition of this trajectory is critical for accurate 
analysis, and support from the trajectory from an alternative experi-
mental method is important—for example, by time-lapse micros-
copy (Wheeler et al., 2011; Kafri et al., 2013).

Any gradually changing cell parameters may be suitable for defin-
ing a trajectory but must allow unambiguous mapping of data points 
to distances along the trajectory line. This means that only trajecto-
ries with no crossing points can be used. Using more data dimen-
sions to define the line is advantageous, as it provides more dimen-
sions across which the data are separated (Jacobberger et al., 2012).

Having defined the trajectory (Figure 2, D and E), a measure of 
progress of any individual cell through the cell cycle is given by its 
distance along the trajectory line. However, experimental error in 
measuring cell properties causes deviation in measured cell prop-
erties from the trajectory; distance along the trajectory must 
therefore be determined on a cell-by-cell basis by determining 
the closest point on the trajectory to each data point (Figure 2G), 

subpopulation of a single age still meets the strong ergodic assump-
tion. The cell cycle and how it changes with cell age can therefore be 
analyzed, manifesting as changes in the duration, as a fraction of the 
cell cycle, of G1, S, and G2 for cells of different ages (Figure 1D).

Decreased capacity to divide during “aging” of unicellular or-
ganisms is conceptually similar to systems in multicellular organisms 
for homeostasis of a tissue with asymmetric division of stem cells to 
generate fully or partially differentiated daughter cells, an important 
and growing field (Anderson and Stearns, 2009; Arquint et  al., 
2014). This type of analysis is applicable to both.

FROM DISCRETE EVENTS TO CONTINUOUS VARIABLES
The foregoing examples concern discrete classification of cells—
whether swimming or tumbling, in G1 or S phase, and so on. This 
fails to capture many of the types of change a cell undergoes, which 
include continuously varying properties such as mass, volume, 
length, DNA content, and protein activity or quantity. Ergodic analy-
sis in multiplying populations to analyze continuous variables is a 
well-established concept, particularly in the analysis of human pop-
ulations (Inaba, 1989), but is a recent development for quantitative 
cell biology (Wheeler et al., 2011; Kafri et al., 2013).

An example of a continuously varying property is the length of 
a flagellum. Flagella often undergo well-regulated growth linked 
with the cell cycle, seen in systems including the metazoan primary 
cilium (Seeley and Nachury, 2010), Trypanosoma flagella (Gull 
et al., 1990; Tyler et al., 2001), Leishmania flagella (Wheeler et al., 
2011), and Chlamydomonas flagella (Cavalier-Smith, 1974; 
Tuxhorn et al., 1998). The flagellum of Trypanosoma brucei is par-
ticularly amenable to analysis, as the single flagellum, once 
formed, never disassembles. A single new flagellum grows each 
cell cycle, and the two flagella are partitioned to the two daugh-
ters (Gull et  al., 1990). Using ergodic principles, the kinetics of 
growth of a new flagellum can be analyzed from the distribution of 
new flagellum length in an asynchronously growing population 
(Tyler et al., 2001; Figure 2A).

To analyze T. brucei flagellum growth rate, the simplest ergodic 
analysis would use the proportion of cells in an asynchronous popu-
lation that are at cell cycle stages before the start of new flagellum 
growth. Using Eq. 2 in Box 2 and the fully assembled flagellum 
length allows calculation of average growth rate but gives no 
information about how the flagellum growth rate depends on 
length. To extract this information, the cells could be further subcat-
egorized into cells with no new flagellum or a new flagellum <3 μm 
in length, <6 μm in length, and so on. The timings of transitions 
between each of these classes can then be calculated, allowing 
comparison of growth rate at different lengths. More subcategories 
give more detail, and with extremely small subcategorization, all 
subcategories will contain either one or zero cells. In this situation, 
measurements of new flagellum length can simply be ordered by 
increasing length (Figure 2B). The position in this rank order, as a 
fraction of the total number of cells, can then be used to analyze the 
cell cycle progression of that particular cell on the basis of flagellar 
length using Eq. 2 of Box 2; Figure 2C), from which more detailed 
analysis of flagellum growth kinetics can be made.

