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ABSTRACT: The computational and conceptual simplifica-
tions realized by coarse-grain (CG) models make them a
ubiquitous tool in the current computational modeling
landscape. Building block based CG models, such as the
Martini model, possess the key advantage of allowing for a
broad range of applications without the need to reparametrize
the force field each time. However, there are certain inherent
limitations to this approach, which we investigate in detail in
this work. We first study the consequences of the absence of
specific cross Lennard-Jones parameters between different
particle sizes. We show that this lack may lead to artificially high free energy barriers in dimerization profiles. We then look at
the effect of deviating too far from the standard bonded parameters, both in terms of solute partitioning behavior and solvent
properties. Moreover, we show that too weak bonded force constants entail the risk of artificially inducing clustering, which has
to be taken into account when designing elastic network models for proteins. These results have implications for the current use
of the Martini CG model and provide clear directions for the reparametrization of the Martini model. Moreover, our findings
are generally relevant for the parametrization of any other building block based force field.

1. INTRODUCTION

Coarse-grain (CG) models play an increasingly important role
in computational science and are nowadays a tool as important
as atomically detailed models.1−6 By grouping atoms into
effective interaction sites, often called beads, CG models focus
on essential features, while averaging over less vital details.
This provides significant computational and conceptual
advantages compared to more detailed models, allowing for
the probing of the temporal and spatial evolution of systems on
the mesoscale.
Among the philosophies of CG modeling, we find both

systematic (also known as hierarchical) and building block.2,3,5

CG models developed on the basis of the former, purely
“bottom-up” principle focus on the accurate reproduction of
the underlying atomistic structural details at a particular state
point for a specific system but require reparametrization
whenever any condition changes. This translates into a more
time-consuming parametrization procedure. Moreover, com-
plex potential forms are often required, which can result in
lower performance and thus less sampling. On the other side,
building block approaches usually rely more heavily on a “top-
down” approach, where macroscopic properties (e.g., thermo-
dynamic data) are used as the main target of their
parametrization. Top-down CG models are often cheaper
due to simpler potential forms and only partial parametrization
requiredand transferable, as the parametrization of the

building blocks allows for reusing them for similar moieties in
different molecules. However, the structural accuracy of top-
down models is limited as the representation of the atomistic
detail is suboptimal. The line that separates these two
methodological philosophies is, however, thin. Many successful
force fields have been developed combining top-down and
bottom-up approaches.3,5

One important example of the building block philosophy
applied to CG modeling is the Martini force field.7−9 Designed
as a model for simulations of lipids and surfactants,10 this force
field has become the most widely used CG model for
simulations of biomolecules,8,11,12 and it is increasingly popular
in soft materials science.13−20 The Martini model mainly relies
on a four-to-one mapping scheme, where on average four non-
hydrogen atoms are mapped into a CG regular (R) bead. Finer
mappings of up to two-to-one non-hydrogen atoms per CG
site are employed when the symmetry of the molecules
requires it or for ringlike structures. In the latter cases, small
(S) or tiny (T) CG beads are employed.7,21 There exist four
main types of particles: polar (P), nonpolar (N), apolar (C),
and charged (Q). These types are in turn divided into subtypes
based on their hydrogen-bonding capabilities (with a letter
denoting the following: d = donor, a = acceptor, da = donor
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and acceptor, 0 = not involved in hydrogen bonds) or their
degree of polarity (with a number from 1 = low polarity to 5 =
high polarity). This gives a total of 18 particle types: the
Martini building blocks. The “flavor” of each building block is
determined by the nonbonded interactions, which are
described by a Lennard-Jones (LJ) 12-6 potential:
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The LJ σ parameter, determining the effective size of the beads,
is 0.47 nm for regular interactions. For the smaller sizes, it is
reduced to 0.43 and 0.32 nm in the case of S−S and T−T
interactions, respectively. The LJ well-depth ε parameters,
determining the strength of the interactions between bead
pairs, can vary from 5.6 kJ mol−1 to 2.0 kJ mol−1. These values
are scaled down by 75% in the case of S−S or S−T
interactions. Together, these LJ parameters determine how the
building blocks interact with each other, giving rise to the
Martini interaction matrix.7 Nonbonded interactions were
parametrized based on thermodynamic data describing the
different affinities of chemical groups toward different solvent
phases, namely, free energies of transfer between water and a
number of organic solventsoctanol, chloroform, ether, and
hexadecane−in a top-down approach.7 Bonded interactions,
described by a standard set of potential energy functions
common in classical force fields, are parametrized from the
underlying atomistic geometry, usually comparing to exper-
imental data or atomistic simulations in a bottom-up approach.
This seemingly simple approach, based on a thorough
parametrization of the hydrophilicity/hydrophobicity of the
building blocks of the model, resulted in a wide range of
successful applications in the modeling of (bio)molecular
processes.8

The parametrization of any force field is performed under a
set of specific conditions. Parametrizations are necessarily
carried out on a limited set of small systems described by a
number of standard parameters such as the range of LJ
parameters and bond lengths and assuming a number of
simulation settings which specify how the simulations are
carried out, such as the treatment of interactions between
particles and temperature and pressure coupling schemes. In
the case of the Martini force field, the parametrization was
mainly carried out using isolated regular beads or linear
molecules composed of such beads and a number of standard
parameters for the models, such as bond lengths and angles.7

Moreover, specific settings were employed for the treatment of
the interactions between particles, such as the cutoff treatment.
The latter settings will not be discussed in the present work,
and the interested reader is referred to ref 22 for a recent work
discussing these choices in Martini. Overall, the conditions
employed during the parametrization allow for more or less
freedom, but there are always boundaries.
Here, we investigate cases of pushing the limits of the

parametrization of a building block based CG model, with
focus on the Martini force field. Given its very wide use, its
more modest initial boundaries of parametrization have been
pushed to their limits. In particular, section 3.1 discusses
problems arising from the lack of size-dependent Lennard-
Jones interaction parameters. We then explore how going too
far from the original bonded parameters affects the behavior of
the force field, both in terms of solute (section 3.2) and solvent

phases (section 3.3). In section 3.4, we then demonstrate how
bond length distributions can be affected by weak bond force
constants, with consequences for the behavior of the model.
Finally, section 4 concludes discussing the implications for the
use of the current version of the Martini force field and
directions for reparametrizations.

