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SUMMARY Individuals suffering from severe viral respiratory tract infections have
recently emerged as “at risk” groups for developing invasive fungal infections. Influenza
virus is one of the most common causes of acute lower respiratory tract infections
worldwide. Fungal infections complicating influenza pneumonia are associated with
increased disease severity and mortality, with invasive pulmonary aspergillosis being the
most common manifestation. Strikingly, similar observations have been made during
the current coronavirus disease 2019 (COVID-19) pandemic. The copathogenesis of respi-
ratory viral and fungal coinfections is complex and involves a dynamic interplay
between the host immune defenses and the virulence of the microbes involved that of-
ten results in failure to return to homeostasis. In this review, we discuss the main mech-
anisms underlying susceptibility to invasive fungal disease following respiratory viral
infections. A comprehensive understanding of these interactions will aid the develop-
ment of therapeutic modalities against newly identified targets to prevent and treat
these emerging coinfections.

KEYWORDS SARS-CoV, antifungal immunity, aspergillosis, coinfection, copathogenesis,
fungal pathogens, influenza, respiratory viruses

INTRODUCTION

Fungal infections are major causes of human morbidity and mortality. These infec-
tions range from superficial mucosal and dermal infections to life-threatening disse-

minated infections that can involve virtually any organ (1, 2). Opportunistic fungi, includ-
ing Aspergillus, Pneumocystis, and Cryptococcus, can cause severe fungal infections in the
lungs that can lead to invasive disease and dissemination to other tissues (3). Invasive fun-
gal infections in the lungs, including invasive pulmonary aspergillosis (IPA), Pneumocystis
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pneumonia (PCP), and cryptococcosis, account for more than one million cases worldwide
annually and primarily affect immunocompromised individuals, such as patients with HIV/
AIDS, those with malignancies and undergoing bone marrow transplantations, and
patients receiving immunosuppressive therapies (1, 3). Over the last decade, it has
become evident that patients with severe viral respiratory tract infections are highly
susceptible to developing a fungal coinfection, in particular pulmonary aspergillosis.

Lower respiratory tract infections cause nearly 4 million deaths annually, with influ-
enza accounting for up to half a million of them (4). Severe bacterial pneumonia fol-
lowing influenza infection, most commonly caused by Streptococcus pneumoniae,
Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pyogenes, is well rec-
ognized and known to increase disease severity and mortality in these patients (5–7). It
is estimated that around 25% of all influenza-related deaths are associated with bacte-
rial coinfections, particularly during seasonal outbreaks (8, 9). More recently, there is
increased recognition of the importance of fungal coinfections, primarily caused by
Aspergillus, in the severity and mortality of patients suffering from influenza (10, 11).
Coinfections are well known complications in other respiratory viral diseases like severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2), parainfluenza virus, cytomega-
lovirus (CMV), respiratory syncytial virus (RSV), rhinovirus, and adenovirus, although
assessing their precise impact on disease severity and attributable mortality has proven
difficult (12–20). Previous studies estimated that 25 to 30% of SARS survivors experi-
enced secondary infections (21). In the current coronavirus disease 2019 (COVID-19)
pandemic, early studies have suggested that 50% of patients who died due to COVID-
19 experienced a secondary infection (22). Susceptibility to bacterial coinfections in
influenza patients is thought to be attributed to damage and dysfunction of the epi-
thelial barriers, inability to mount an effective primary immune response, and/or inca-
pacity to develop disease tolerance to infection. Even though most of these mecha-
nisms could be playing a role during fungal coinfections, a detailed understanding of
the interactions between respiratory viruses and fungal pathogens is lacking. In this
review, we evaluate what is currently understood about the immunopathological
mechanisms underlying susceptibility to invasive fungal infections following severe vi-
ral pneumonia with an emphasis on influenza-associated pulmonary aspergillosis
(IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA).

FUNGAL COINFECTIONS IN RESPIRATORY VIRAL DISEASE

The realization that fungal coinfections complicate viral respiratory disease has only
recently emerged. In retrospect, earlier case reports described the association of
Aspergillus and influenza coinfection, but the significance was not appreciated (8).
During the 2009 H1N1 pandemic, increasing numbers of cases with IAPA were described
in the literature, resulting in proposed disease definitions and clinical management guide-
lines (10, 11). Furthermore, the recent update of the U.S. clinical practice guidelines regard-
ing diagnosis, treatment, chemoprophylaxis, and institutional outbreak management of
seasonal influenza has included fungal coinfection as a complication of influenza (10).
Based on recent clinical observations and diagnostic test results in patients with IAPA, a
new clinical algorithm has been proposed to better classify the certainty of the diagnosis
of invasive Aspergillus disease (23–25). A similar pattern has been observed during the cur-
rent COVID-19 pandemic, with hundreds of cases of fungal coinfections being described
(26, 27). International efforts to better classify CAPA has also led to proposed novel disease
definitions and research and clinical guidelines (2, 28, 29). The recognition that patients
with severe viral pneumonia have an increased susceptibility to developing fungal coinfec-
tions asks for an analysis of the reported clinical epidemiology to provide insights into the
clinical importance of fungal-viral coinfections. Underlying medical conditions resulting in
lung injury, such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease
(COPD), are considered independent risk factors for developing invasive fungal infections
(30) and therefore are covered in this review.
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Influenza and Aspergillus

Influenza viruses are classified into types A, B, C, and D based on genetic and anti-
genic differences (4). Influenza A viruses are predominantly responsible for seasonal
annual epidemics, and they have caused a number of pandemics in humans (4, 31).
Worldwide, 3 to 5 million people develop severe influenza infection, leading to up to
half a million deaths every year. Of the hospitalized patients, 5 to 10% need admission
to an intensive care unit (ICU). A feared complication is the development of acute re-
spiratory distress syndrome (ARDS), which is associated with high mortality rates (32).
The first report of pulmonary aspergillosis following influenza bronchopneumonia
dates back to 1952 (33). After that, several clinical cases have been reported (34–38),
but it was not until the 2009 H1N1 pandemic that the number of reports started to
increase dramatically (24, 39). One of the first detailed descriptions of the association
between influenza H1N1 and Aspergillus coinfection showed that 23% of critically ill
patients with influenza admitted to the ICU developed IPA (39). A large number of
other centers have reported comparable experiences, but the incidence of Aspergillus-
influenza virus coinfection shows huge variation, with incidences reported between
7% and 32% (24, 32, 40–51). Despite such variations, a number of important observa-
tions have been made supporting the fact that fungal coinfections do play a significant
role in the disease severity and outcome of influenza pneumonia. First, one of the
larger clinical studies that included more than 400 patients admitted to the ICU over a
period of 7 years identified influenza as an independent risk factor for the develop-
ment of IPA (24). Second, pulmonary fungal coinfections outnumbered the cases of bacte-
rial coinfection among influenza patients admitted to two ICUs in the Netherlands (16 ver-
sus 13 out of 45 patients, respectively) (32). Increased mortality rates of 51% to 66% have
been reported in patients with IAPA compared to 15% to 28% in patients without and
with bacterial coinfections (24, 49). Even though the majority of reported cases have been
associated with influenza A virus, cases associated with influenza B virus have also been
described (52, 53). In the last decade, novel avian influenza viruses have emerged in Asia
associated with mortality rates of up to 50%. A study from China collected data from 335
patients with avian influenza H7N9 between 2013 and 2018, and 5.4% of those were diag-
nosed with IPA (54).

SARS-CoV and Aspergillus

The ongoing COVID-19 pandemic, caused by SARS-CoV-2, has affected millions of
people and caused more than four and a half million deaths worldwide by September
2021. About 5% of COVID-19 patients infected with SARS-CoV-2 require ICU manage-
ment; these patients might be at high risk of developing secondary infections, includ-
ing IPA (55–58). Reports from the previous SARS epidemic in 2003, caused by SARS-
CoV-1, pointed to the occurrence of Aspergillus infection in those patients treated with
corticosteroids for virus-induced inflammation (59–61); however, no systematic studies
were performed to determine rates of incidence. During the current pandemic, second-
ary bacterial (22) and fungal coinfections, mainly due to Aspergillus spp. (Table 1), are
increasingly being reported (62–97). Overall, hundreds of patients with CAPA have
been reported from many countries in Europe, Asia, Australia, and America (27). As
with IAPA, incidences exhibit great variability, with some studies reporting incidences
of CAPA as low as 1% of ICU cases and others reporting extremely high incidences of
up to 35% in ICU settings in Europe (56, 98–100). In a case series from the Netherlands,
the mortality rate among patients with CAPA was 67% compared to 32% in patients
with severe COVID-19 without signs of IPA (101). Importantly, in a recent prospective
study from Germany, COVID-19 was independently associated with IPA (95). Some
studies suggest that CAPA might be underdiagnosed due to difficulties obtaining re-
spiratory samples. Concerns over aerosolization of respiratory secretions and the SARS-
CoV-2 virus have restricted the number of invasive procedures performed, such as
bronchoalveolar lavage (102, 103). Moreover, there are inherent difficulties in obtaining
a clear diagnosis of Aspergillus infection, whereas others have suggested that the inci-
dence of Aspergillus infection in COVID-19 patients is not as high as previously
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predicted (104–107). Whether these discrepancies are associated with the extent to
which specific fungal diagnostic tests are employed is at present unclear.