This method derives the kinetics of flagellum growth directly 
from the data, but the inverse is also possible: using a model of fla-
gellum growth to predict flagellum length distribution in the popu-
lation, which can then be accepted or rejected based on its fit to the 
data. This has been applied to examine the elongation kinetics of 
the hook structure in Salmonella typhimurium flagella (Koroyasu 
et al., 1998) and uses the population balance method (Randolph 
and Larson, 1988).



3902  |  R. J. Wheeler	 Molecular Biology of the Cell

Both previous applications of this method focused on secondary 
variables relating to morphogenesis in the cell cycle—a descriptive 
analysis of cell body shape change and flagellum growth in the case 
of Leishmania (Wheeler et  al., 2011) (Figure 2H), and a study of 
growth feedback related to cell mass in the case of the HeLa system 
(Kafri et al., 2013). This method has general applications, and is a 
new way to analyze core cell biology questions.

a process termed parameterization of cell cycle stage (Kafri et al., 
2013). Having determined the distance along the trajectory, 
Eq. 2 of Box 2 can be used to convert ranked distances along the 
trajectory to time through the cell cycle for each individual cell 
(Figure 2H).

Any secondary properties of the cell can now be analyzed to 
determine how they vary over the course of the normal cell cycle. 

FIGURE 2:  Application of ergodic analysis to find cell cycle timings from continuously varying cell properties. 
(A) Previously published data (Tyler et al., 2001) concerning the growing new flagellum length in 192 cells from an 
asynchronous population of T. brucei. Each data point represents a single length measurement, arranged in a random 
order along the horizontal axis. (B) The same data as in A, but arranged in rank order of increasing flagellum length. As 
the new flagellum only elongates through the cell cycle, this can be used to determine the flagellum growth rate 
through the cell cycle from ergodic principles. (C) The transformed result, showing new flagellum length as a function of 
cell cycle progress. New flagellum length increases at a constant rate (R2 = 0.992) Error bars indicate the SE of 
determination of time through the cell cycle for each data point. (D) The two gradually changing cell properties (cell 
body length and DNA content) used for the analysis of Leishmania division and the trajectory derived by fitting a line 
through regions of this plot with high point density (Wheeler et al., 2011). (E) The pattern of cell body and DNA content 
changes along the trajectory line. (F) Graphical representation of assignment of a data point to a distance along the 
trajectory line. The distance along the trajectory line from its start to the point closest to the data point corresponds to 
that data point’s distance along the trajectory line. (G) The correspondence between distance along the trajectory line 
and percentage of time spent in that state derived from the Leishmania cell cycle data (Wheeler et al., 2011). This 
provides a way to map any single cell to a particular cell cycle stage, allowing analysis of any of its secondary properties. 
(H) Mapping of Leishmania cell body width changes through the cell cycle (Wheeler et al., 2011) from the cell cycle 
stages derived from E–G.
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CONCLUSIONS
I have rehearsed a range of ergodic analyses, ranging from analysis 
of discrete measurements from simple oscillating and cyclical sys-
tems, up through the complexities of analyzing a population under-
going exponential growth, and reaching examples in which the er-
godic analysis is used to assign a cell cycle stage to individual cells 
on the basis of measuring two continuously varying cellular proper-
ties. By illustrating the conceptual links between these examples of 
increasing complexity, supported by a rederivation of these related 
equations from first principles (Supplemental Appendix), I have built 
an intuitive explanation of these approaches.

Ergodic analysis is extremely flexible and can be used in any cy-
clical process in a cell, so long as the ergodic assumptions are met. 
Potential applications range from analysis of biochemical cycles 
such as p53 and Mdm2 oscillations (Geva-Zatorsky et al., 2006) to 
the cell cycle, including situations with cellular senescence and ter-
minal differentiation. The potential for future analyses using these 
approaches is greatest when studying dynamic processes in cells 
that require destructive analysis methods for single cells using mod-
ern biochemical and imaging methods, where time-lapse or real-
time analysis is impossible.
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