2. METHODS
All-Atom and Coarse-Grained Models. The benzene all-

atom (AA) models used in Figure 1 are standard GROMOS
(53A6)23 (retrieved from the ATB server24) and OPLS25

models. Standard Martini 2.2 models7,21,26 (available on the
Martini portal http://cgmartini.nl) were used for the solvents
considered in Figure 4.

Simulation Settings. A unique set of GROMACS
atomistic run parameters was used for the AA simulations.
The Verlet neighbor search algorithm was employed to update
the neighbor list, and a 1.4 nm cutoff for LJ and for Coulomb
(reaction-field) interactions was employed. The Nose−́
Hoover27,28 thermostat (coupling parameter of 1.0 ps) and
the Parrinello−Rahman barostat29 (coupling parameter of 5.0
ps) were employed to maintain temperature (298.15 K) and
pressure (1 bar), respectively. Settings for the CG simulations
follow the “new” Martini set of run parameters.22 Specifically,
the Verlet neighbor search algorithm is used to update the
neighbor list, with a straight cutoff of 1.1 nm. The velocity-
rescaling thermostat30 (coupling parameter of 1.0 ps) and the
Parrinello−Rahman barostat29 (coupling parameter of 12.0 ps)
were employed to maintain temperature (298.15 K) and
pressure (1 bar), respectively. CG simulation setting files are
available on the Martini portal http://cgmartini.nl. GRO-
MACS31 2016.x was employed to run the simulations.

Potential of Mean Force Calculations. The Potential of
Mean Force (PMF) profiles were obtained from umbrella
sampling simulations.32 The two solute molecules, either an
atomistic or a Martini benzene model or single Martini beads,
were placed in a box of at least 5 × 5 × 5 nm3 and solvated in
water using the SPC33 and the TIP3P34 water models in the
GROMOS and OPLS case, respectively. The standard Martini
water model was used at the CG level.7 Umbrella windows
were spaced 0.1 nm apart along the reaction coordinate, this
being the distance between the centers of mass of the solute
molecules. In each window, the distance was restrained by
applying a harmonic potential with a force constant of 1500 kJ
mol−1 nm−2. Each window was equilibrated for 3 ns (1 ns) and
then simulated for 500 ns (150 ns) in the CG (AA) case. A
stochastic integrator was employed for both AA and CG
simulations, while other settings were the same as the general
settings described above. The free energy profiles were
calculated using the weighted histogram analysis method
(WHAM)35 as implemented in the GROMACS tool gmx
wham.

Free Energies of Transfer Calculations. Alchemical
transformations were used to compute free energies of
solvation ΔGS→Ø in a solvent S. The solute was solvated in a
pre-equilibrated solvent box of size of at least 5 × 5 × 5 nm3. A
series of 11 simulations with equally spaced λ points going
from 0 to 1 were performed where solute−solvent interactions
were scaled by (1 − λ)from full solute−solvent interactions
at λ = 0 to the disappearance of such interactions at λ = 0. A
stochastic integrator was employed; simulations were equili-
brated for 2 ns, and each λ point was run for 10 ns. A soft-core
potential was employed to avoid singularities due to solute−
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solvent particle overlaps as interactions were switched off.36

The soft-core potential Vsc, as implemented in GROMACS,31

has the following form

λ λ= − +V r V r V r( ) (1 ) ( ) ( )sc
A

A
B

B (2)

ασ λ ασ λ= + = − +r r r r( ) ; ( (1 ) )p p
A A

6 6 1/6
B B

6 6 1/6

(3)

where VA and VB are the full LJ potentials in state A (λ = 0)
and state B (λ = 1), respectively, α is the soft-core parameter
(set to 0.5 by setting sc_alpha in the .mdp file), p is the
soft-core λ power (set to 1 with sc_power in the .mdp
file), and σA and σB are the LJ radii of interaction. The free
energies and corresponding errors were finally computed using
the Multistate Bennett Acceptance Ratio (MBAR).37 The free
energy associated with transferring a solute from a solvent S1 to
a solvent S2 (ΔGS1→S2) is then computed as the difference

ΔGS1→Ø − ΔGS2→Ø. In the repulsive TI calculations (e.g., Figure
3c) the solvent−solute attractive interactions are switched off,
that is, the solute−solvent Lennard-Jones dispersion constant
C6 is set to zero. The free energies obtained for placing such a
purely repulsive LJ particle in a solvent phase capture the free
energy cost of creating a cavity in that solvent.
Enthalpies of Vaporization Calculations. The enthalpy

of vaporization (ΔHvap) has been computed according to

Δ ≈ − +H U U RTvap gas liq (4)

where Ugas and Uliq are the total energies (per mole) of the gas
and liquid phase, respectively. The gas phase is approximated
as one molecule in a large (7 × 7 × 7 nm3) empty simulation
box, and the liquid phase is approximated as an equilibrated
box of dimensions of about 5 × 5 × 5 nm3. Gas (liquid) phase
simulations were performed in the NVT (NPT) ensemble at
298 K (and 1 bar).
1:1 Mixture and Icosahedron System Setup. The 1:1

mixture of dodecane and dodeca-2,5-diene was set up using the
gmx insert-molecules tool of GROMACS. 350 molecules each
were added to a rectangular box of 3.5 × 3.5 × 20 nm3. The
starting configuration of the eight icosahedrons in a cubic box
(8.5 × 8.5 × 8.5 nm3) was generated using the gmx insert-

molecules tool to add the eight icosahedrons and the gmx
solvate tool to solvate the system with 4634 CG water beads.
Both systems were energy minimized (steepest descent, 500
steps), equilibrated for 2 ns (time step of 20 fs), and simulated
for 500 ns (time step of 20 fs). A leapfrog integrator was
employed.

