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Streptococcus pneumoniae is a gram-positive, facultatively anaerobic pathogen that can cause severe infections such as pneumonia,
meningitis, septicemia, and middle ear infections. It is also one of the top pathogens contributing to bacterial keratitis and
conjunctivitis. Though two pneumococcal vaccines exist for the prevention of nonocular diseases, they do little to fully prevent
ocular infections. This pathogen has several virulence factors that wreak havoc on the conjunctiva, cornea, and intraocular system.
Polysaccharide capsule aids in the evasion of host complement system. Pneumolysin (PLY) is a cholesterol-dependent cytolysin
that acts as pore-forming toxin. Neuraminidases assist in adherence and colonization by exposing cell surface receptors to the
pneumococcus. Zinc metalloproteinases contribute to evasion of the immune system and disease severity. The main purpose of
this review is to consolidate the multiple studies that have been conducted on several pneumococcal virulence factors and the role
each plays in conjunctivitis, keratitis, and endophthalmitis.

1. Introduction

Streptococcus pneumoniae (S. pneumoniae) is a gram-positive,
facultatively anaerobic pathogen responsible for many severe
infections in different body sites [1]. S. pneumoniae frequently
colonizes the nasopharynx of healthy adults [I, 2]. While
many healthy adults asymptomatically carry this bacterium,
it is a leading cause of severe diseases such as pneumonia,
meningitis, septicemia, and middle ear infections [3, 4]. S.
pneumoniae continues to be one of the main causes for
infectious diseases of the ocular surface such as keratitis and
conjunctivitis, along with coagulase-negative Staphylococcus,
Staphylococcus aureus, and Pseudomonas aeruginosa [5-9].
The following review will cover (A) three pneumococcal ocu-
lar infectious diseases: conjunctivitis, keratitis, and endoph-
thalmitis and (B) the role specific pneumococcal virulence
factors play in pathogenesis during each infection.

S. pneumoniae has many virulence factors including a
polysaccharide capsule, pneumolysin, neuraminidases, and
zinc metalloproteinases, all of which contribute to the sever-
ity of ocular infections [10]. The pneumococcal capsule aids
in the evasion of the host complement system by reducing

both IgG and C-reactive protein binding [10-12]. Since S.
pneumoniae avoids activating the complement system, it is
less likely to be phagocytosed by neutrophils [13]. Both pneu-
mococcal vaccines currently approved for use cover the most
common pneumococcal serotypes involved in pneumonia
and invasive diseases by targeting the capsule [14]; however,
nonencapsulated S. pneumoniae (NESp) are the cause of most
cases of conjunctivitis [15, 16]. There are two classification of
NESp. Group I has the capsule polysaccharide biosynthetic
(cps) locus but does not produce capsule due to a mutation
or deletion [17, 18]. Group II does not have these cps genes
but instead has novel oligopeptide binding proteins aliC, aliD,
and/or the putative adhesin pspK [17, 19, 20]. Conjunctivitis
strains have been identified as belonging to a subset clade of
Group II which harbor aliC and aliD but not pspK [19].
When grown to stationary phase in vitro, S. pneumoniae
spontaneously undergo self-lysis [21-23]. LytA, the main
autolysin of S. pneumoniae, is indicated as an important
virulence factor in several disease models [24-27]. There are
3 hypotheses for the mechanism behind the contribution
of LytA to pneumococcal virulence. One theory suggests
LytA is released by competent pneumococcal cells to lyse
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noncompetent pneumococcal cells in the same environment
[28]. This would allow for easy DNA exchange and inte-
gration by the naturally competent cells. A second hypoth-
esis proposed that autolysis is induced to interfere with
the cascade of host mediated immune responses [22, 29].
Phagocytosis of intact pneumococcal as well as phagocyte-
stimulating cytokines is significantly reduced by autolyzed
pneumococci [29]. Another suggestion for pneumococcal
self-lysis is that lysis is induced to release other virulence
factors, such pneumolysin [30]. Pneumolysin (PLY) is one
of the most widely studied pneumococcal virulence factors.
It has a damaging effect in every type of ocular infection
covered in this review [31-38]. PLY is a cholesterol-dependent
cytolysin that functions as a pore-forming toxin [38, 39]. This
family of cytolysins also includes perfringolysin, streptolysin,
and listeriolysin [39]. In addition to its cytolytic activity, PLY
binds the Fc region of antibodies, which leads to a cascade
of host mediated inflammation by activating the classical
complement pathway [11, 40]. In some cases, PLY alone can
cause as much damage alone as the bacteria producing it due
to the massive immune response from the host.

In order to cause systemic disease, pneumococcus must
first be able to colonize the nasopharynx [20, 41]. S. pneu-
moniae produces 3 neuraminidases (Nan), NanA, NanB, and
NanC that assist in adherence and colonization [42-44].
Both NanA and NanB function as sialidases, exposing cell
surface receptors to pneumococcus [10, 42]. Adherence and
colonization are less likely to happen without the appropriate
cell surface receptors being exposed by the neuraminidases;
thus, disease states are also less likely to be established. Once
a systemic infection is established, S. pneumoniae can become
an invasive disease due to hyaluronate lyase [10]. Hyaluronate
lyase belongs to a family of enzymes known as hyaluronidases
[45]. These enzymes function as a virulence factors by break-
ing down the extracellular matrix components and increasing
tissue permeability [46]. S. pneumoniae hyaluronate lyase
cleaves the 1,4-glycosidic linkage in hyaluronan between the
N-acetyl-f3-d-glucosamine and d-glucuronic acid residues
[47]. Hyaluronan has been found as component of the extra
cellular matrix in every tissue and fluid of both humans and
animals [10, 45]. Cleavage of hyaluronan during an infection
implicates hyaluronate lyase as a potential pneumococcal
virulence factor that promotes tissue invasion.

