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5 Faculté de Médecine, Sorbonne Université, Paris, France, 6 BONE 3D, Paris, France, 7 ASV Santé,
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Abstract

Objective

The coronavirus disease pandemic (COVID-19) increased the risk of shortage in intensive

care devices, including fittings with intentional leaks. 3D-printing has been used worldwide

to produce missing devices. Here we provide key elements towards better quality control of

3D-printed ventilation fittings in a context of sanitary crisis.

Material and methods

Five 3D-printed designs were assessed for non-intentional (junctional and parietal) and

intentional leaks: 4 fittings 3D-printed in-house using FDeposition Modelling (FDM), 1 FDM

3D-printed fitting provided by an independent maker, and 2 fittings 3D-printed in-house

using Polyjet technology. Five industrial models were included as controls. Two values of

wall thickness and the use of coating were tested for in-house FDM-printed devices.

Results

Industrial and Polyjet-printed fittings had no parietal and junctional leaks, and satisfactory

intentional leaks. In-house FDM-printed fittings had constant parietal leaks without coating,

but this post-treatment method was efficient in controlling parietal sealing, even in devices

with thinner walls (0.7 mm vs 2.3 mm). Nevertheless, the use of coating systematically
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induced absent or insufficient intentional leaks. Junctional leaks were constant with FDM-

printed fittings but could be controlled using rubber junctions rather than usual rigid junc-

tions. The properties of Polyjet-printed and FDM-printed fittings were stable over a period of

18 months.

Conclusions

3D-printing is a valid technology to produce ventilation devices but requires care in the

choice of printing methods, raw materials, and post-treatment procedures. Even in a context

of sanitary crisis, devices produced outside hospitals should be used only after professional

quality control, with precise data available on printing protocols. The mechanical properties

of ventilation devices are crucial for efficient ventilation, avoiding rebreathing of CO2, and

preventing the dispersion of viral particles that can contaminate health professionals. Spe-

cific norms are still required to formalise quality control procedures for ventilation fittings,

with the rise of 3D-printing initiatives and the perspective of new pandemics.

Introduction

Non-Invasive Ventilation (NIV) and Continuous Positive Airway Pressure (CPAP) are stan-

dards of care for chronic hypercapnia and respiratory failure [1], sleep apnoea, and acute hyp-

oxemia, such as in severe SARS-CoV-2 infections [2]. Several NIV and CPAP devices include

fittings with intentional leaks, either on the ventilation mask itself, or between the mask and

circuit, to prevent exhaled air to be rebreathed. Since the beginning of the COVID19 pan-

demic, exhaled particle dissemination has been documented [3] and emerged as an unexpected

new problem with contamination risks for the immediate environment of ventilated patients.

To tackle this issue, non-ventilated masks have been proposed as a first-line option with the

addition of an expelled expiration port (whisper swivel or similar) [3]. Antibacterial and viral

filters interposed between the mask and the exhalation ports have also been proposed [3–6].

Thus, particle dispersion during ventilation could be controlled with sealed mask-interface

connections [3].

During the pandemic, shortages in ventilation devices and specifically in fittings with inten-

tional leaks occurred worldwide [7–12]. 3D-printing was extensively used to overcome short-

ages due to extraordinary needs and interruptions in supply chains, with little focus on quality

control and risk management of medical devices requiring compliance to strict ISO standards

and CE marking [13,14]. In fact, while 3D printing was successfully used as a versatile emer-

gency solution in many centres in Europe and worldwide, showing its ability to act as a sup-

port solution during sanitary crises, the main issue recurrent issue in most reports was the lack

of formal certification when medical devices were produced [14].