Polyleucine System Setup. To embed the nine
polyleucine peptides in the 1-palmitoyl-2-oleoylphosphatidyl-
choline (POPC) bilayer, the program insane.py was
employed.38 The peptides were placed on a cubic grid at a
distance of 5 nm resulting in a bilayer patch of 15 × 15 nm2

and an overall box size of 15 × 15 × 10 nm3. The POPC
bilayer consisting of 567 lipids was solvated with 14211 CG
water beads, and 0.13 M NaCl was added after neutralizing the
system. The system was then energy-minimized (steepest
descent, 500 steps), equilibrated for 500 ps (time step of 10
fs), and simulated for 15 μs (time step of 20 fs). A leapfrog
integrator was employed, and reaction-field was used for
Coulomb interaction (cutoff 1.1 nm)as this system contains
charged particles, following the “new-rf” set of Martini run
parameters.22 Two different polyleucine (LYS2-LEU26-LYS2)
protein models were used: a standard Martini 2.2 model
without any elastic network and a Martini 2.2 model with an
elastic network of GROMACS bond type 1. Bond type 1 in
GROMACS means that the nonbonded interactions between
the connected beads are excluded. In both protein models,
identical regular bonds, angles, and dihedral angles are applied;
their only difference is the elastic network. This allows us to
exclude any changes due to different bonded parameters.
However, this is a setting for the elastic network which is not
commonly used when simulating proteins with Martini and an
elastic network. There are two elastic network options
commonly used: Martini 2.2 with an elastic network of
GROMACS bond type 6, which does not exclude the
nonbonded interactions, or the ElNeDyn39 model, which
uses GROMACS type 1 bonds in the elastic network but
entails in addition different definitions of bonded interactions.
The error in Figure 5c was estimated as the standard error of
the mean when the last 10 μs of the simulations were split into
blocks of 1 μs and analyzed separately.

Figure 1. Effect of lack of size-dependent Lennard-Jones parameters between particles of different sizes on the dimerization. (a) Potentials of mean
force for the dimerization of three-particle Martini ring molecules (see inset) described by regular (red), small (green), or tiny (blue) beads and for
atomistic GROMOS (cyan) and OPLS (black) benzene models in water. (b) Schematic of the T-solute in R-solvent dissociation (side view):
because the solute is seen by the solvent molecules as described by regular beads, a solvent molecule cannot insert between the two solute
molecules until the distance between the positions of the beads is at least twice the diameter of a regular bead.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00473
J. Chem. Theory Comput. 2019, 15, 5448−5460

5450

http://dx.doi.org/10.1021/acs.jctc.9b00473


3. RESULTS AND DISCUSSION

3.1. Differences in Bead Sizes: The Desolvation
Problem. Different Bead Sizes Can Lead to Artificial Free
Energy Barriers. Mixing different particle sizes without
introducing also mixed resolution LJ parameters can lead to
artificial free energy barriers. This is the case in Martini when
interactions between small or tiny and regular beads take place.
As described above, the LJ σ parameter in the case of S−S
interactions is reduced to 0.43 nm, from the 0.47 nm used for
R−R interactions. At the same time, the LJ ε between two S-
particles, εS−S, is also reduced by a quarter as compared to the
interaction between two regular Martini particles, i.e., εS−S =
0.75 εR−R. In the case of T-beads an even smaller σT−T of 0.32
nm is used, while no εT−T scaling is applied. However, for
simplicity, the LJ ε and σ for R−S (R−T) interactions are kept
the same as the ones for R−R interactions. Therefore, S- or T-
beads are seen by R-beads as regular particles, while they
interact with other S- or T-beads with the reduced σ values.
We find that this leads to the formation of artificial free energy
barriers. This can be observed in, for example, potentials of
mean force (PMFs) of dimerization of molecules described by
S- or T-beads solvated in an R-bead solvent. Such a case is
shown in Figure 1, where PMFs of dimerization of two Martini
three-particle ring molecules in water are shown for the three
different bead sizes available in the force field. The PMFs have
been computed by umbrella sampling, as described in the
Methods section.
The LJ ε value for the self-interaction of the solute

molecules is kept constant in the three cases (we chose the
scaled down intermediate level IV, i.e., 2.625 kJ mol−1), so as
to exclude its effect. Bond lengths between the ring particles
are also constrained in the three cases and are set to 0.27 nm,
the bond distance used in the standard Martini benzene.7

Atomistic PMFs, computed employing the GROMOS
(53A6)23 and OPLS25 force fields, are also shown in Figure
1a for the dimerization of benzene molecules, which the S-ring
model may be taken to represent. It is very evident from the
plot that, going from the R- to the T-ring, an energy barrier
arises at around 0.8 nm, while no such barrier is present in the
atomistic PMFs. The barrier increases as the difference in size
between the solvent and solute beads increases.
Lack of Size-Dependent Cross Interactions. We rationalize

the appearance and increase of the barrier by looking at a
simple picture representing the system, a schematic of which is
reported in Figure 1b. Note that, despite referring to the T-
rings solvated in water, the following description applies
generally to all (T-, S-, R- and atomistic) systems, as a barrier is
present in all cases. However, using the R−R LJ parameters for
the R−S and R−T LJ cross interactions artificially increases the
height of the barrier in the case of the S- and T-rings. When
the two T-rings are in close contactwhich happens at about
0.36 nm, i.e., the diameter of a T-beadthe interaction is
favorable, and the free energy is at its absolute minimum on
the profile shown in Figure 1a. As the two T-rings are pulled
apart, a cavity starts to form between them. This cavity cannot
be filled by any solvent molecule until the distance between the
two solute molecules becomes equal or larger than the
diameter of interaction dictated by the solute−solvent LJ σ
parameter (i.e., the σR−T parameter in this case). This
translates into an energy barrier, which is generally observed
in conjunction with dimerization.40 However, for a solvent R-
bead to make its way between the two T-systems the distance

between the positions of the beads must be not only 0.89 nm
(that is, the diameter of a T-bead, 0.36 nm, plus the diameter
of a R-bead, 0.53 nm) but instead 1.06 nm (that is, twice the
diameter of a R-bead), as the T-systems are seen as composed
by regular beads by the solvent particles. This translates into
the formation of a cavity which is larger than what it would be
if the σR−T were tailored for R−T interactions (e.g., one could
take the arithmetic or geometric average between the σR−R and
σT−T; such a choice is found to remove the artificial free energy
barrier, as can be seen in Figure S1). This larger cavity thus has
an associated increased cavity cost which leads to the artificially
higher free energy barrier observed for the S- and T-systems.
The barrier increases the larger the mismatch between the
solute−solute and solute−solvent σ parameters is.

Generality and Consequences. The formation of an
artificial energy barrier in dimerization has been shown for
the case of a prototypical CG ring molecule. The effect is most
obvious in Martini for ring systems that use S- and T-beads.
However, the effect is not limited to ring geometries. It also
plays a role in the simplest case, i.e., the dimerization of single
beads. The PMFs obtained in this case are shown in Figure S2a
and demonstrate again the appearance of an energy barrier as
the difference in size between solute and solvent increases
only smaller, as fewer particles are involved. While free energy
barriers are usually observed in conjunction with dimeriza-
tion,40 the increase of such free energy barriers in Martini is a
direct consequence of the lack of size-dependent cross
interactions. It is thus a consequence of the design of the
model itself one should be aware of. In the T-case, the
situation is evidently problematic, and this effect is very
noticeable in the stacking and base-pair PMFs of the Martini
DNA bases.21 It should be noted that in case of small S-bead
solutes, up to a few particles, the effect is relatively mild
(compare the green curve to the atomistic case in Figure 1a).
However, as the number of particles in the ring structure
increases, the effect increases, as can be seen from the PMF of
the polycyclic aromatic molecule pyrene (Figure S2b).