SARS-CoV-2 and Mucormycosis

Recently, thousands of COVID-19-associated mucormycosis (CAM) cases have been
reported in the literature, mostly from India (108, 109). Importantly, mucormycosis
associated with influenza has also been described (110). Major risk factors include
patients receiving systemic corticosteroid treatment or suffering from uncontrolled di-
abetes (111, 112). Hyperglycemia increases the expression of the glucose-regulated
protein (GRP78), which acts as a receptor for the CotH protein kinase present in
Rhizopus spores, helping the fungus to adhere and invade endothelial and nasal epi-
thelial cells (113–115). In addition, beyond their immunosuppressive function, treat-
ment with corticosteroids can cause diabetic ketoacidosis, further increasing suscepti-
bility to CAM (116, 117). A recent review of the literature described that CAM exhibits a
mortality of up to 49%, with rhino-orbital cerebral mucormycosis being the most com-
mon manifestation of the disease, followed by pulmonary mucormycosis (109). Notably, a
significant proportion of surviving patients suffered life-changing morbidities, including
loss of vision. Diagnosis of CAM is challenging, as the clinical and radiological signs of pul-
monary and disseminated mucormycosis are nonspecific and may overlap with findings
associated with COVID-19. Furthermore, mucormycosis is caused by a variety of Mucorales
species (Rhizopus arrhizus is the predominant species in India), with some of them exhibit-
ing poor susceptibility to antifungal therapy (118). Recently, the European Confederation
of Medical Mycology (ECMM) and the International Society for Human and Animal
Mycology (ISHAM) provided a comprehensive guideline of recommendations for the clini-
cal management of CAM patients, including diagnosis, treatment, and prevention (119).
Early recognition, better diagnostics, and more effective antifungals are required to
improve the outcome of these patients, especially in low and middle-income countries.

Viral Respiratory Tract Infections and Other Fungi

Fungal coinfections complicating viral infections with pathogens other than Aspergillus

TABLE 1 Large clinical studies (with 10 or more patients) reporting cases of CAPAa

Study (reference) Country Incidence [no. (%)] Mortality [no. (%)]
Alanio et al., 2020 (56) France 9/27 (33) 4/9 (44)
Bardi et al., 2021 (58) Spain 4/140 (3) NR
Bartoletti et al., 2020 (73) Italy 30/108 (28) 13/30 (44)
Dupont et al., 2021 (86) France 19/106 (18) 8/19 (42)
Falces-Romero et al., 2020 (71) Spain NR 7/10 (70)
Fekkar et al., 2020 (82) France 7/145 (5) 4/7 (57)
Fu et al., 2020 (87) China 1/101 (1) NR
Gangneux et al., 2020 (28) France 7/45 (16) 2/7 (29)
Garcia-Vidal et al., 2021 (88) Spain 7/989 (0.7) 3/7 (43)
Helleberg et al., 2021 (85) Denmark 2/25 (8) 2/2 (100)
Koehler et al., 2020 (98) Germany 5/19 (26) 3/5 (60)
Lahmer et al., 2021 (95) Germany 11/32 (34) 4/11 (36)
Lamoth et al., 2020 (69) Switzerland 3/118 (3) 1/3 (33)
Machado et al., 2021 (89) Spain 6/239 (2.5) 6/6 (100)
Nasir et al., 2020 (65) Pakistan 5/23 (22) 3/5 (60)
Roman-Montes et al., 2021 (90) Mexico 14/144 (10) 8/14 (57)
Rutsaert et al., 2020 (99) Belgium 7/20 (35) 4/7 (57)
Segrelles-Calvo et al., 2021 (91) Spain 7/215 (3) 5/7 (71)
van Arkel et al., 2020 (101) The Netherlands 6/31 (19) 4/6 (67)
Van Biesen et al., 2020 (92) The Netherlands 9/42 (21) 2/9 (22)
Velez Pintado et al., 2021 (96) Mexico 16/83 (19) 5/16 (31)
Wang et al., 2020 (76) China 8/104 (8) NR
White et al., 2020 (2) Wales 19/135 (14) 11/19 (58)
Yang et al., 2020 (75) China 2/52 (4) NR
aCAPA, COVID-19-associated invasive pulmonary aspergillosis; NR, not reported.
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have also been reported. PCP caused by the fungal pathogen Pneumocystis jirovecii is the
most common AIDS-defining disease, with up to half a million cases worldwide annually
(3). Influenza complicated by PCP has been observed in HIV-infected patients (120–122).
Therefore, influenza vaccination has been suggested as a prophylactic measure to reduce
the risk of developing PCP secondary to influenza in HIV patients (123). Patients with defi-
ciencies in adaptive immunity or individuals undergoing immunosuppression therapy are
also at risk of developing PCP associated with influenza infection (124, 125). Recently, cases
of COVID-19 and Pneumocystis coinfections have been reported (81, 126, 127), some of
them associated with HIV comorbidity (79, 128–130). Since SARS-CoV-2 and PCP have
common clinical and radiological features, coinfection with Pneumocystis is likely underap-
preciated in patients with SARS-CoV-2 (128, 131–138) and there are several clinical case
studies reporting misdiagnosis (139, 140). Cryptococcus infections affect primarily immuno-
compromised hosts like HIV-infected individuals and solid organ transplant recipients.
Infection starts in the lungs, and it can then disseminate into the central nervous system,
causing meningitis that accounts for more than 200,000 cases worldwide annually (3).
Only a few cases of influenza with concomitant cryptococcal infection have been reported
in the literature (141–143), all of them with either the H1N1 or H7N9 strain (142). The scar-
city of case studies could be a result of underdiagnosis, so special attention is needed in
regions with a high prevalence of HIV/AIDS, including sub-Saharan Africa. Candida auris is
a multidrug-resistant fungal pathogen classified as an “urgent threat” by the U.S. Centers
for Disease Control and Prevention (CDC) due to its ability to cause life-threatening sys-
temic infections in critically ill patients. Several outbreaks of C. auris infection in COVID-19
patients have been reported (144–149), in some cases associated with corticosteroid treat-
ment (150–154). C. auris is difficult to identify by standard laboratory methods, which can
lead to misidentification, causing outbreaks in health care settings often associated with
high mortality. Therefore, advancing diagnostic methods is essential for early detection
and control of this emerging pathogen.

COPATHOGENESIS OF RESPIRATORY VIRAL-FUNGAL COINFECTIONS

Immune responses against one pathogen can significantly influence immunity to a
secondary nonidentical pathogen. This phenomenon, termed heterologous immunity,
has been studied mainly in the context of viral infections and vaccines but could also
play a role during viral-fungal coinfections (155, 156). Studies on the copathogenesis
between viral and fungal coinfections are scarce, unlike studies regarding viral and
bacterial coinfections. Most reports have attributed destruction of the airway epithe-
lium and suppression of cellular immunity (including defective antigen-specific cyto-
toxic T lymphocyte responses and impaired phagocyte activities such as phagocytosis,
production of cytokines, and reactive oxygen species [ROS], formation of neutrophil
extracellular traps [NETs], and killing abilities) as the causes responsible for fungal coin-
fections (157–159). Several of the mechanisms that account for fungal susceptibility in
individuals suffering from influenza could also be at play during SARS-CoV-2 infection,
including the effects on tissue integrity and functionality and the dysregulation of
immune responses and effector functions (160). Despite these similarities, the patho-
physiology of SARS-CoV-2 infection is different from that of influenza at numerous lev-
els, including viral tropism, viral replication, and incubation period as well as the effects
on the host defense (161–165).

The outcome of host-pathogen interactions depends on numerous factors, includ-
ing dose, route of infection, and virulence properties of the pathogen, as well as sev-
eral host factors that include innate and adaptive immunity. Initiation of protective
antiviral immunity depends on the recognition of viral RNA in the endosomal or cyto-
solic compartment by Toll-like receptor 3 (TLR3) and TLR7 or by retinoic acid-inducible
gene (RIG)-I-like receptors (RLRs) (RIG-I and melanoma differentiation-associated pro-
tein 5 [MDA5]), respectively. Viral recognition by innate immune cells, including dendri-
tic cells (DCs) and macrophages, triggers a signaling cascade leading to both NF-kB-
mediated induction of proinflammatory cytokines (interleukin 6 [IL-6], tumor necrosis
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factor [TNF], IL-1), and IFN regulatory factor 3 (IRF3) and IRF7-mediated induction of
type I (IFN-a and IFN-b) and type III (IFN-l) interferons (IFNs). IFNs are crucial for effec-
tive antiviral immunity; for example, in epithelial cells, IFN signaling inhibits viral repli-
cation and orchestrates an effective adaptive antiviral immune response (4, 166, 167).
Conversely, antifungal immunity strongly relies on C-type lectin receptors (CLRs) that play
a key role in the recognition of fungal glucans, glycolipids, and glycoproteins by phago-
cytes (mainly macrophages and neutrophils) and in the activation of innate host defense
mechanisms, including phagocytosis, respiratory burst, formation of NETs, autophagy, and
chemokine and cytokine production (168). These mechanisms promote fungal killing but
also influence activation of the adaptive immune system (169–173). Understanding how
these mechanisms interact in a synergistic or antagonistic manner is fundamental to dis-
secting their roles during viral-fungal coinfections. In the next section, the major mecha-
nisms that mediate susceptibility to fungal coinfections in individuals suffering from severe
viral pneumonia are discussed: from innate immune mechanisms, including the role of the
epithelium, phagocytes, and antigen-presenting cells (APCs), to T cell responses and adapt-
ive humoral and cytotoxic responses.