Within the trust of Greater Paris academic hospitals (Assistance Publique–Hôpitaux de

Paris, AP-HP), the largest hospital trust in Europe grouping 39 hospitals, covering an area of

over 10 million inhabitants, and employing nearly 100,000 people, a centralized 3D-printing

initiative was launched in April 2020 with 60 professional Fused Deposition Modelling (FDM)

3D-printers (F120, F170 and F370, Stratasys, Eden Prairie, USA) and a team of 5 full-time

engineers working 24/7 (BONE 3D, Paris). The aim of the project was to provide accelerated

design and production services to all AP-HP employees facing various shortages due to the

pandemic [15–17]. Over two hundred designs were produced from March to November 2020,

with approximately 40,000 pieces printed and distributed within the AP-HP network. Among
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these designs, the central platform produced various models of ventilation devices, using black

Acrylonitrile Butadiene Styrene (ABS) M-30 (355–02112, Stratasys, Eden Prairie, USA) as a

raw material. ABS is a widely used engineering thermoplastic with high durability, and printed

ABS has up to 80% of the strength of injection-molded ABS, making it suitable for functional

applications. ABS M-30 is characterized by its strength and toughness, while being lightweight

and resilient: ultimate tensile strength 32 MPa, Izod impact strength (unnotched) 7%, and

elongation at break 300 ohms (data provided by the manufacturer). In parallel, several hospi-

tals within AP-HP had pre-pandemic local 3D-printing platforms and produced significant

amounts of ventilation devices during the crisis–notably, Necker–Enfants Malades Hospital

contributed to the COVID19 effort by printing ventilation fittings using Polyjet technology

(J735, Stratasys, Eden Prairie, USA) with biocompatible transparent MED610 (Stratasys, Eden

Prairie, USA) resin as a raw material. Finally, during the first wave of the pandemic, all AP-HP

hospitals received generous daily deliveries of ventilation devices printed externally by inde-

pendent makers owning private 3D-printers, or by various independent manufacturers, with

little information on designs and production protocols, and thus insufficient quality control

and difficult match with the real needs of clinical departments treating COVID19 patients

[14].

The main objective of this study was to assess non-intentional and intentional leaks in a

series of ventilation devices produced during the first wave of the pandemic and delivered to

AP-HP clinical departments. We considered (1) in-house devices produced by the central

AP-HP 3D-printing platform using FDM printing technique for which ABS was a raw mate-

rial, (2) in-house devices produced by one academic AP-HP hospital using Polyjet printers

and MED610 as a raw material, and (3) externally produced devices delivered to AP-HP by

independent manufacturers. Our results suggest that in-house and external devices should be

used only after professional quality control and that unsupervised 3D-printing of devices with

intentional leaks can lead to harmful situations for patients and healthcare professionals. Rig-

orous approaches to quality control are furthermore mandatory steps to obtain certification

for the 3D-printing of medical devices [18–20]. Finally, the rise in the use of 3D-printing and

the unfortunate perspective of further pandemics should trigger the formulation of specific

international standards dedicated to ventilation fittings.

Material & methods

Five models of 3D-printed ventilation fittings were considered: F22, F22M22, M22M22,

M22M22M22T, and F18F20 (Fig 1, Table 1). All designs except M22M22M22T were expected

to produce intentional leaks.

Three different groups of 3D-printed devices were considered.

1. Devices manufactured in the central emergency 3D-printing platform of AP-HP using a

F120 (Stratasys, Eden Prairie, USA) FDM printer: F22 (references 1–2), F22M22 (references

3–4), M22M22 (references 5–6), and M22M22M22T (references 7–8) produced by design-

ers from BONE 3D (Paris, France) with black ABS-M30 (355–02112, Stratasys, Eden Prai-

rie, USA) and soluble support SR30 (311–30200, Stratasys, Eden Prairie, USA);

2. FDM-printed F18F20 fittings (reference 9 –[6]) provided by Kernel Biomedical (https://

3dleak.kernelbiomedical.com), printed with a Raise3D (Irvine, USA) machine using 1.75

mm Polylactic Acid (PLA) and 100 μm layers.

3. Devices manufactured at Necker–Enfants Malades University Hospital using a J735 Polyjet

printer F120 (Stratasys, Eden Prairie, USA): F22M22 (reference 10) and M22M22 (refer-

ence 11), produced by designers from BONE 3D (Paris, France) with biocompatible
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transparent MED610 (Stratasys, Eden Prairie, USA) resin and waterjet removable support

SUP705 (Stratasys, Eden Prairie, USA) support.

Two parameters were considered for devices printed at the central AP-HP platform using

FDM machines: (1) wall thickness and (2) coating. Thin walls were defined at 0.7 mm (with

0.18 mm layer thickness) and thick walls at 2.3 mm (with 0.33 layer thickness); 100% filling

was used for all devices. Coating consisted in impregnating the printed fittings after post-pro-

cessing using Nano Seal 180W+ (JELN Imprägnierung, Schwalmtal, Germany) to improve

wall sealing (Table 1).