3.2. Solutes with Short Bond Lengths: Effects on Oil/
Water Partitioning. We now look at the effects of bonded
parameters on the behavior of the Martini CG force field. In
particular, we investigate the robustness of the Martini model
upon changes in the bond lengths which connect the various
building blocks. To this end, we systematically study the effect
that varying the bond lengths has on the reproduction of the
main experimental parametrization target of the Martini model,
i.e., the partitioning behavior of molecules. This is done by
comparing changes in experimental and computed free
energies of transfer (ΔGtransfer) upon changes in bond lengths.
It is useful to define the change in the free energy of transfer
(ΔΔGtransfer) as follows

ΔΔ = ΔΔ + ΔΔ− −G G Gtransfer solute solvent solvent solvent (5)

that is, we can divide the change in the free energy of transfer
in contributions due to solute−solvent and solvent−solvent
interactions. In this work, we discuss uncharged systems, so the
interactions involved in eq 5 are controlled by the σ and ε LJ
parameters (eq 1) associated with the solute and solvent
particles. Bond lengths, along with the LJ σ, determine the
density of interaction sites that will be found in the simulation. In
turn, the density of interaction sites affects the strength of the
interactions between molecules and therefore their thermody-
namic properties. The LJ ε parameters between the building
blocks of the Martini model were parametrized mostly based
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on single R-beads or molecules composed of linear R-bead
chains employing a standard bond length of 0.47 nm. In this
section, we vary the bond lengths of the solute molecule, while
using Martini solvents either consisting of single R-beads (like
water) or described by models composed of linear R-bead
chains with standard bond lengths of 0.47 nm (like
hexadecane). Thus, we first look at the impact of shortening
bond lengths on the ΔΔGsolute−solvent of eq 5, while using
standard Martini solvents and thus well-calibrated solvent−
solvent interactions.
Experimental Behavior Corresponding to Shortening

Bond Lengths. Before describing the results, it is instructive
to consider what changing a bond length in a CG model means
in terms of the actual molecules and what behavior(s) should
be thus captured by the model. Shorter CG bond lengths arise

when the number of atoms mapped with the same number of
beads is lower (e.g., when a two-bead model describing octane
is adapted to represent heptane), or when the molecule is
branched or cyclic (e.g., going from octane to tetramethylbu-
tane or dimethylcyclohexane). Here, we focus on studying the
partitioning behavior of molecules upon removal of aliphatic
carbon atoms. The behavior of fully branched and cyclic
organic compounds with respect to their corresponding linear
isomers is shown in Figure S6. We gathered a large set of
partitioning data41 from which to extract experimental trends.
The data are plotted in Figure 2a and show how the
hexadecane → water free energy of transfer (ΔGHD→W), for
the same chemical functional group, changes upon removal of
aliphatic carbons (for an example, see Figure 2b; more
examples can be found in the Supporting Information, Table

Figure 2. Experimental(a), (b)and Martini(c), (d), (e)partitioning behavior of molecules upon removal of aliphatic carbon atoms for the
same chemical functional group. (a) The hexadecane→ water free energy of transfer (ΔGHD→W) for a molecule (e.g., octane) is plotted against the
difference between the same free energy and the one for the corresponding molecule (same functional group) where 1 (green circles, e.g., heptane),
2 (blue squares, e.g., hexane), and 4 (purple triangles, e.g., butane) aliphatic carbon atoms have been removed. Fits are also shown for the various
data sets. Data points are available in the Supporting Information, Table S1. (b) Summary of how molecular properties change upon molecular size
reduction, including the example of the change of ΔGHD→W for octane upon removal of 1, 2, and 4 carbon atoms. (c) The ΔGHD→W for a Martini
two-bead “standard” molecule (i.e., 4 atoms-to-1 CG site mapped molecules with a bond length of 0.5 nm) is plotted against the changes of the free
energy of transfer upon bond length reduction to 0.4 nm (green circles), 0.3 nm (blue squares), and 0.2 nm (purple triangles), corresponding to the
removal of 1, 2, and 4 aliphatic carbon atoms (that is, to 3.5-to-1, 3-to-1, and 2-to-1 atoms-to-CG sites mapping schemes, respectively). Fits are also
shown for the various data sets (solid lines). (d) Solute−solvent radial distribution functions (RDFs) for a Martini two-bead molecule (in this
specific example using CG particles of C3 type, but other bead types lead to the same result) solvated in water, hexadecane, and benzene (from left
to right) having two different bond lengths: 0.50 nm (gray) and 0.20 nm (purple). (e) Schematic of how too short a bond length affects the
solvation shells and thus the interaction between the solute molecule and its environment.
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S1). ΔGHD→W has been chosen because it comprises the two
prototypical extremes of hydrophobicity and hydrophilicity,
and because there are numerous experimental data points
available. It is evident that the hydrophilicity of molecules
increases upon reduction of their size, i.e., when removing
carbon atoms. This is to be expected, given the higher cost of
creating a cavity in water as compared to hexadecane40 which
translates into a higher hydrophilicity of the molecule upon
size reduction, as the free energy gain in creating a smaller
cavity in water outweighs the one in hexadecane. Branched and
cyclic molecules in comparison with their linear versions show
a similar trend, also related with the size reduction upon
branching (Figure S6); in particular, going from a linear to a
fully branched or cyclic isomer is equivalent to the removal on
one aliphatic carbon atom in terms of ΔGHD→W (Figure S6).
Overall, the main effects of reducing the size of a molecule

can be summarized as shown in Figure 2b: smaller molecules
interact less with the environment and possess reduced solvent
accessible surface area; due to their smaller size, their solvation
comes with a lower ΔGcavity in any solvent; due to the high cost
of creating a cavity in water, a greater discount is obtained on
the ΔGcavity in water upon size reduction, which makes smaller
molecules more hydrophilic. A quantitative empirical observa-
tion can also be extracted: hydrophobic molecules get from 3.0
to 3.5 kJ mol−1 more hydrophilic for each aliphatic carbon
atom removed, while hydrophilic molecules get a somewhat
smaller free energy gain (2−2.5 kJ mol−1). That the proximity
of an aliphatic carbon atom to a polar group alters its
hydrophobicity is in line with the proximity-based correcting
factors often applied within prediction schemes for partition
coefficients (logPs).42