Barrier Integrity

The respiratory epithelium is composed of a variety of cells, including a pseudostra-
tified epithelium of ciliated and secretory cells lining the trachea and most proximal
airways. A cuboidal epithelium lines the small airways, and squamous type I alveolar
cells (involved in the process of gas exchange) and cuboid type II alveolar cells (which
secrete pulmonary surfactant) form the alveoli (174). In healthy individuals, inhaled air-
borne fungal conidia are easily trapped in the mucus and eliminated mechanically by
ciliated cells from the upper respiratory tract. However, due to their small size (2 to 3
mm), Aspergillus conidia (asexual spores) can reach the lower respiratory tract and inter-
act with the airway epithelium, at either the bronchial or alveolar level (175). Upon
reaching airway epithelial cells, fungal conidia are taken up and trafficked through the
endosomal system, culminating with the formation of the phagolysosome by fusion of
late phagosomes with lysosomes. This organelle has an acidic pH and contains many
degradative enzymes that facilitate destruction and clearance of fungal conidia from
the host. However, upon injury or disease (disrupting barrier integrity), conidia may
escape this process and eventually germinate, facilitating tissue invasion (175). Different
respiratory viruses preferentially bind and infect specific epithelial cells expressing spe-
cific receptors along the respiratory tract. For instance, cell entry of influenza virus is
mediated by the binding of the viral hemagglutinin to terminal sialic acids that are
attached via either an a2,3 or a2,6 linkage. Human influenza virus, such as H1N1, binds
preferentially to a2,6-linked sialyloligosaccharide receptors, which predominate in nonci-
liated epithelial cells from the upper respiratory tract, whereas avian influenza virus, such
as H5N1 and H7N9, binds to a2,3 linkages, which are more prevalent in ciliated epithelial
cells from the lower respiratory tract (31, 176–179). Lower respiratory tract infection ena-
bles deep lung infection by other pathogens, including fungal pathogens. Angiotensin-
converting enzyme 2 (ACE2) is the cellular receptor for SARS-CoV and the new SARS-
CoV-2 (180–184). Both SARS-CoV and SARS-CoV-2 primarily target type II pneumocytes,
consistent with their ACE2 expression (161); however, SARS-CoV-2 replicates abundantly
in upper respiratory epithelia and is efficiently transmitted (185, 186). Of note, SARS-CoV
and SARS-CoV-2 can also infect alveolar macrophages that support viral replication (185,
187–189). Both influenza virus and SARS-CoV-2 can cause pneumonia, which occurs when
infection and inflammation involve the alveoli and lung parenchyma. Therefore, produc-
tive viral infection of specific respiratory epithelial cells along the respiratory tract will
determine the clinical symptoms as well as the susceptibility to fungal infections (179).

Respiratory viral infection causes multiple changes in the lungs that can weaken anti-
fungal defenses, facilitating secondary fungal invasion. These effects can be grouped into
three major aspects, including changes to the extracellular matrix components that facili-
tate adhesion, compromise of epithelial cytoskeletal machinery that modifies the dynamics
of internalization, and damage of the epithelium that compromises barrier integrity (190).
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Disruption of tracheal epithelial integrity after influenza infection affects the mechanical re-
moval of subsequent pathogens, facilitating secondary infections (191, 192). In the more
severe cases, damage to the epithelium can alter the surface display of numerous trans-
membrane proteins, exposing sites for fungal adherence in the tracheobronchial tree. For
instance, injured cells or cells in an intermediate state of differentiation may express apical
receptors such as a5b1 integrin (expressed upon lung inflammation and injury to control
cell migration during wound healing [193]), to which Aspergillus fumigatus can adhere
(194, 195). Moreover, airway fibrinogenolysis and disruption of epithelial tight junctions by
Aspergillus-secreted proteases such as alkaline protease 1 (Alp1) during and after germina-
tion can trigger allergic inflammation and further contribute to epithelial cell pathology in
the context of coinfections (196–199). All of the above suggest that during influenza infec-
tion, the chronicity of the disease might determine susceptibility to secondary fungal infec-
tions. Lung tissue disruption during SARS-CoV-2 infection has also been shown to be an
important factor in determining the severity of the disease, which likely contributes to sus-
ceptibility to coinfections (200, 201). Moreover, COVID-19-driven inflammation affects alve-
olar epithelial regeneration and induces the expansion of pathological fibroblasts that pro-
mote fibrosis and impair regeneration (202, 203). Of note, using a model of influenza
infection, mice experiencing an acute inflammatory response with limited bystander tissue
damage do not show susceptibility to a secondary bacterial infection (204). Whether the
same holds true for secondary fungal infections is unknown.

Exposure of the substratum during severe viral pneumonia presents additional
opportunities for fungal cells to adhere. In addition, changes in the airways during tis-
sue damage and repair may provide adherence sites during recovery (205). During tis-
sue remodeling, exposure of basement membrane and extracellular matrix compo-
nents, such as fibronectin, laminin, or collagen, in areas of incomplete healing or
where fibrin and fibrinogen deposition have taken place (observed during SARS-CoV-2
infection [206]) could facilitate fungal adhesion to the basal lamina (175, 207). All of
the above might be significant in patients suffering from idiopathic pulmonary fibrosis,
a condition characterized by the thickening and stiffening of the tissue surrounding
the alveoli that shares several risk factors with COVID-19 (208) and has been independ-
ently associated with both influenza and Aspergillus infections (209, 210).

Several respiratory viruses, including influenza virus, can hijack the cytoskeletal sys-
tem to their benefit in order to direct the cellular machinery to the production of viral
particles. This could be particularly relevant during Aspergillus infections, since upregu-
lation of several genes involved in cytoskeleton reorganization has been observed dur-
ing Aspergillus infection (211, 212). Actin polymerization has been suggested to be cru-
cial for internalization of conidia (213). In this context, in vitro studies have shown that
Aspergillus-derived mycotoxins, such as gliotoxin, can promote actin cytoskeleton dy-
namics and internalization of A. fumigatus (214). Importantly, influenza infection alters
the levels, structures, and functions of F-actin and microtubules in host cells (215). In
addition, influenza infection downregulates the levels and/or activities of proteins
involved in the regulation of F-actin and microtubule dynamics, such as Arp2/3 (involved
in actin polymerization and the formation of branched actin networks) (216). Notably,
components of the Arp2/3 complex have been shown to be upregulated in response to
Aspergillus conidia and to mediate internalization of conidia (212). Another example is
phospholipase D, which plays a fundamental role in lipid metabolism and cytoskeleton
rearrangement and whose activity is stimulated following influenza infection (217). This
enzyme mediates rapid endocytosis of the virus and at the same time can promote A.
fumigatus internalization (218, 219). The complex interaction between influenza viruses
and cytoskeleton components, including actin microfilaments, intermediate filaments, and
microtubules, could therefore underlie mechanisms of susceptibility to fungal pathogens.

The epithelium is very important in orchestrating innate immune responses to both
viral and fungal infections. The lung epithelium produces several soluble factors that
form the first barrier of defense against fungal infections. Airway epithelial cells, partic-
ularly from the upper airways, secrete mucins that act as a barrier against fungal
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invasion. Binding of conidial lectins (FleA) to glycan moieties on gel-forming mucins
(MUC5AC and MUC5B) allow them to become trapped within the mucus barrier, unable to
reach the underlying epithelium and subsequently cleared from the airways by mucociliary
clearance (220, 221). Surfactant proteins (SP-A and SP-D) and ficolins are involved in fungal
opsonization and phagocytosis. Chemokines promote neutrophil recruitment and antimi-
crobial peptides (AMPs; including LL-37 and defensins) and are involved in fungal killing
(222, 223). Influenza virus itself can interact with some of these glycosylated proteins,
affecting their mode of action. For instance, neuraminidase helps the virus to gain access
to airway epithelial cells by catalyzing the cleavage of sialic acids presented by decoy
receptors, such as mucins (224–226). Fungal recognition through sialylated mucins is a crit-
ical step in the mucociliary clearance and macrophage killing that prevents Aspergillus
pneumonia (220). SARS-CoV-2 can inhibit protein translation, which abolishes innate
immune responses by the epithelium (i.e., IFN-dependent induction of IFN-stimu-
lated genes) (227). Cross talk between alveolar epithelial cells and other immune
cells, including DCs, is crucial for effective pathogen clearance and recovery from
injury (Fig. 1) (228). Importantly, epithelial cells can control overinflammation by
expressing anti-inflammatory mediators such as the tryptophan catabolizing
enzyme indoleamine 2,3-dioxygenase (229). Disruption of these immune-regulatory
mechanisms as a result of viral infection could lead to uncontrolled exacerbated
inflammation, increasing tissue damage, immunopathology, and susceptibility to
fungal coinfections as mentioned above.