Five models of industrial leak valves–providing continuous leak paths in CPAP patient cir-

cuits when used with CPAP and bi-level machines–were considered as controls: (1) whisper

swivel II exhalation port (332113, Philips, Amsterdam, Netherlands, reference 12), (2) dispos-

able fixed exhalation port (DEP) with cap single-use (312149, Philips, Amsterdam, Nether-

lands, reference 13), (3) leak valve row fixed (24991, ResMed, San Diego, USA, reference 14),

(4) WILAsilent swivel disposable exhalation port (1139909, WILAmed, Kammerstein, Ger-

many, reference 15), and (5) Silentflow 2 exhalation system (WM23600, Lowenstein,

Fig 1. Five models of 3D-printed ventilation fittings: F22 (references 1 and 2), F22M22 (references 4, 4, and 10), M22M22 (references 5, 6,

and 11), M22M22M22T (references 7 and 8), and F18F20 (references 9).

https://doi.org/10.1371/journal.pone.0263808.g001

Table 1. Printing characteristics and quality control for non-intentional leaks.

Reference Design Technique Wall thickness
(mm)

Coating (yes/
no)

Quality control

Leak at rigid junction (yes/
no)

Leak at rubber junction (yes/
no)

Parietal leak (yes/
no)

1 F22 FDM (ABS) 0.7 yes yes no no

2 F22 FDM (ABS) 2.3 yes yes no no

3 F22M22 FDM (ABS) 0.7 no yes no yes

4 F22M22 FDM (ABS) 0.7 yes yes no no

5 M22M22 FDM (ABS) 0.7 yes yes no no

6 M22M22 FDM (ABS) 2.3 yes yes no no

7 M22M22M22T FDM (ABS) 2.3 no yes no yes

8 M22M22M22T FDM (ABS) 2.3 yes yes no no

9 F18F20 FDM (PLA) NA no yes yes yes

10 F22M22 Polyjet

(MED610)

NA NA no no no

11 M22M22 Polyjet

(MED610)

NA NA no no no

https://doi.org/10.1371/journal.pone.0263808.t001
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Hamburg, Germany, reference 16) (Fig 2, Table 2).To screen for non-intentional leaks, we

used an Astral 150 ventilator (ResMed, San Diego, USA) in double circuit with an adult profile

and assist-control ventilation mode; 22 mm smoothbore tubes (Intersurgical, Wokingham,

United Kingdom) were used to connect with the fittings. Rigid junctions when needed corre-

sponded to Hudson RCI universal cuff connectors (41421 and 41422, TeleFlex Medical,

Wayne, USA). Rubber junctions corresponded to F15F22 lipped elastomeric connectors

(1701, Intersurgical, Wokingham, United Kingdom). Terminal obliterations of the fittings

were obtained using 22F dust caps (1978000, Intersurgical, Wokingham, United Kingdom)

and smaller caps (inner diameter: 8 mm) from zeolite molecular sieves of Inogen One G3 (Ino-

gen, Goleta, USA) oxygen concentrators. Maximum pressure was set at 85 cmH2O and fittings

were immerged into water (see Discussion for the reference to the relevant regulatory texts).

Leaks were screened for during five respiratory cycles for each fitting reference, with rigid and

rubber junctions (Fig 3). All measures were performed twice: in May 2020, immediately after

production, and in November 2021, 18 months after production.

In order to screen for intentional leaks, we used a Vivo 45 positive pressure generator

(Breas Medical, Mölnlycke, Sweden) in constant mode without humidifier (expiratory pres-

sure relief, ramp off) with a slim circuit (L327148, L3 Medical, Saint-Quentin-Fallavier,

France), Hudson RCI universal cuff connectors (41421, TeleFlex Medical, Wayne, USA) and

an air guard filter (1790000, Intersurgical, Wokingham, United Kingdom). A bacteria filter

was connected between the ventilator and the breathing circuit. The leak valve was connected

to the breathing circuit and a plug was placed in the mouth of the valve to measure the leakage

during ventilation. Measurements were performed at five pressure values: 8, 10, 12, 14, and 16

cmH20 during five respiratory cycles (Figs 3 and 4).