Effect of Bond Lengths on the Partitioning of Martini
Molecules. We now turn to the CG model, to investigate
whether it succeeds in capturing the experimental partitioning
behavior of molecules upon size reduction. Computed free
energies of transfer (via alchemical transformations as
described in the Methods section) are plotted in Figure 2c,
in a similar way to what was done in Figure 2a. In this case, the
removal of 1, 2, and 4 aliphatic carbon atoms corresponds to
model bond lengths of 0.4, 0.3, and 0.2 nm, respectively. The
free energies on the horizontal axis are the ones for all possible
Martini two-bead “standard” molecules, i.e., 4 atoms-to-1 CG
site mapped molecules with a bond length of 0.5 nm. Note that
the standard Martini bond length is 0.47 nm, but there is no
significant difference between using 0.47 or 0.5 nm. The
removal of 4 aliphatic carbon atoms should be considered an
extreme case: it is not realistic to remove 4 carbon atoms and
stick to a two-bead model. The Martini approach would dictate
that one bead gets removed at that point. However, it is
instructive to push this far to extract trends in the behavior of
the force field.
Overall, with respect to the experimental behavior, all the

molecules with shorter bond lengths become less hydrophilic
than what they should (compare to Figure 2a). For a
discussion on the direct comparison of Figure 2a and Figure
2c, see the last paragraph of this section. More importantly, the
effect is not constant across the whole hydrophilicity scale
spanned by the horizontal axis, a trend most evident when
looking at the 0.2 nm case. In particular, short bond length
hydrophilic molecules (left-hand side of Figure 2c) gain some
hydrophilicity, while hydrophobic molecules (right-hand side
of Figure 2c) eventually get even more hydrophobic than their
corresponding “full-size” molecule, the latter case being in

qualitative disagreement with the experimental behavior. The
same effect is qualitatively observed in all the other pairs of
solvents taken into account in the original Martini para-
metrization,7 as shown in Figure S3, with variations which
correlate with the relative polarity of the two solvents. We will
first rationalize our observations and then come back to the
comparison with the experimental data.

The “Bond Length Effect”: Increased Solute−Solvent
Interactions. Our observations can be rationalized by
analyzing the pair correlation functions between solute and
solvent molecules and comparing the standard and short bond
length cases. This is done in Figure 2d, where radial
distribution functions (RDFs) are shown for a Martini two-
bead molecule solvated in three different solvents (hexadecane,
water, and benzene). In all cases, an extra solvation shell
appears as the molecule reduces in size (see also the schematic
representation shown in Figure 2e). As the extra shell appears,
each particle of the solute effectively sees more solvent
molecules, and the overall solute−solvent interaction therefore
increases. We dub this the “bond length effect”. First of all, this
contradicts the conclusion that shortening of aliphatic chains
leads to less solute−solvent interactions drawn from the
experimental data set (conclusion 1), Figure 2b). Because
different beads interact with the various solvents with different
interaction strengths, an imbalance across the horizontal axis
arises, which is observed most clearly for the shortest bond
length of 0.2 nm (Figure 2c). Indeed, due to the “bond length
effect”, a very hydrophobic solute molecule interacts more
strongly with both water and hexadecane upon shrinking, but,
due to a stronger interaction with hexadecane than with water,
the resulting free energy of transfer contains some added
hydrophobicity. The same line of reasoning holds for very
hydrophilic solutes, for which the “bond length effect” provides
some added hydrophilicity upon shrinking.
This effect, shown for the simplest case (two-bead systems,

i.e., one bond length systems), is obviously present also in
systems containing more beads. In particular, we examined
how the effect scales with the number of beads and with the
geometry by computing the behavior of three-bead molecules
both in a linear and ring geometry. The results are shown in
Figure S4. Notably, the effect is stronger in ring geometries
than in linear ones. This can be intuitively explained in terms
of the larger overlap between beads present in the case of the
ring geometry, leading to a higher density of interaction sites
for the same number of particles.

Implications: Short Bond Lengths Make Martini Less
Intuitive. The direct comparison of Figure 2a and Figure 2c
clearly shows a systematic underestimation of the hydro-
philicity upon molecular size reduction. In order to
compensate this underestimation, a standard procedure in
the Martini framework is to switch to a more hydrophilic
particle type whenever the number of carbon atoms is reduced.
For example, butane is described by a C1 particle, while
propane is described by a more hydrophilic C2 bead7see the
SI for a discussion. Nevertheless, the “bond length effect”
makes Martini less intuitive, as the choice of changing the bead
type to a more hydrophilic one upon size reduction starts to
depend on whether the molecule is hydrophilic or hydro-
phobic. While for hydrophilic molecules the “bond length
effect” already accounts for some added hydrophilicity, and a
change in bead type may be too much, for hydrophobic
molecules the “bond length effect” accounts for some added
hydrophobicity, and a change in bead type may be even too
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little. This is relevant because short bond lengths occur in
several cases when connecting two big fragments, or many
small fragments, to build macromolecules. In many cases, no
experimental free energy is available for the resulting
macromolecules. One example is the case of connecting
multiple side chain models of amino acids to build a protein
model. In this case, a “naive” (that is, “just attach it and it
works”) building block approach would fail, as the particle type
cannot be chosen merely on the basis of the chemical group
which needs to be represented. The hidden effect on
partitioning behavior of shorter bond lengths blurs the intuitive
building block procedure.
3.3. Solvents with Short Bond Lengths: Excessive

Cavity Cost. With the effect of short bond lengths in solute
molecules in mind, we now investigate the effect of a solvent
phase constituted by molecules with short bond lengths. We
will see how short bond lengths affect not only the solute−
solvent but also the solvent−solvent term of eq 5. The
ΔGsolvent−solvent is directly linked to the f ree energy cost of
creating a cavity (ΔGcavity) in the solvent: the stronger the
interactions between the solvent molecules, the harder it is for
them to make some room for accommodating a solute
molecule. We selected benzene as a representative solvent
phase described with a model containing short bond lengths,
both for the (albeit limited) availability of experimental
partitioning data and for its importance as prototypical
aromatic molecule.
Benzene/Water Partitioning: Discrepancies between