In severe cases of influenza, obstruction of the small airways caused by the

FIG 1 Progression of respiratory viral-fungal coinfections into the alveolar space determines disease severity. (A)
Progression of a viral infection into the alveolar space. (1) The virus infects airway epithelium. (2) Alveolar macrophages
recognize the virus and in response produce cytokines. (3) Cytokines attract more immune cells, including neutrophils
and monocytes, which in turn produce more cytokines, creating a cycle of inflammation that damages the lung tissue.
(4) Damage can further occur through the formation of fibrin and scar tissue. (5) Weakened blood vessels allow fluid to
seep in and fill the lung cavities, leading to respiratory failure. (B) Progression of a fungal infection into the alveolar
space following severe viral pneumonia. (1) When Aspergillus enters the airways, damaged epithelium facilitates adhesion
of fungal conidia and subsequent invasion. (2) Phagocytosis, fungal killing, and cytokine production by alveolar
macrophages are impaired. (3) Recruitment of neutrophils and their cross talk with macrophages are also affected. (4)
Loss of neutrophils compromises their cytokine production and neutrophil extracellular trap (NET)-mediated fungal
killing. (5) The release of fibrinous material can cause the obstruction of the small airways, decreasing oxygen and
carbon dioxide diffusion capacities and creating a hypoxic milieu that changes Aspergillus virulence properties and the
outcome of host-Aspergillus interaction. (This figure was created with BioRender.)
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sloughing of cells and the release of fibrinous material into the airways leads to the
decrease of oxygen and carbon dioxide diffusion capacities. This hypoxic milieu can
significantly influence the course of Aspergillus infection by affecting fungal virulence
and host immune responses (230) (Fig. 1). Importantly, oxygen tension has notable
effects on the macroscopic and biofilm morphotypes of Aspergillus fumigatus (colony
furrowing and percentage of vegetative nonconidiating mycelia), leading to increased
host inflammation, rapid disease progression, and mortality in a murine model of inva-
sive aspergillosis (231). Aspergillus-derived secondary metabolites (i.e., gliotoxin) can
further contribute to increased localized and systemic hypoxia by inhibiting angiogen-
esis and tissue repair (232). Therefore, the metabolic adaptability of Aspergillus spp. to
low-oxygen environments could be critical for the ability to cause infection following
influenza (175, 233–235). Interestingly, hypoxia inducible factor 1a (HIF1a), a transcrip-
tion factor that controls immune cell metabolism and function during hypoxic condi-
tions, has been shown to be important in controlling influenza virus replication (236)
and for protection against pulmonary Aspergillus infection (237). Beyond the epithe-
lium, hypoxia contributes to endothelial cell activation with the release of several solu-
ble mediators, including proinflammatory cytokines, platelet-activating factor, and ad-
hesion molecules, all of which amplify tissue destruction and inflammation into the
small airways (238).

Damage of alveolar integrity can enable fungal spores to reach blood vessels (Fig.
1). Recently, it was shown that a major receptor involved in sensing of Aspergillus 1,8-
dihydroxynaphthalene (DHN)-melanin, named melanin-sensing lectin (MelLec), is
highly expressed on endothelial cells that line the internal surfaces of vessels (239).
Therefore, destruction of alveolar epithelial integrity could enable deep penetration of fun-
gal conidia and invasion through MelLec-expressing endothelial cells. Compromised endo-
thelial sensing of conidia through MelLec could also facilitate Aspergillus infection, as has
been shown in murine models of infection (239).

Interferons

Type I and type III IFNs induce an IFN-stimulated gene signature that has the
capacity to interfere with every step of viral replication (4, 166, 167). Besides their role
during viral infections, IFNs play an essential role in driving antifungal responses in the
lungs. Type I and type III IFNs are expressed with distinct kinetics during IPA, and both
are essential for the activation of neutrophils (240, 241). Upon Aspergillus recognition,
recruited monocytes (via CCR2) are an important early source of type I IFNs that induce
optimal expression of IFN-l . Type III IFN production by hematopoietic and nonhemato-
poietic cells at the mucosa acts on neutrophils to activate their antifungal response,
including ROS production (240, 241). Controlled IFN signaling may be a crucial factor in
determining whether secondary fungal infections are cleared at mucosal sites (5, 242,
243). Sustained uncontrolled IFN production can lead to tissue damage and immuno-
pathology; e.g., type I IFNs cause lymphopenia (244), which has been associated with
severe cases of influenza and SARS-CoV-2 infection, increasing susceptibility to second-
ary infections (245–253). Furthermore, not only type I but also type III IFNs can impair
microbial control during coinfections (254, 255). Excessive or prolonged production of
IFN-l can interfere with lung repair during influenza recovery, which reduces epithelial
proliferation and differentiation, increasing disease severity and susceptibility to coin-
fections (256, 257) (Fig. 2).

Type II IFNs can be detrimental during influenza infection (258, 259) and contribute
to susceptibility to secondary bacterial infections by depleting alveolar macrophages
and suppressing their phagocytic capacity (260–265). IFN-g also impacts memory Th17
responses that attenuate bacterial clearance following influenza infection (266).
Therefore, blocking IFN-g has been exploited as a therapeutic strategy in several experi-
mental models (267–269). However, type II IFNs might have a protective role during
fungal coinfections. IFN-g production by Th1 cells and invariant natural killer T (iNKT)
cells (innate-like lymphocytes that express a conserved ab T-cell receptor [TCR] chain)
is required for the activation of phagocytes (270) and restraining of inflammation
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FIG 2 Interplay between cellular mechanisms underlying respiratory viral-fungal coinfections. (A) Effector cellular mechanisms against fungal
infections. (1) Fungal recognition by the airway epithelium leads to the production of proinflammatory cytokines that can activate other immune

(Continued on next page)
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during fungal clearance (271). Moreover, postinfluenza Cryptococcus coinfection has
been associated with reduced levels of IFN-g (272). Consequently, IFN-g therapy has pro-
ven to be beneficial as an adjunctive therapy in patients with chronic granulomatous dis-
ease (CGD) (who are deficient in the NOX complex) and undergoing transplantation (273),
but its beneficial effects during fungal coinfections remain to be investigated.

Understanding the immune response that underpins influenza and COVID-19 is im-
portant for identifying potential mechanisms of susceptibility to fungal coinfections.
Both are characterized by a cytokine release syndrome; nevertheless, they exhibit dis-
tinct immune response profiles (253). In comparison to other highly pathogenic coro-
naviruses and common respiratory viruses, including influenza A virus, SARS-CoV-2
drives an imbalanced inflammatory response. Studies have shown that both SARS-
CoV-2 and SARS-CoV infection drive a lower antiviral transcriptional response that is
marked by low type I and III IFN levels and elevated chemokine expression, all of which
might contribute to COVID-19 (274–280). Low levels of IFNs have been associated with
the presence of autoantibodies against type I IFNs (281–285) or inborn errors in genes
involved in the regulation of type I and type III IFN immunity (286). Conversely, other
reports have shown upregulation of a type I IFN response in peripheral blood (287)
that coexists with a proinflammatory TNF/IL-1b/IL-6-driven response in patients with
COVID-19 compared to severe influenza patients (160, 250, 252). Similar results have
been observed at mucosal sites (288–290). These discrepancies have been attributed
to two differing outcomes (200, 291), with a delayed type I IFN response causing
enhanced viral persistence and pathological inflammation but an early robust type I
IFN response controlling viral replication that results in a mild disease (275, 280, 292–
297). In this context, a type I IFN response is critical for the development of ARDS and
increased lethality during severe SARS-CoV infection (275, 292, 298). More recently,
studies have shown that the location where IFNs are being produced is also relevant.
High levels of type III IFNs, and to a lesser extent type I IFNs, characterize the upper air-
ways of patients with a mild pathology, while severe COVID-19 patients exhibit strong
production of IFNs in the lower airways compared to subjects with other infectious or
noninfectious lung pathologies (299, 300). This suggests that hyperinflammation and
dysregulation of the IFN pathway are likely important factors that contribute to the de-
velopment of fungal coinfections in COVID-19 patients.

Phagocytes and Effector Mechanisms

Effective elimination of pathogens relies on the recruitment and functions of several
immune cells. These effector cells regulate important processes that are pivotal for
controlling viral persistence and preventing fungal invasion. Impairment of phagocyte

FIG 2 Legend (Continued)
cells, including macrophages and neutrophils. (2) Monocytes and alveolar macrophages play pivotal roles during fungal infections, including
phagocytosis and cytokine and chemokine production. (3) Neutrophils form neutrophil extracellular traps (NETs) and produce reactive oxygen
species (ROS) that contribute to fungal killing. (4) Lung dendritic cells recognize, ingest, and kill Aspergillus conidia, acquire a fully mature state, and
then migrate to draining lymph nodes. (5) Antigen presentation of fungus-derived peptides to naive CD41 and CD81 T cells occurs in the draining
lymph nodes. (6) T cell activation leads to Th17 differentiation, which is pivotal for control of fungal infections at the airways. In particular, Th17
cells support neutrophil activation and the production of antimicrobial peptides (AMPs) by epithelial cells. (B) Mechanisms responsible for increased
susceptibility to fungal infections in patients suffering severe viral pneumonia. (1 to 3) The lung epithelium undergoes different changes over the
course of respiratory viral infections, including tissue disruption that facilitates secondary fungal invasion (1) and expression and/or exposure of
receptors to which fungal pathogens can adhere (2). In addition, germinated fungal spores themselves release molecules with the potential to
increase permeability and tissue damage, such as proteases and mycotoxins (3). (4) The airway epithelium produces type I and type III interferons
(IFNs), which have a significant impact on antifungal immunity at different levels. (5) IFN-a/b are also produced by alveolar macrophages. IFNs
reduce epithelial cell proliferation and differentiation, increasing susceptibility to coinfections. IFNs suppress monocyte, macrophage, and neutrophil
recruitment and effector responses that are essential for fighting fungal infections. IFNs act as negative regulators of inflammasome activation in
response to fungal pathogens, thus affecting fungal clearance. IFNs dampen Th17 responses, leading to attenuation of AMP production and
neutrophil recruitment that are required for antifungal clearance. (6) Desensitization of pattern recognition receptors (PRRs), which are essential for
fungal recognition and antifungal immunity, contributes to susceptibility to coinfections. (7) Viral infections also interfere with antigen-presenting
cell functionalities, affecting the subsequent immune response to fungal antigens. For instance, viral infection affects antigen presentation through
interference with any of the three signals required for T cell activation, namely, MHC presentation, expression of cosignaling molecules, and/or
production of cytokines. (8) Regulatory T cells (Tregs) induced during the recovery and resolution phase of a viral infection persist for long enough
to interfere with immunity (i.e., neutrophil functionalities) during subsequent fungal infections. Some questions remain, including the role of the
NADPH oxidase 2 (NOX-2) complex in the context of viral-fungal coinfections. (This figure was created with BioRender.)
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functions following influenza infection is among the most damaging consequences
that increase susceptibility to secondary fungal infections (301). Neutrophils are one of
the most important innate effector cells for the control of fungal infections. Humans
suffering from neutropenia or neutrophil dysfunction exhibit a dramatic increase in
susceptibility to major fungal pathogens, including A. fumigatus (168). This is particu-
larly evident in CGD patients, whose neutrophils exhibit impaired fungal killing abilities
(302). Suppressed neutrophil recruitment (due to reduced chemokine production) and
dysfunction (reflected in impaired myeloperoxidase [MPO], ROS, and NET formation)
during influenza virus infection increase susceptibility to secondary bacterial infection
(303, 304) and contribute to the development of IPA (301, 305–308). Following influ-
enza, IFN production and signaling through STAT1 impair neutrophil recruitment into
the lungs and airways, augmenting fungal burdens (242, 301).