All assessments were performed by ASV Santé (Genevilliers, France) by AML, KL, JPH,

GB, RHK and DP. Data on printing time and costs were provided by BONE 3D (Paris,

France).

Fig 2. Five models of industrial leak valves: (1) whisper swivel II exhalation port (reference 12), (2) disposable fixed exhalation port (DEP) with

cap single-use (reference 13), (3) leak valve row fixed (reference 14), (4) WILAsilent swivel disposable exhalation port (reference 15), and (5)

Silentflow 2 exhalation system (reference 16).

https://doi.org/10.1371/journal.pone.0263808.g002

Table 2. Industrial leak valves used as controls. Rendering adapted from images provided by the manufacturers.

Reference Description Brand

Reference 12 whisper swivel II exhalation port Philips

Reference 13 Disposable Fixed Exhalation Port (DEP) with Cap Single-use Philips

Reference 14 leak valve row fixed Resmed

Reference 15 WILAsilent swivel disposable exhalation port WILAmed

Reference 16 Silentflow 2 exhalation system WILAmed

https://doi.org/10.1371/journal.pone.0263808.t002
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Results

1. Non-intentional leaks (Table 1)

Industrial fittings (references 12–16) and Polyjet-printed fittings (references 10,11) had no

leaks at rigid junctions, at rubber junctions, or parietal leaks. All FDM-printed fittings had

leaks at rigid junctions (Fig 3), but this issue was tackled for the fittings printed within AP-HP

(references 1–8) using rubber junctions. The FDM fitting printed by an external provider (ref-

erence 9) had persisting junctional leaks even with rubber junctions. All FDM-printed fittings

(printed within AP-HP and from an external provider) had parietal leaks, even with thick

walls (2.3 mm, reference 7), but this issue was tackled using coating (references 1,2,4,5,6,8),

even for thin walls (0.7 mm, references 1,4,5). Close examination of devices after coating

showed irregular junctional surfaces (Fig 5), potentially accounting for leaks when rigid junc-

tions are used. Measures performed in May 2020 and in November 2021 showed identical

results, supporting stable properties over time. The devices had been protected from light and

stored in a medical office during this 18-months period.

Fig 3. (a) Astral 150 ventilator (ResMed, San Diego, USA) in double circuit with an adult profile and assist-control ventilation mode used to

assess non-intentional leaks; (b) M22M22M22T fitting (reference 7) with rubber junctions before being immerged into water for testing non-

intentional leaks; (c) M22M22M22T fitting (reference 7) being tested for non-intentional leaks with rigid junctions, showing massive junctional

leaks (red arrow); (d) F18F20 fitting (reference 9) being tested for non-intentional leaks with rigid junctions, showing significant junctional and

parietal leaks (red circle indicated parietal leaks).

https://doi.org/10.1371/journal.pone.0263808.g003
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2. Intentional leaks (Tables 2 and 3)

All industrial (references 12–16) and Polyjet-printed (references 10–11) fittings had satisfac-

tory intentional leaks. FDM-printed fittings without coating had acceptable levels of inten-

tional leaks (references 3,9) but knowing that these two models had parietal leaks and should

not be used in practice. Coating systematically blocked intentional leaks, due to the presence

of coating material into the areas designed to allow leakage (Fig 5). In clear, the technical mea-

sures necessary to control unintentional parietal leaks in FDM-printed fittings blocked inten-

tional leaks.

Fig 4. Measurement system designed to assess intentional leaks.

https://doi.org/10.1371/journal.pone.0263808.g004

Fig 5. (a) Right panel: effects of coating on intentional leaks. Green arrow: reference 1 –F22 fitting, thin walls (0.7 mm), without coating, showing open

perforations designed to allow intentional leaks. Red arrow: reference 1 –F22 fitting, thick walls (2.3 mm), with coating, showing obliterated

perforations designed to allow intentional leaks. (b) Left panel: effects of coating on junctions. Green circle: reference 7 –M22M22M22T fitting, thick

walls (2.3 mm), without coating showing clean surfaces at junction (green circle). Red circle: reference 8 –M22M22M22T fitting, thick walls (2.3 mm),

with coating showing irregular surfaces at junction.

https://doi.org/10.1371/journal.pone.0263808.g005
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3. Production characteristics (Table 4)

FDM-printed devices were produced faster than Polyjet-printed devices, and were consider-

ably cheaper, for equivalent designs.