Martini and Experiments. Similarly to the previous section,
we investigate what happens when computing the free energy
of transfer of a two-bead system as a function of the bond
length, but this time for the benzene → water (BENZ → W)
case. The results, presented in the same format as Figure 2c,
are shown in Figure 3b. It is evident that smaller solutes are
more hydrophobic, i.e., shortening bond lengths favors
partitioning to the benzene phase. The question is now
whether this behavior corresponds to what is observed
experimentally. Figure 3a shows how experimental BENZ →
W free energies of transfer change when shortening alkyl
chains by 1, 2, and 4 aliphatic carbon atoms for the same

chemical functional group. Due to limited availability of
experimental data, we complemented the data with COSMO-
RS43 predicted free energies of transfer. More compact
molecules are found to be more hydrophilic in a similar way
to what was found in the case of HD → W free energies
(Figure 2a). Given that Figure 3b shows the opposite trend, we
can conclude that the behavior of Martini BENZ → W free
energies of transfer upon reduction of the size of the solute
molecule does not agree with experimental observations.

Excessive Cavity Cost in Short Bond Length Solvents. In
this section we rationalize the main cause of the discrepancies
in partitioning data which involve a solvent phase with short
bond lengths. With respect to the HD → W case considered
before, we now have two different ΔG contributions which
may be affected by short bond lengths at the same time: the
solute−solvent and solvent−solvent terms of eq 5. To
disentangle these two aspects, we first performed free energy
calculations treating the solute beads as purely repulsive
particles (see the Methods section). We consider this as an
approximation of the free energy cost of creating a cavity in the
solvents, which is part of the ΔGsolvent−solvent term, as an
increase in solvent−solvent interactions translates into a higher
ΔGcavity in that solvent. Figure 3c depicts the resulting cavity
costs. Comparison to Figure 3b reveals that the cavity cost is
the dominant contribution. For a complete picture, Figure S7c
shows the attractive contribution, due to solute−solvent
interactions, which significantly contributes only at the extreme
bond length of 0.2 nm.
The major role of the cavity cost implies that the key issue is

caused by the solvent−solvent interactions. It is insightful to
compare computed and experimental44 enthalpies of vapor-
ization (ΔHvap) for various solvents in order to determine
whether solvent−solvent interactions deviate from the Martini
trend in the case of short bond length solvents. This is done in
Figure 4a, where data points corresponding to various
molecular classes have been depicted with different point
symbols. We remark that enthalpies of vaporization are not
parametrization targets of the Martini force field and are
systematically underestimated due to the limited fluid range of
the employed 12-6 LJ potential form.7,8 From F’igure 4a, it is

Figure 3. Experimental and Martini partitioning behavior of molecules upon removal of aliphatic carbon atoms for the same chemical functional
group: short bond length solvent (benzene) to water case. (a) The benzene → water free energy of transfer for a molecule is plotted against the
difference between the same free energy and the one for the corresponding molecule (same functional group) where 1 (green circles), 2 (blue
squares), and 4 (purple triangles) aliphatic carbon atoms have been removed. Fits are also shown for the various data sets. Experimental data points
(filled) are complemented with COSMO-RS predicted (empty) free energies from ref 43see Table S3. (b) The benzene → water free energy of
transfer for a Martini two-bead “standard” molecule (i.e., 4 atoms-to-1 CG site mapped molecules with a bond length of 0.5 nm) is plotted against
the changes of the free energy of transfer upon bond length reduction to 0.4 nm (green circles), 0.3 nm (blue squares), and 0.2 nm (purple
triangles), corresponding to the removal of 1, 2, and 4 aliphatic carbon atoms. Fits are also shown for the various data sets (solid lines). (c) Same
plot as (b) but considering only the repulsive component of the LJ interaction between solvent and solute (i.e., only the LJ repulsive constant C12 is
nonzero, see also the Methods section); this is approximated as the cost of creating a cavity in the solvent.
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evident that while most solvents (such as water and the
alkanes) follow the Martini trend, models containing short
bond lengthsused to describe ring structures such as
benzene within the Martini CG modeldeviate from the
trend and possess systematically higher ΔHvap. This confirms
the issue with solvent−solvent interactions. A few other trends
are evident, as highlighted in Figure S8 and associated
discussion (Supporting Information).
Both the repulsive contribution (Figure 3c) and the

comparison of experimental and Martini ΔHvap (Figure 4a)
indicate that the discrepancy observed in Figure 3b is rooted in
the ΔGsolvent−solvent. In particular, Figure 4a shows that solvent−
solvent interactions are too strong in short bond length
solvents (this despite the 75% reduction in interaction strength
between the S-beadsthese being the beads used to describe
rings in Martini 2). The consequence of this point, as
anticipated earlier, is a too high free energy cost of creating a
cavity in the short bond length solvent. Experimental data for
cavitation free energies are not available, while they can be
approximately computed (see the Methods section). However,
we expect them to follow trends within Martini that correlate
with the ΔHvap data, because both reflect interactions between
solvent molecules. We indeed find a strong correlation
between experimental ΔHvap data (divided by the number of
non-hydrogen atoms) and computed ΔGcavity for a P5 type
bead in most Martini solvent models (Figure 4b). Short bond
length models indeed deviate from the trend and present
considerably higher ΔGcavity. In particular, we note that the cost
of creating a cavity in benzene is higher than in water (Figure 4b,
black data points). Therefore, partitioning to the benzene
phase is favored if a solute molecule’s size is reduced, as one
gets a larger discount on the cavity cost in benzene than in
water. The ΔGsolute−solvent contribution is significant only for
the extreme bond length of 0.2 nm (see Figure S7c), and it is
responsible for the slope observed in the 0.2 nm data in Figure
3b. In conclusion, the main reason for the qualitatively wrong
behavior of benzene → water partitioning upon shrinking of a
solute molecule is the too high cost of creating a cavity in the
short bond length solvent benzene.
3.4. Short Bond Lengths Caused by Weak Force

Constants. We have seen how short bond lengths affect the

parametrized behavior of the Martini model. Apart from
setting the equilibrium bond distance to a lower value, short
bond lengths can also result from weakening the force
constant. Previously, a collapse of neighboring backbone
beads was observed in the coil secondary structure of Martini
2.1 proteins due to weak force constants.26 The issue was
corrected in the Martini 2.2 protein model by increasing the
force constant between directly connected backbone beads in
the coil/turn/bend secondary structure from 200/400/500 to
1250 kJ mol−1 nm−2. In this section, we explore the effect of
the force constant on the behavior of the model in a more
comprehensive way.