Monocytes and macrophages are key effector cells in controlling fungal infection
through direct killing and the production of proinflammatory mediators (168). Influenza
infection can result in depletion of alveolar macrophages and affect their functionalities,
including inflammasome activation (263, 309, 310), thereby increasing disease severity
and susceptibility to coinfections. Cross talk between neutrophils and monocytes/macro-
phages is important to combat respiratory infections, as neutrophils can drive macro-
phage inflammasome activation during respiratory viral infection (311–313) and can pre-
vent macrophage depletion during S. pneumoniae coinfection (314). As macrophages are
an important source of neutrophil chemoattractants, such as keratinocyte-derived cyto-
kines (KC) and macrophage inflammatory protein-2 (MIP-2) (315), their depletion as seen
in IAPA impairs neutrophil recruitment into the lungs (301). As described above, mono-
cytes can trigger neutrophil activation and ROS production through type I IFN produc-
tion (240, 241). Furthermore, both monocytes and neutrophils can control maturation
and expansion of DCs in the lung, which in turn activates neutrophil oxidative burst,
which is essential for host defense against Aspergillus fumigatus (316–318). This sug-
gests that reduced numbers of neutrophils, monocytes, and macrophages in the lung tis-
sue caused by influenza infection increases susceptibility to secondary fungal infections
(Fig. 2).

Single-cell technologies employed on blood samples from severe COVID-19
patients have revealed defective monocyte activation and dysregulated myelopoiesis
with release of immature dysfunctional neutrophils into the circulation (251, 252, 277,
287, 319–323). More recently, high-dimensional flow cytometry analyses have identi-
fied a redistribution of monocyte subsets toward intermediate monocytes (a transi-
tional population between classical and nonclassical monocytes that exhibits a hyper-
inflammatory signature) and the appearance of monocytic myeloid-derived suppressor
cell-like cells (324–326). Defective monocyte and neutrophil responses render these
patients highly susceptible to invasive fungal infections. However, despite their protec-
tive role, excessive phagocyte activation and/or recruitment can also cause lung dam-
age and immunopathology, leading to increased susceptibility to coinfections (168,
327–334). Elevated levels of plasma granulocyte-macrophage colony-stimulating factor
(GM-CSF) are observed in fatal COVID-19 cases, but not in influenza cases, and may
explain the excessive monocyte and neutrophil recruitment leading to tissue destruc-
tion (335). Furthermore, a substantial induction of monocyte/macrophage and neutro-
phil-associated chemokines has been observed in the lungs of patients with severe
COVID-19 (201, 251, 289, 336–339). While mechanistic studies on CAPA and IAPA have
not been undertaken with the same level of resolution, the impact of these inflamma-
tory processes on fungal secondary infection is evident from an in vivo model of influ-
enza and Cryptococcus gattii coinfection. Increased neutrophil and macrophage recruit-
ment into the lungs during influenza infection predisposed mice to more severe lung
damage and increased fungal burden in the brain, resulting in increased morbidity and
mortality (272). In addition, viral infection has been shown to strongly augment macro-
phage expulsion of Cryptococcus via a nonlytic mechanism (vomocytosis) which could
potentially influence cryptococcal dissemination in the host (340).
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The mononuclear phagocyte system and, in particular, tissue-resident monocytes
and macrophages expressing the fractalkine receptor CX3CR1 are important in control-
ling fungal growth and dissemination at different tissue locations in mice and humans
(341, 342). In the context of influenza infection, CX3CR11 lung macrophages mediate
pulmonary immune pathology and mortality through production of high levels of TNF
and nitric oxide synthase 2 (NOS2) (343). However, under certain conditions, such as
those involved in airway bacterial colonization, these cells could acquire an anti-inflam-
matory phenotype that controls influenza-mediated immunopathology (344, 345), sug-
gesting that specific tissue environmental factors might affect the phenotype and
function of these mononuclear phagocytes (MNPs). Importantly, CX3CR11 MNPs are
essential in sensing intestinal microbial dysbiosis and in shaping immune responses in
the airways during homeostasis and inflammation (346–350). For instance, fungal dys-
biosis and colonization with specific fungi in the gut can exacerbate the development
of allergic airway diseases through fungal sensing by gut-resident MNPs (346–355). Bacterial
dysbiosis as a result of antibiotic use has been associated with augmented severity of influ-
enza infection and increased risk of developing secondary infections (345, 356, 357).
Influenza infection itself can cause intestinal dysbiosis that contributes to secondary infec-
tions through alterations of the killing activities of alveolar macrophages (345, 357, 358)

FIG 3 Gut-lung axis in the context of respiratory viral-fungal coinfections. The mycobiota plays a significant role in
immunity and homeostasis in the intestine, which can influence immune responses at the airways. C. albicans-specific
Th17 cells can confer protection against Aspergillus infection in the lungs. Importantly, intestinal microbial dysbiosis could
affect functionalities of immune cells in the gut-lung axis, such as CX3CR11 mononuclear phagocytes (MNPs), which in
turn could influence susceptibility to fungal coinfections. Additional important questions remained unanswered. For
instance, do these immune responses develop locally or traffic from the gut, or both? If they do migrate, what is their
route of migration? What signals control it? (This figure was created with BioRender.)
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(Fig. 3). Alterations in the mycobiome have also been reported in COVID-19 patients (359),
but whether this affects the functionalities of tissue-resident MNPs in a way comparable to
that observed for influenza is unknown. Even though most of these mechanisms are still
uncertain, these studies do suggest that MNPs could play a significant role in driving suscep-
tibility to fungal coinfections in individuals suffering from severe viral pneumonia.

Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin do-
main-containing 3 (NLRP3) inflammasome plays a critical role in the innate immune
antiviral response (313, 360, 361) and in shaping adaptive immune responses (360,
362–364). The NLRP3 inflammasome is activated by tissue/cellular damage in a two-
step process that is dependent on microbial and host-derived signals. First, NF-kB sig-
naling is induced (i.e., through activation of TLR or TNF receptor signaling), resulting in
increased expression of pro-IL-1b and pro-IL-18. Next, signal two (i.e., potassium efflux,
uric acid, and mitochondrial damage among others) leads to complex assembly, activa-
tion of caspase-1, and secretion of IL-1b and IL-18, causing the recruitment of mono-
cytes, macrophages, and neutrophils to the site of infection (364). Influenza viruses
(312, 313, 365–367), as well as most respiratory viruses, including SARS-CoV-2, activate
the NLRP3 inflammasome using viroporins (virally encoded hydrophobic proteins that
oligomerize in the membrane of host cells, leading to the formation of hydrophilic
pores) (157, 368–370). Nevertheless, several influenza virus-derived components (i.e.,
nonstructural proteins NS1 and PB1-F2) can inhibit the inflammasome, causing viral
pathogenicity and immunopathology and increasing the susceptibility to bacterial
coinfections (366, 371–377). Additionally, during influenza-associated bacterial coinfec-
tion, IL-1 signaling plays a protective role by preventing alveolar macrophage deple-
tion (314) and supporting Th17 immunity (378). Notably, type-I IFNs can act as negative
regulators of IL-1b expression and inflammasome activation in response to fungal patho-
gens, thus affecting fungal clearance (379, 380). Inflammasome activation, through the
polysaccharide galactosaminogalactan, is important for protective responses during fungal
infection (381–386), such as neutrophil recruitment. Therefore, this mechanism might be
playing a crucial role in facilitating IAPA (Fig. 2). Excessive inflammasome activation can
lead to uncontrolled inflammation (202, 387, 388), facilitating bacterial coinfections (389,
390) and potentially fungal coinfections. Tight regulation of the inflammasome is impor-
tant to avoid hyperinflammation and immunopathology that might increase susceptibility
to IAPA and/or CAPA. The importance of a balanced regulation of the inflammasome has
been shown in patients with cystic fibrosis or CGD suffering from inflammasome-driven
immunopathology and at risk for developing invasive fungal infections (271, 383, 384).