Discussion

Here we provide the first quality control assessment of an array of ventilation fittings produced

during the first wave of the pandemic, from three different sources representing the suppliers

of 3D-printed devices encountered by clinical departments during the crisis: (1) in-house dedi-

cated emergency platforms, (2) in-house academic departments with previous 3D-printing

Table 3. Quantification of intentional leaks at 5 increasing pressure levels. References 7–8 have been excluded as T-fittings are not designed to produce intentional

leaks. Bold characters: pressure values above 20 cmH2O.

Design Technique Wall thickness (mm) Coating Pressure (cmH2O)

8 10 12 14 16

Reference 1 F22 FDM (ABS) 0.7 yes 0–5 0–5 5–10 5–10 5–10

Reference 2 F22 FDM (ABS) 2.3 yes 0–5 0–5 0–5 0–5 0–5

Reference 3 F22M22 FDM (ABS) 0.7 no 15–20 15–20 20–25 20–25 20–25

Reference 4 F22M22 FDM (ABS) 0.7 yes 0–5 0–5 0–5 0–5 0–5

Reference 5 M22M22 FDM (ABS) 0.7 yes 0–5 0–5 0–5 0–5 0–5

Reference 6 M22M22 FDM (ABS) 2.3 yes 0–5 0–5 0–5 0–5 0–5

Reference 9 F18F20 FDM (PLA) 2.0 no 20–25 25–30 25–30 30–35 30–35

Reference 10 F22M22 Polyjet (MED610) 2.0 NA 15–20 15–20 15–20 20–25 20–25

Reference 11 M22M22 Polyjet (MED610) 2.0 - 5–10 5–10 5–10 5–10 10–15

Reference 12 - industrial - - 15–20 20–25 25–30 25–30 30–35

Reference 13 - industrial - - 15–20 15–20 20–25 20–25 20–25

Reference 14 - industrial - - 20–25 25–30 30–35 30–35 30–35

Reference 15 - industrial - - 15–20 20–25 20–25 25–30 30–35

Reference 16 - industrial - - 15–20 20–25 20–25 25–30 25–30

https://doi.org/10.1371/journal.pone.0263808.t003

Table 4. FDM and Polyjet printing time, requirements in raw materials and price.

Device Time Printing technique Wall thickness (mm) Resin Support Price
F22

(design 1)

2h18 FDM 0.7 ABS: 16,41 cm3 SR30: 1,35 cm3 2,25 €

F22

(design 2)

2h24 FDM 2.3 ABS: 15,8 cm3 SR30: 1,35 cm3 2,17 €

F22M22

(designs 3–4)

3h40 FDM 0.7 ABS: 21,9 cm3 SR30: 4,5 cm3 3,36 €

M22M22

(design 5)

3h24 FDM 0.7 ABS: 22,8 cm3 SR30: 1,08 cm3 3,03 €

M22M22

(design 6)

3h24 FDM 2.3 ABS: 21,59 cm3 SR30: 1,08 cm3 2,87 €

M22M22M22T

(designs 7–8)

4h13 FDM 2.3 ABS: 21,95 cm3 SR30: 9,12 cm3 3,96 €

F22M22

(design 10)

4h20 Polyjet 2.0 MED610 (+ purge): 71g SUP705: 30 g 13,48 €

M22M22

(design 11)

4h18 Polyjet 2.0 MED610 (+ purge): 71 g SUP705: 38 g 14,31 €

https://doi.org/10.1371/journal.pone.0263808.t004
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experience, and (3) independent external makers. We show that 3D-printing can be a valuable

solution to overcome shortages but only under strict supervision.

Intentional leaks have a significant impact on the effectiveness of non-invasive ventilation

as they prevent rebreathing of expired CO2 [21] and should exceed 20 L/min when treating

chronic respiratory failure and 22 L/min for acute respiratory failure [21,22]. We found aver-

age intentional leakage for all 3D models considered together at 13.5 ± 10.5 L/min, and at 25.8

±5.0 L/min for control industrial models; this difference most probably reflects the effects of

coating on the mechanical properties of FDM-printed devices: while coating seems mandatory

to prevent parietal leakage, it interferes with intentional leaks and makes the devices unfit for

clinical use (Fig 5).