Weak Force Constants Impact the Behavior of the
Martini Model. To investigate the effect of the force constant,
we discuss three systems of increasing complexity. The first
one is a 1:1 mixture of two different three-bead molecules,
namely dodecane (DOD) and dodeca-2,5-diene (DODE). In
the Martini framework they are represented by a C1−C1−C1
and C4−C4−C1 model, respectively. These mimic the lipid
tails of dipalmitoyl-phosphatidylcholine (DPPC) and dilino-
leyl-phosphatidylcholine (DLiPC), respectively, whose inter-
actions are important for the phase separation in membranes.45

We decrease the force constant of both bonds, C4−C4 and
C4−C1, of the DODE model from 1250 kJ mol−1 nm−2 (the
standard Martini force constant for aliphatic chains) to 200 kJ
mol−1 nm−2. The system, initially mixed, stays so for force
constants above 500 kJ mol−1 nm−2. However, it starts to
demix if the force constants become weaker than 500 kJ mol−1

nm−2, as can be seen by the steep decrease in the number of
DOD-DODE contacts reported in Figure 5a as a function of
the force constant. Lowering the force constant for the bonds
in one of the molecules is thus found to induce phase
separation.
For the second test case, we constructed an icosahedron of

P4 beads including a central P4 bead and solvated eight of
them in waterwhich is also described by P4 beads in Martini.
All 12 outer beads of each icosahedron are connected to the
central bead by a harmonic potential with a force constant of
1250 kJ mol−1 nm−2 and a minimum position at 0.47 nm. In
addition, six bonds exist on the surface connecting pairs of
adjacent corners (red bonds in the inset of Figure 5b). Thus,

Figure 4. Behavior of enthalpies of vaporization and the cost of creating a cavity in a solvent in the Martini model. (a) Comparison of computed
and experimental enthalpies of vaporization. (b) Computed free energy cost of creating a cavity for a P5 Martini particle type in a Martini solvent vs
the experimental enthalpy of vaporization of the solvent divided by the number of non-hydrogen atoms present in the molecule. In both figures,
rings (described by short bond length models) do not follow the Martini trend. Note that the cost of placing a bead of type P5 is plotted in this
case, but results are qualitatively the same for any Martini bead type (see, for example, Figure S8b). Benzene and water are highlighted.
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each corner is connected to exactly one neighboring corner. In
our simulations we varied the force constant of the surface
bonds while keeping the force constants to the center constant.
The fixed force constant to the central bead ensures that the
overall size of the icosahedron stays approximately unaffected,
while effective bond lengths on the surface can affect the
interaction with the environment. We simulated the associa-
tion of the eight icosahedrons in water (simulation time 500
ns) with different force constants of the surface bonds. Figure
5b shows the distribution of solute cluster sizes for the
different simulations. When applying a force constant of 563 kJ
mol−1 nm−2 or below, the cluster size distribution changes. Our
simulations show that short bond length regions on the surface
of a given icosahedron interact particularly with such short
bond length regions of other icosahedrons. As a result, cluster
formation is strongly enhanced.
The third system consists of nine polyleucine trans-

membrane α-helical peptides embedded in a POPC bilayer
(starting as monomers, see Figure S9b). We compare a protein
model with an elastic network in the protein backbone using a
common force constant of 500 kJ mol−1 nm−2 and a protein

model without elastic network. Again, the number of protein
clusters is analyzed to investigate if the elastic network impacts
the protein−protein interaction. Figure 5c depicts the
distribution of clusters for the last 10 μs of a 15 μs long
simulation. See Figure S9c for the number of clusters present
as a function of time during the 15 μs simulation. Evidently,
the system simulated without elastic network (black line)
consists of more and smaller clusters, while in the system with
the elastic network (red line) the distribution is shifted toward
larger cluster sizes. Comparison to experimental data suggests
that the protein model without elastic network is already too
sticky. It slightly underestimates the population of the
monomeric state.46−48 For completeness, we also performed
simulations of polyleucine with the ElNeDyn39 model and a
standard force constant of 500 kJ mol−1 nm−2 (Figure 5c, blue
line). The clusters appear to be more stable than in the case of
Martini 2.2 with elastic network, possibly due to the different
bonded parameters used in the Martini 2.2 and ElNeDyn 2.2
models (see also Section 4 of the Supporting Information).

Weak Force Constants Lead to the Formation of
Superinteraction Centers. The behavior observed for these

Figure 5. Effect of weak bond force constants on the behavior of Martini systems of increasing complexity. (a) Relative number of DOD-DODE
contacts (number of DOD-DODE contacts over the total number of contacts made by DODE molecules) in a 1:1 DOD:DODE mixture as a
function of the force constant used in the two bonds of a three-bead DODE molecule. The corresponding effective bond length distributions for
such bonds are shown in Figure S9a. The insets show renderings of the DOD(cyan):DODE(gray) mixture for two data points. (b) Cluster size
distribution for a simulation of eight icosahedrons (inset) described by P4 Martini beads in water (also described by P4 beads) as a function of the
force constant used for the six bonds on the surface of the icosahedrons (red bonds in the inset)and (d) corresponding effective bond length
distributions for such bonds. The force constant is varied from 1250 to 500 kJ mol−1 nm−2. (c) Cluster size distribution for a simulation of nine
polyleucine transmembrane α-helical peptides embedded in a POPC bilayer modeled without (black line) and with (red line) an elastic network
using a common force constant of 500 kJ mol−1 nm−2; results with the ElNeDyn model (blue line), using the standard force constant of 500 kJ
mol−1 nm−2, are also shown (see also the Methods section). The distribution is computed over the last 10 μs of a 15 μs long simulation.
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three systems, i.e., increased aggregation between models
which use weaker force constants, can be rationalized in terms
of the effective bond length distributions present in the
systems. Such distributions are shown in Figure 5d for the
icosahedron case, but they are qualitatively the same for the
two other systemssee Figures S9a and S9d for the DOD-
DODE and polyleucine systems, respectively. The equilibrium
bond distance of the harmonic bond being fixed to 0.47 nm for
all the bonds of Figure 5d, the effective bond length in the
systems differs considerably when force constants lower than
1000 kJ mol−1 nm−2 are used. The weaker the force constant
used, the shorter the effective bond length.
Weak force constants let the CG beads within a molecule get

too close; when that happens, their LJ interactions with a third
bead in the surrounding add up. This increased interaction
with the environment results in the creation of a super-
interaction center, that is a region with high density of
interaction sitesanalogous to the situation described in
Sections 3.2 and 3.3. However, for the creation of such a
superinteraction center not only the equilibrium position of
the bonded potential (as seen in Sections 3.2 and 3.3) is of
importance but also its force constant. If this force constant is
too weak, the bonded interaction cannot compete with the
nonbonded force. Their imbalance enables the bonded beads
to approach closely resulting in a distance distribution which is
not centered at the minimum position anymore (Figures 5d
and S9a).