One of the most important effector mechanisms in host defense against A. fumiga-
tus is the NADPH oxidase (NOX) complex. This is highlighted by the increased suscepti-
bility to IPA in patients with CGD (302, 391). Conversely, ROS production during viral
infection, including influenza infection, promotes virus pathogenicity and immunopa-
thology. Therefore, regulation of ROS production could constitute a synergistic copa-
thogenesis mechanism during viral-fungal coinfections. Oxidative stress during influ-
enza infection induces formation of oxidized phospholipids that can result in acute
lung injury and cytokine production by lung macrophages through TLR4 signaling
(392). In fact, inhibition of NOX2 reduced lung injury and dysfunction, as well as lower-
ing influenza burdens, suggesting that NOX2-derived ROS production promotes viral
infection (392–397). Single-stranded RNA viruses, such as influenza virus, activate NOX2 in
endocytic compartments of alveolar macrophages, resulting in endosomal hydrogen per-
oxide generation, which suppresses antiviral and humoral signaling networks (398). These
data correlate with studies in mice deficient in NOX2 and in CGD patients, who have ele-
vated circulating type I IFNs and autoantibodies, supporting the notion that low levels of
ROS result in an enhanced immune response to viruses (399, 400). Modulation of NOX2-
derived ROS production during influenza infection increased susceptibility to bacterial
infections (304, 401). A fine balance of NOX2 activity and ROS production is therefore
required to control viral infections and to improve coinfection outcomes. However, more
studies are required to better clarify their precise roles during fungal coinfections.
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Emerging Cellular Players

Other immune cells are emerging as important players during IAPA and CAPA. For
instance, NK cells are crucial for direct killing of fungal pathogens as well as controlling
the fungicidal activity of other immune cells such as neutrophils (402). NK cell-depleted
mice have increased susceptibility to fungal pathogens, including A. fumigatus (168).
NK cell functions are impaired during influenza and SARS-CoV-2 infection (250, 251,
321, 328, 403–406), which has been linked with increased susceptibility to coinfections
(407). Of note, recent studies have shown that asymptomatic COVID-19 patients or
those who have recovered have elevated levels of NK cells, which was not observed in
patients with severe COVID-19, suggesting an important role in controlling disease se-
verity (321, 404, 408, 409). Furthermore, circulating NKT cell frequency (a subset that
features characteristics of both T cells and NK cells) was identified as a predictive bio-
marker for patient outcome (322).

Platelets are also emerging as key mediators of immune responses. Thrombocytopenia
often coincides with neutropenia in patients at high risk for developing IPA (410).
Importantly, an increased platelet count has been suggested as one of the main predictors
of coinfections in patients suffering from severe influenza (411) and recently has been
associated with disease severity in COVID-19 patients (412, 413). Interestingly, platelets
express ACE2, and in vitro exposure to SARS-CoV-2 potentiates platelet activation and
aggregation (414), which might be an important mechanism leading to the vascular com-
plications observed in COVID-19 patients and increasing susceptibility to coinfections.

Dendritic Cells and Antigen Presentation

There are two major types of DC lineages, myeloid conventional DCs (cDCs) and
lymphoid plasmacytoid DCs (pDCs) which both arise from DC precursors. During influ-
enza infection, pDCs are a major source of type I IFNs, causing the expansion of anti-
gen-specific T cells (415–418). pDC-derived type I IFNs also inhibit viral replication in
airway epithelial cells following SARS-CoV-2 infection (419–421). They play a nonredun-
dant role in host defense against Aspergillus infection. Recognition of Aspergillus
hyphae by pDCs results in the release of proinflammatory cytokines, including TNF and
IFN-a, and the formation of extracellular traps (422–424). More recently, it was shown
that recruitment of pDCs into the lungs activates neutrophil NADPH activity to pro-
mote clearance of inhaled conidia (316). Importantly, severe COVID-19 patients show
gene expression signatures of apoptosis in pDCs that correlate with reduced pDC fre-
quency (278, 405, 419, 421). Dysregulation of pDCs might contribute to depressed IFN
signatures affecting susceptibility to fungal coinfections.

In contrast, cDCs are important players in antigen presentation and activation of T
cells that underpin adaptive immune responses. Upon antigen recognition, uptake,
and processing, DCs acquire a fully mature state and migrate to the draining lymph
nodes, where they present antigen-derived peptides in the context of major histocom-
patibility complex (MHC) molecules to CD81 T cells or CD41 T cells (425). Impairments
of DC functionalities following severe viral pneumonia can be classified as having
short-lived and long-term effects. Short-lived effects are reversible as soon as the viral
infection is cleared and include modulation of DC antigen presentation capabilities
and interference with signaling pathways. It is well recognized that some viral patho-
gens, in particular DNA viruses such as herpesviruses, can interfere with the antigen
presentation pathway (426, 427), while RNA viruses, including influenza virus, by an
unknown mechanism seem to preferentially target the cross-presentation pathway
(which occurs when exogenous antigens, normally loaded into major histocompatibil-
ity complex class II [MHC-II] molecules, are shuttled into the MHC-I pathway) (428–432)
(Fig. 2). DCs are susceptible to SARS-CoV-2 infection, which attenuates the IFN response
via viral antagonism of STAT1 phosphorylation (433). However, whether these mechanisms
have implications during secondary fungal infections is unknown.

Heterologous immunity can significantly impact DC phenotype and the ability of
DCs to activate optimal immune responses to fungi. For instance, desensitization of
pattern recognition receptors (PRRs) (i.e., TLR2, TLR4, and TLR5) associated with
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reduced chemokine production and NF-kB activation has been reported during viral
infections (434, 435). In vitro studies have suggested that exposure to a viral infection
affects DC cytokine production to a subsequent secondary challenge (436, 437). In
addition, upregulation of inhibitory signals, such as CD200R, desensitizes APCs (DCs
and macrophages), increasing their threshold of activation, a mechanism shown to
contribute to bacterial coinfections (204) (Fig. 2). Nevertheless, in COVID-19 patients,
CD200R expression was shown to be reduced in peripheral blood DCs, which could
contribute to the expression of proinflammatory cytokines, tissue damage, disease se-
verity, and mortality (324). More recently, it has been suggested that SARS-CoV-2 infec-
tion results in significantly reduced numbers of DCs, with functional impairment
reflected in reduced maturation and cytokine production necessary to perform antigen
presentation to activate T cells (324, 337, 438–441). Some of these long-lasting mecha-
nisms could persist for weeks or even months after recovery, considerably increasing sus-
ceptibility to fungal coinfections. Remarkably, preexposure to Pneumocystis results in
enhanced antigen processing, maturation, and trafficking abilities of DCs, which causes an
accelerated influenza virus-specific primary immune response and viral clearance (442).

CLRs expressed by myeloid cells, including DCs and macrophages, are crucial for tai-
loring immune responses to pathogens. A recent study showed that several CLRs,
including dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin
(DC-SIGN), liver/lymph node-specific intercellular adhesion molecule 3-grabbing integ-
rin (L-SIGN), liver/lymph node sinusoidal endothelial cell C-type lectin (LSECtin), and
macrophage galactose-type lectin (MGL), participate in SARS-CoV-2 recognition and
induction of proinflammatory mediators (IL-1b , IL-8, CXCL10, CCL2, and CCL3) that cor-
relate with disease severity (443, 444). DC-SIGN also mediates binding and internaliza-
tion of A. fumigatus conidia by DCs (445), and it is expressed by alveolar macrophages
in the lung (446). However, it is not clear whether DC-SIGN is required for activation of
innate immune signaling or if it is involved in the initial stages of Aspergillus pulmonary
infection and dissemination (446). Importantly, DC-SIGN polymorphisms are associated
with the development of IPA, suggesting that it might be involved in the pathogenesis of
this infection (447). Therefore, the potential convergence of CLR-driven innate and/or
adaptive immune responses in the setting of SARS-CoV-2 and Aspergillus coinfection
should be further explored, as it might influence copathogenesis and disease progression.

Resolution of lung inflammatory disease after influenza virus infection sets a differ-
ent threshold for innate immune activation (204). This altered homeostasis could have a
significant impact on the threshold of responsiveness to the next pathogen. Engagement
of PRRs on the surface of APCs induces epigenetic functional reprogramming that affects
their sensitivity to a second challenge, a process referred to as “trained immunity” (448).
Even though myeloid cells are typically short-lived during inflammation, these phenomena
can occur in bone marrow progenitors (448–452) and impact monocytes, macrophages,
and DC populations during fungal infections (453). In particular, TNF production during
invasive cryptococcosis induces a stable state of DC phenotypic programming (DC1/M1-
like), rendering the DCs resistant to both antigen- and cytokine (IL-4)-induced alternative
activation (DC2/M2-like). This reprogramming was also shown in bone marrow DC precur-
sors and was demonstrated to be essential for Th1/Th17 immune protection (454).
Interestingly, DC differentiation from bone marrow precursors is impaired during the course
of a viral infection, leading to susceptibility to secondary infections (455, 456). In addition,
recent studies have shown that DCs undergo a metabolic reprogramming early during influ-
enza infections that results in significant changes in innate immune functions of DCs, includ-
ing reduced motility and T cell activation (457). How long this reprogramming persists and
whether it may impact fungal coinfections are unknown and will require more study.