Using ventilation devices with unintentional or insufficient intentional leaks can have

severe clinical consequences, with detrimental effect on the effectiveness of NIV in acute and

chronic conditions [23–26]. Similarly, leaks can aggravate nocturnal and diurnal hypoventila-

tion [23–26] and contaminate the environment of the patient by diffusing viral particles [3,4].

This point is particularly relevant knowing that coating for FDM, although mandatory for pre-

venting parietal leaks, leads to irregular surface at junctions, interfering with sealing and lead-

ing to unintentional leaks if rubber appliances are not used (Fig 5).

Our results stress the importance of professional 3D-printing protocols for producing criti-

cal devices such as ventilation fittings. In usual situations, the manufacture of such devices is

subjected to the recent EU regulation 2017/745 (https://eur-lex.europa.eu/eli/reg/2017/745/

oj), which limits emergency production due to demanding quality control and risk manage-

ment protocols. To the best of our knowledge, these regulatory concerns were frequently men-

tioned but rarely addressed formally by the numerous teams who have produced 3D-printed

ventilation fittings and other respiratory-related devices during the first wave of the pandemic

[27–30], and few initiatives have been successfully certified by local regulatory authorities

[31,32]. If further sanitary crises occur, in potential cases of temporary adaptations of this reg-

ulation to overcome shortages, our results strongly suggest that strict quality control assess-

ments should be maintained, managed by teams experienced in medical 3D-printing, to

eventually obtain formal certification. Choices in printing methods, such as Polyjet for

instance, will depend on financial considerations (Table 4), on the background of the 3D-

printing engineering teams, and on the volume of material required, including considerations

on the conservation and rate of use of the printed devices [33–39].

Interestingly, the methods for testing leaks of ventilation fittings are not codified by current

international standards such as (1) EN 12342:1998+A1:2009 Breathing tubes intended for use

with anaesthetic apparatus and ventilators, and (2) EN 13544–2:2002+A1:2009 Respiratory

therapy equipment—Part 2: Tubing and connectors. The assessment method we used, although

basic, provides clear answers to the clinical issues raised using 3D-printed fittings: occurrence

of parietal leaks, occurrence of junctional leaks, and efficiency of intentional leaks. High pres-

sures (85 cmH2O) used to evaluate non-intentional leaks may come out as extreme, especially

regarding CPAP standards. However, such pressures may occur in the events such as coughing,

and devices should remain sealed in situations with risks of viral particle diffusion. Beyond the

current concerns related to the pandemic, our study underlines the need for a standardization

of the quality control methods for ventilation tubes, knowing the current rise in the production

of 3D-printed devices and specific risks caused by poorly designed and produced fittings.

Conclusion

Additive manufacturing is a valid technique for producing ventilation devices such as fittings

with intentional leaks. Our results showed that both FDM with coating and Polyjet allow to
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obtain devices without parietal leaks. We also demonstrated that these physical properties are

stable in time, at least for 18 months without exposition to light, supporting the perspective of

the constitution of potential stocks of 3D-printed ventilation devices. FDM with coating never-

theless impaired several of the main properties of the fitting with intentional leaks by creating

irregular junctions and obliterating the zones designed to lead intentionally. Based on these

findings, our work strongly indicates that professional supervision is mandatory to choose the

most relevant production technique, based on technical requirements and local financial con-

straints. FDM, although cheap and dependable, is not a straightforward approach for produc-

ing devices with intentional leaks. Polyjet seems to fulfil most requirements but is not easily

available to healthcare professionals and is still expensive. We furthermore suggest that there is

a critical need both for (1) defining clear protocols for 3D-printing emergency devices in case

of further situations of shortage, and (2) standardizing assessment methods specifically dedi-

cated to the quality control of ventilation fittings. Safety concerns should remain at the fore-

front, even during sanitary crises: while current regulations are not compatible with fast-track

certification for emergency 3D-printing, the use of this technology in extreme situations in the

future will only be conceivable based on the formulation of fast-track but reliable assessment

methods for ventilation fittings.
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