4. OUTLOOK
We have seen how the lack of size-dependent Lennard-Jones
parameters in the Martini model can artificially increase the
barrier in free energy profiles of dimerization. This effect is
larger, the larger the mismatch between the solute−solute and
solute−solvent Lennard-Jones σ parameters and the bigger the
solute molecules. We have then investigated in detail the effect
that the use of bond lengths shorter than the ones used during
the parametrization has on the behavior of the Martini force
field. Shortening bond lengths increases the density of CG
interaction sites and may thus lead to imbalances. In particular,
we have seen that shortening the bond length of a solute
molecule increases its interactions with any solvent. Because
different beads interact with the various solvents with different
interaction strengths, the effect is nonlinear and thus
unbalances the carefully parametrized behavior of the Martini
force field. We have also shown how the use of a solvent phase
constituted of short bond length molecules leads to even
bigger discrepancies. The enhanced interactions between
solvent molecules increases the cost of creating a cavity in
the short bond length solvent disproportionately, disturbing
the balance between different solvents. Finally, we have seen
that a lower limit for the force constant of bonded interactions
described by harmonic potentials exists if they entail
exclusions, i.e., nonbonded interactions between the bonded
beads are not present. If the lower limit is undercut, the
harmonic potential cannot compete with the nonbonded
potentials which leads to short bond lengths and thus increased
interactions.
Implications for the Current Use of Martini 2.

Discrepancies between parametrized and observed behavior
may arise when systems are rich in molecules containing short
bond lengths. A short bond length phase clearly possesses
increased interactions both with solute molecules and between
the molecules of the phase themselves. Such short bond

lengths arise in Martini models when finer mappings are
designed. A perfect match with an atomistic bond distribution
should be sacrificed in exchange for more reasonable densities
of CG interaction sites. Deviations from the parametrized
behavior are mostly expected when mixing standard and short
bond length systems. A consistent use of short bond lengths
for both solute(s) and solvent(s) may reduce the discrepancies
observed in properties such as partitioning or mixing due to
consistent shifts in overall behavior. However, properties of
models rich in short bond lengths may deviate from the overall
behavior of the force field.14,49−51 Moreover, as soon as both
standard and short bond length models are present, short bond
length molecules will interact predominantly with other short
bond length molecules. This effect may be partly responsible
for the need of “custom” beads that emerged when modeling a
number of polymers.52,53 Such systems rely heavily on S-beads,
hence contain short bond lengths, and need to behave properly
in both S-beads and regular solvents. This effect may also
contribute to the observed stickiness of Martini proteins54−56

or sugars.57 While this complex multicomponent problem is
not straightforward and affects also atomistic force fields,58

short bond lengths will be part of the problem in the case of
Martini, as both sugars and proteins contain short bonds.
More generally, when dealing with models based on a

building block approach, not only the calibration of the
fragments but also their connection must be considered
carefully. Despite careful calibration of the fragments, their
connection can introduce artifacts, as it was shown to be the
case in the Martini model. The extensive use of a certain model
within a wide and various research community can only be
beneficial to the improvement of the model, as such nontrivial
effects can be spotted more promptly. In a broader view, this
can affect also atomistic force fields based on similar building
block philosophies. While there is much less variability
between bond lengths at atomistic resolution, a similar role
to the one played by bonds within Martini may be played by
dihedral angles in atomistic force fields. Moreover, the required
accuracy of an atomistic force field is typically higher, and small
systematic errors may accumulate and lead to significant
deviations at the level of macromolecular interactions.

Directions for Reparametrizations. The findings
reported in this work lead to clear paths for improvements
of the Martini CG model and should be also taken into
account in the parametrization of any other building block
based force field. Specifically, size-dependent Lennard-Jones
parameters are necessary to ensure balanced interactions
between CG interaction sites of different sizes and to avoid
artifacts such as increased barriers in dimerization profiles. A
reader who has some experience with customization of CG
force fields might be attracted by the idea to fix this issue in
Martini 2 by using the arithmetic or geometric average as the
LJ σ of two differently sized beads. However, we discourage
these readers to simply do so because the overall balance of
interactions will be disturbed. Instead, a full reparametrization
is required. The density of interaction sites is a very critical
property of the system. If finer mappings are required due to
symmetry or necessity of a description with a higher resolution,
well calibrated particles with different sizes should be available.
Such bead sizes should probably be calibrated in a way that will
lead to correct trends for enthalpies of vaporization (and hence
cavity costs) for different resolutions. Ideally, models of the
same molecules with different resolutions, e.g., a dodecane
molecule mapped with three 4-to-1, or four 3-to-1, or six 2-to-1
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atoms-to-CG-site, should give the same enthalpy of vapor-
ization and free energy of solvation (hence cavity cost) and
hence mix ideally between themselves. The different
resolutions are intrinsically coupled to the bond lengths used
in the systems. If short bond lengths are necessary, it is because
finer mappings or very branched chemical moieties are being
represented. Thus, finer mappings imply smaller beads and
shorter bond lengths, while coarser ones imply larger beads
and longer bond lengths. If this harmony is not maintained, an
imbalance in the parametrized behavior of the model is
expected. Lastly, the elastic network approach might be
replaced by a Go̅-model approach59,60 to (i) avoid problems
with weak bonds and (ii) allow some folding−unfolding at the
same time.
These guidelines have been taken into account in the

reparametrization of the Martini CG force field which led to
the very recent development of Martini 3.0.61 However, while
some choices, like the use of size-dependent LJ parameters, can
be taken into account during the parametrization procedure,
others, like the coupling between bead sizes and bond lengths,
should be kept in mind, as this cannot be guaranteed by the
parametrization procedure itself but only by a careful use of the
different bead sizes.
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