Several functional studies have established the role for specific DC subsets (pDCs, cDCs,
and inflammatory DCs) in immunity against influenza virus infection (458–462). However,
we still know very little about the role of different pulmonary DC subsets during fungal
infections (463). Therefore, substantially more work is needed to separate which subsets
are needed at which phase of the response to prevent IAPA or CAPA.
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T Cell Responses

CD41 T cells produce several antimicrobial soluble factors that control the spread of
viral and fungal infections. They are also required for class switching of antibodies and
for optimal CD81 T cell memory responses (4). The type I IFN response during influenza
infection can directly affect adaptive immunity to fungi by dampening Th17 responses
via the suppression of IL-23, a cytokine that is crucial for the expansion and mainte-
nance of Th17 cells (464). Defective Th17 responses can lead to attenuation of the AMP
production and neutrophil recruitment required for antifungal clearance (168, 465).
This suggests that defective Th17 responses are a significant factor during IAPA, as has
been shown during bacterial coinfections (464–467) (Fig. 2). Th1 responses are impor-
tant in controlling systemic fungal dissemination (169), but they might be detrimental
during respiratory fungal coinfections. STAT1 knockout (KO) mice, which have defec-
tive Th1 cell differentiation and increased Th17 immune activation, are less susceptible
to coinfections than wild-type controls (467). Remarkably, it has been shown that
COVID-19 patients with moderate disease displayed a progressive reduction of both
antiviral (characterized by the dominance of the transcription factor T-bet and the
expression of IFN-g) and antifungal (orchestrated by the RORgt-induced cytokines IL-17
and IL-22) responses whereas patients with severe disease maintained these elevated
responses throughout the course of the disease (200). This suggests that dysregulation
of T cell responses could be an important factor that contributes to the development
of fungal coinfections in COVID-19 patients.

Another important T cell population that plays a significant role during recovery
and resolution of inflammation is Foxp31 regulatory T cells (Tregs). Influenza virus-spe-
cific Tregs can be detected for a prolonged time after viral clearance (468) and can
reduce expansion of CD41 and CD81 effector T cells (469–471) while suppressing neu-
trophil-driven cytokine release into the airways, contributing to the resolution of dis-
ease (472). This Treg-mediated dampening of inflammation likely impacts immunity to
subsequent infections such as Aspergillus infections (5). Indeed, Tregs can control im-
munity and tolerance to Aspergillus at different stages of the immune response (473,
474). However, early during infection, they might have a detrimental role by suppress-
ing neutrophil functions through secretion of IL-10 and expression of cytotoxic T lym-
phocyte-associated protein 4 (CTLA-4) (which acts to inhibit T cell activation) (475) (Fig.
2). Tregs can also facilitate processes of tissue repair that can further sustain this anti-
inflammatory state (306). Functional assessments of how the altered dynamics of T cell
populations during viral infection affects antifungal capabilities could help to under-
stand their role during fungal coinfections.

Adaptive Humoral and Cytotoxic Responses

B cell and CD81 T cell responses are critical for pathogen neutralization and clear-
ance and play a major part in the memory response that prevents reinfection (4, 476,
477). Respiratory viral infections could influence susceptibility to subsequent fungal
infections by targeting adaptive immune components at different levels, including
cross-presentation, CD81 T cell activation, and B cell activation and antibody produc-
tion. The contribution of CD81 T cells in host immunity against fungal infections in not
well understood, and several studies have suggested that they might play a protective
role in the setting of CD41 T cell deficiency (478–480). Studies have suggested that
influenza viruses might interfere with the cross-presentation pathway (428–432). In
particular, DCs that capture dead cells containing influenza virus are unable to activate
CD81 T cell clones specific to cell-associated antigens of captured dead cells (431).
Moreover, influenza virus-infected DCs exhibit impaired cross-presentation of influenza vi-
rus-derived and other exogenous antigens (430). Although it has not yet been demon-
strated, these mechanisms could have significant implications during fungal coinfections.

The role of protective humoral immunity against fungal infections is not well defined,
and it is still very controversial (481–485). Therefore, studies focusing on understanding
the role of humoral immunity during viral and fungal coinfections are scarce. Of note,
monoclonal antibodies targeting Candida albicans can confer protection against lethal
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pulmonary infections by Gram-negative bacteria in mice (486), while Pneumocystis infec-
tion can protect mice against subsequent influenza infection due to the enhancement of
the influenza virus-specific antibody response (487). Susceptibility mechanisms could
include the activation of low-affinity cellular responses and/or production of nonneutraliz-
ing antibodies that could facilitate coinfections (488–490). Interestingly, meningeal IgA
plasma cells that are dependent on the presence of gut commensals can confer protection
against fungal invasion into the brain (484). Therefore, alteration of these fungus-specific
antibodies could facilitate fungal dissemination during coinfections (Fig. 3).

Cross-Reactive Immunity

The immune response to a pathogen is greatly influenced by the individual’s immune
history (491, 492). Cross-reactivity of adaptive immune lymphocytes can either confer pro-
tection or drive susceptibility to subsequent infections. Heterologous immunity refers to
the ability of one pathogen to modify the immune response to a related or unrelated
pathogen that could boost or weaken protective immunity, break tolerance, or induce
immunopathology (488). This phenomenon has been shown for closely related but also
unrelated pathogens, including parasites, protozoa, bacteria, and viruses (493–495).
Literature on heterologous immunity to fungi is limited. One study shows that a modified
heat-labile bacterial toxin (LTK63) improved the immune response to subsequent infection
with Cryptococcus neoformans by increasing pathogen-specific CD81 T cell and IgA
responses in the nasal mucosa (496). Furthermore, segmented filamentous bacterial colo-
nization during pulmonary Aspergillus infection augments antifungal Th17 immunity (172).
Interestingly, heterologous immunity to a single, ubiquitous member of the fungal micro-
biota is fundamental for systemic induction of protective antifungal Th17 responses and
immunopathology (355). In particular, the commensal C. albicans is the main inducer of
Th17 responses in peripheral blood that later can be expanded in the lungs by cross-reac-
tive airborne A. fumigatus (355). Further studies suggest that priming of these fungal cross-
reactive T cells by gut commensal fungi and selective recruitment of these cells to the
lungs may be important factors in the pathogenesis of inflammatory airway diseases (355,
497) (Fig. 3). Therefore, it is plausible that immune responses to commensal fungi may be
altered during chronic viral infections, facilitating fungal coinfections. Interestingly, C. albi-
cans colonization does not confer protection against influenza virus infection and rather
exacerbates allergic airway inflammation susceptibility, indicating that fine-tuning of T cell
responses is required to control immunity versus immunopathology (355, 497). In this con-
text, “pathogenic” Th17/Th1 versus “anti-inflammatory” Th17/Treg mixed responses could
play differential roles during influenza-associated coinfections (170).

FROM CLINICAL OBSERVATIONS TO COPATHOGENESIS

Clinical studies have shown a huge variation in the incidence of IAPA and CAPA.
This variation in incidence might be explained by the interplay of a number of factors
with the copathogenesis of respiratory viral and fungal coinfections, including differen-
ces in environmental and/or genetic factors, type of circulating viral strain, treatment
modalities for the critical illness, and the use of and access to fungal diagnostic tools.
Environmental conditions can modulate host immune responses, including mucociliary
clearance, tissue repair functions, and innate immune defenses (498), as well as out-
breaks of viral respiratory diseases by influencing virus stability and transmission rates
(499–501). Seasonal fluctuations in airborne fungal spore levels have also been deter-
mined for different genera, with the dominant genera varying depending on geo-
graphical location (502–510). In some regions, seasonal variations in total airborne fungal
counts have been shown to correlate with different environmental factors, including tem-
perature, humidity, rainfall, and wind speed (502–507). Whereas most studies have sug-
gested that A. fumigatus is present at low but persistent levels in the outdoor environment
(502), there are possible geographical links that need to be more fully explored. A study
from Brazil showed that Aspergillus spp. were among the dominant species found in both
indoor and outdoor environments (506), while a study from the Netherlands found that
Aspergillus was present all year round and prevailed in the autumn and winter months
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(507). Interestingly, a study from Canada described a positive association between
Aspergillus hyphal fragments and wind speed (504).

Genetic factors associated with increased susceptibility to influenza viral infection
include genes involved with viral recognition and IFN signaling (Ifitm3, Irf7, Ifnar1, Ifnl1,
Stat1, Sfpta1) (511). Another set of genes are associated with disease exacerbation dur-
ing influenza infection, including genes involved in inflammation (Par1, Tnfaip3, Nos2,
Ptges2, and Ifi35) and tissue homeostasis (Epg5, Atg14, and Atg7) (511). This is consist-
ent with the idea of immunopathology contributing to disease severity and suscepti-
bility to coinfections. Recent studies have identified several host factors critical for
SARS-CoV-2 infection, including genes involved in cholesterol biosynthesis, autophagy,
viral entry, and phosphatidylinositol biosynthesis, among others (512–517). Genes
involved in fungal recognition and effector mechanisms (Ptx3, Tlr4, clec7a, Clec1a, Plg,
Cxcl10, Ifng, Il10) are associated with increased susceptibility to invasive aspergillosis in
patients undergoing hematopoietic stem cell transplant. A second set of genes (S100b,
Rage, Nod2) are involved with hyperactivity of innate recognition pathways (518–520).
These susceptibility mechanisms have also been reiterated in studies of other vulnerable
populations, including patients with COPD, solid organ transplant recipients, and patients
with hematological malignancies. Nevertheless, genetic studies are required to determine
their role in a population of patients suffering from severe viral pneumonia.

Emergence of highly pathogenic viral strains increases susceptibility and modifies
the kinetics of coinfections (521). Viral polymorphisms that alter the tropism of influ-
enza viruses from the upper to the lower respiratory tract and facilitate bacterial coin-
fections (5) could potentially increase susceptibility to fungal coinfections. Major sub-
types of influenza virus strains linked to IAPA include H1N1, H5N1, and H7N9. Influenza
virus strain H5N1 increases the production of proinflammatory cytokines and enhances
viral replication in the lung, causing immunopathology and pulmonary fibrosis (209,
376, 522–524), which are important contributing factors that drive secondary infections
(168, 245, 327–334, 366, 371–377). In contrast, strain H7N9 can inhibit the inflamma-
some (372), an important effector mechanism against viral and fungal infections. In the
case of CAPA, many novel SARS-CoV-2 variants which have different clinical effects are
emerging. The B.1.1.7 (alpha, United Kingdom), B.1.351 (beta, South Africa), P.1
(gamma, Brazil), B.1.427/29 (epsilon, USA), and, most recently, B.1.617.2 (delta, India)
variants have all shown to be highly transmissible, with some studies suggesting an
association with higher mortality and escape from natural and vaccine-induced immu-
nity (525–527). However, whether these novel variants are associated with increased sus-
ceptibility to fungal coinfections is unknown. Of note, some authors have suggested an
association between the delta variant and the emergence of mucormycosis in India (528,
529); however, so far there are no specific data to support this hypothesis.

Treatment modalities for severely ill patients could also increase susceptibility to re-
spiratory fungal coinfections following severe viral pneumonia. This includes the use of
antibiotic, antiviral, and/or immunomodulatory treatment. For instance, the use of anti-
biotics to prevent secondary bacterial infection can cause dysbiosis, a condition that
has been linked to increased severity during respiratory viral infections and susceptibil-
ity to secondary infections (345, 356, 357). The use of neuraminidase inhibitors has
been suggested to increase susceptibility to fungal coinfections following influenza
infection (44) and has been recently demonstrated to increase the susceptibility of
mice to invasive aspergillosis (530). The use of the corticosteroid dexamethasone as an
immunosuppressive drug to treat ARDS, which was shown to reduce mortality in seri-
ously ill COVID-19 patients (531), is one of the major risk factors for developing CAPA
and negatively affects immunity to Aspergillus (532–534). Several studies have reported
a relationship between the use of steroidal immunosuppressant (corticosteroids) and
the incidence of IPA in critically ill COVID-19 patients (56, 73, 82, 89, 535–539). A pro-
spective study from ICUs in Wales showed that the use of high-dose systemic cortico-
steroids increased the likelihood of developing CAPA (16 out of 22 patients [72%] com-
pared to 32 out of 57 patients without CAPA [56%]) (2). Similar findings were observed
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in studies focused on patients with severe influenza (24, 540). However, some studies
have found no association between the use of corticosteroids and the incidence of
hospital-acquired fungal infections in patients with COVID-19 (541, 542), which has
been suggested to be due to an early administration of low-dose corticosteroids for a
short period (541). Importantly, in some of these studies, additional risk factors might
be at play, including a history of chronic respiratory disease. Recent clinical trials have
suggested that combining corticosteroids with anti-IL-6 treatment (tocilizumab)
improves the outcomes in terms of morbidity and mortality in severe COVID-19
patients (543, 544). Nevertheless, COVID-19 patients receiving tocilizumab are reported
to be at higher risk of developing CAPA (65, 69, 82, 545, 546). As IL-6 is essential for
inducing protective Th17 responses (170–172) and controlling the effector functions of
phagocytes (547), anti-IL-6 therapy increases the susceptibility for fungal infections.
Earlier studies have documented an increased risk for developing bacterial and fungal
infections in patients receiving tocilizumab in combination with corticosteroids for the
treatment of rheumatoid arthritis (548). A retrospective study conducted in Chicago
involving 111 COVID-19 patients found that those receiving tocilizumab had a higher
risk of developing fungal infections and increased mortality (549). Strikingly, in a pro-
spective study from Spain that includes 2,723 patients with COVID-19, all CAPA
patients who received tocilizumab and corticosteroids had a fatal outcome (8 out of 8
patients) (89). Prospective monitoring of these patients is needed to shed light on
whether tocilizumab negatively impacts the susceptibility to and outcome of respira-
tory fungal coinfections. Furthermore, metanalyses of retrospective studies could help
to elucidate the role of immunosuppressive agents in predisposing COVID-19 patients
to fungal coinfections.

The epidemiology of, and the mortality associated with, coinfections complicating
viral respiratory tract infections is difficult to assess with confidence. This is partly due
to the fact that diagnosis of sequential infections is challenging, as the primary patho-
gen is often no longer detectable by the time the secondary infection presents itself
(550). Alternatively, if both infections present themselves at the same time, one could
quickly override the other. Furthermore, the presence of a specific pathogen may be
part of the airway commensal community rather than an indication of infection and
disease (551). Therefore, the specific attribution of the primary viral infection and coin-
fections to mortality is complex to unravel. In comparison to bacterial coinfections in
viral respiratory disease, differentiation of fungal colonization versus infection and dis-
ease is even more challenging. Aspergillus spp. are ubiquitous in the environment, and
as a consequence, our airways are exposed on a daily basis to its spores (conidia). In
immunocompetent healthy individuals, these spores are cleared without infection and
disease, while in immunocompromised patients and those with chronic lung disease,
spore inhalation can lead to pulmonary aspergillosis (235). Diagnosis of pulmonary
aspergillosis is based on a combination of criteria that includes host factors, clinical
and radiological features, and mycological studies (11, 552). However, cultures from re-
spiratory samples do not differentiate colonization from disease, antigen testing in se-
rum has a low specificity, and specific changes on chest imaging and invasive diagnos-
tics (e.g., bronchoscopy) are often not feasible due to the critical clinical condition of
the patient and the risk of aerosolization in cases of viral pneumonia. The absence of
rapid, sensitive, and specific fungal diagnostic tools is a major challenge. Optimal avail-
ability of, access to, and implementation of fungal diagnostic tools in routine clinical
care will affect incidences reported and provide a real insight into the clinical epidemi-
ology and burden of disease.

FUTURE PERSPECTIVES

Viral-fungal coinfections are increasingly being recognized by the scientific and
medical communities. The urgent need to obtain insight into the epidemiology, patho-
genesis, and underlying immune mechanisms is driven by the additional mortality
among patients with IAPA and CAPA (288). Comprehensive epidemiological data are
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lacking, and therefore data from larger cohorts of patients are required to better assess
the incidence, clinical features, and detailed characteristics of secondary fungal infec-
tions in influenza and COVID-19 patients, especially with the highly pathogenic emerg-
ing strains (553). Early diagnosis of fungal infection is critical for effective treatment.
Current diagnostic methods lack sensitivity and specificity to differentiate colonization
from infection and invasive disease. Systematic prospective studies that employ uni-
form diagnostic testing and criteria are urgently required to optimize the management
of patients in the ICU, and first initiatives are been undertaken in this area (119, 133,
554, 555). Azole-resistant A. fumigatus causing infections in COVID-19 (556–558) and
influenza (47, 559, 560) patients is emerging, highlighting the importance of early caus-
ative diagnosis and surveillance during antifungal therapy. Developing treatment
modalities in which both the virus and the fungus are being targeted could also be
proven useful. Using unbiased approaches, studies have identified several immuno-
types in hospitalized COVID-19 patients that could predict clinical outcome and dis-
ease trajectory (200, 561, 562). Similar longitudinal studies could prove of value in iden-
tifying comparable profiles predicting the presence of fungal infections in these
patients, which could have significant implications for therapeutic interventions.

Our understanding of how host-pathogen interactions are affected during polymi-
crobial infections is limited. We have summarized a number of immune pathways and
mechanisms that may play a crucial role in the copathogenesis of viral and fungal lung
infections. Interindividual heterogeneity of the immune system that is shaped by diver-
gent exposure of immune cells to infections, vaccination, and lifestyle-related stimuli
(diet, physical activity, and stress) will influence an individual’s risk for acquiring fungal
infections. Improved tools and models to study coinfections are needed to obtain bet-
ter insight into the copathogenesis and immune pathways driving disease. Preliminary
studies have shown a strong link between high viral replication and increased suscepti-
bility to fungal coinfection, which suggest that the timing of coinfection is important
in determining susceptibility and disease outcome (272). Influenza infection induces
several long-lasting changes at molecular levels, as shown by transcriptome, proteome,
and metabolome analyses, which could affect susceptibility to fungal infections (563).
Studies with convalescent-phase samples from COVID-19 patients have suggested that
the immune system does not fully recover after infection (250). As with postacute viral
syndromes described in survivors of other SARS epidemics, there are increasing reports
of persistent and prolonged effects after acute COVID-19 beyond 1 month from the
onset of symptoms (564, 565). Long-term follow-up studies are needed to investigate
the consequences on fungal immunity. Importantly, long-term metabolic dysregula-
tion influences disease trajectory and immune response to COVID-19 (566–568) and
might also affect susceptibility to secondary fungal infections. Host genetic factors
such as polymorphisms in key immune receptors and signaling molecules involved in
fungal sensing could also be playing a key role. Increasing our understanding of the
copathogenesis of respiratory viral-fungal coinfections and the impact of the micro-
biomes in this interplay could help to develop better diagnostics and therapeutic
modalities against newly identified targets.
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