S. pneumoniae produces three zinc metalloproteinases
(Zmp), IgAl protease, ZmpB, and ZmpC [48]. IgAl protease
cleaves neutralizing IgAl antibodies at the hinge region [49].
Also, the pneumococcal production of IgAl protease is nec-
essary for bacterial adherence to epithelial cells [50]. ZmpB
has been found in every isolated strain of S. pneumoniae [51,
52]. ZmpB causes an increase in tumor necrosis factor-alpha
(TNF-a) concentration, which can exacerbate the severity
of pneumococcal pneumonia and septicemia [53]. ZmpC
can cleave host metalloproteinase-9 (MMP-9) and cause the
removal of mucins from epithelial cells [54, 55]. Additionally,
ZmpC binds to P-selectin and effectively inhibits neutrophil
migration [56], as the binding of P-selectin to PSGL-1
neutrophil migration [57]. These zinc metalloproteinases not
only contribute to evasion of the immune system but also the
progression of serious pneumococcal diseases.
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2. Infectious Diseases

2.1. Conjunctivitis. Approximately 1.35% of conjunctival
infections are caused by bacteria [58], while allergens and
viruses are more common culprits [59]. Even though bac-
terial conjunctival infections are less common, the indirect
and direct costs of treatment is estimated to total over
$500,000,000 in the United States [58]. Typical infections
are associated with redness, edema, purulent discharge [60],
and occasionally light sensitivity [6, 61]. The most common
bacterial pathogens isolated in adult conjunctival infections
are the staphylococcal species [62]; however, conjunctivitis
in children is more often caused by Haemophilus influenzae,
S. pneumoniae, and Moraxella catarrhalis [59, 62]. Neisseria
gonorrhoeae is commonly the isolated pathogen in cases
of hyperacute bacterial conjunctivitis, which presents with
swelling of the eyelid, pain, and purulent discharge [59, 63].
Pneumococcal conjunctival infections can be caused by poor
contact lens hygiene, contaminated cosmetics, or living in
close contact with others (military barracks, college dormi-
tories, etc.) [16, 64]. While these infections are painful, they
are treatable with topical antibiotics [65]. Patients receiving
proper treatment for bacterial conjunctivitis recover with
little to no vision loss [66].

The pneumococcal capsule, a well-studied virulence fac-
tor, is unnecessary for infection in the rabbit conjunctivitis
model [7]. While both encapsulated and NESp have been
isolated from patients with conjunctival infections, it is more
often caused by the nontypeable strains of pneumococcus [7,
15,16, 64, 67]. In a 2014 study, Valentino et al. collected 271 S.
pneumoniae conjunctivitis isolates during clinical treatment.
They determined through multilocus sequence typing that
over 90% were nonencapsulated [15]. It is important to
note that several NESp isolates have been isolated during
conjunctival outbreaks [20, 64, 68]. Until recently it was
thought that NESp was unlikely to cause diseases other than
conjunctivitis [20, 69]. A recent publication by Bradshaw et
al. showed the novel NESp oligopeptide aliD to be instru-
mental for production of cytolytic levels of pneumolysin in a
virulent strain (MNZ41) [70]. The same study shows adhesion
and colonization to be significantly higher in NESp strains
containing both aliC and aliD [70]. This recent study by
Bradshaw et al. clearly show the potential NESp has to cause
disease, especially NESp that contain aliC and aliD such as
the epidemic conjunctivitis strains of NESp [15].

Though capsule is not necessary, pneumococcal neu-
raminidase activity increases in the absence of capsule dur-
ing conjunctivitis [7, 52]. In fact, at 3 and 12 hours after
infection a capsule-deficient mutant exhibited significantly
more neuraminidase activity than the parent strain in a
rabbit conjunctivitis model [7]. Also, nonencapsulated pneu-
mococcal conjunctivitis isolates produce significantly higher
neuraminidase activity after 6 hours of bacterial exposure to
higher mucin-expressing corneal epithelial cells [68].

Conjunctivitis strains of NESp, as well as encapsulated
strains, also secrete a zinc metalloproteinase (ZmpC) that
causes enhanced bacterial internalization by removing of
specific mucins from the epithelium [55]. Mucins are pro-
teins, and depending on their molecular structure, can be
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either secreted or membrane-associated [71, 72]. Mucin 16
(MUCI6) is part of the ocular surface glycocalyx and is
also thought to provide a barrier to the epithelial surface
[73, 74]. The removal of MUCI16 by ZmpC, allows the
pneumococcus to adhere and subsequently invade human
conjunctival epithelial cells significantly better than the same
strain lacking ZmpC [55]. ZmpC also cleaves human matrix
metalloproteinase 9 (MMP-9), which is a key player in wound
repair of epithelium [54, 75]. MMP-9 is upregulated in the
eye by inflammatory cytokines TNF-« and interleukin-1-beta
(IL1J3) during a disease state or microbial infection [76-78].
With the ability to remove MUCI6 from the conjunctival
epithelium and cleave MMP-9 [55], an infection with a
ZmpC-producing strain increases the chance of a more severe
pneumococcal infection.

2.2. Keratitis. Keratitis caused by pneumococcus can lead
to corneal scarring, which can result in permanent visual
reduction [66]. Infections are commonly caused by improper
contact lens wear, trauma, or previous ocular surgery [79-81].
S. pneumoniae has been identified as one of the major agents
of bacterial keratitis along with Staphylococcus aureus and
Pseudomonas aeruginosa [82-84]. An analysis of bacterial
keratitis cases over a 5-year span in one hospital showed
S. pneumoniae was responsible for 38% of infections, P
aeruginosa for 29%, and S. aureus for 4% [85]. Other analyses
of etiologic agents causing bacterial keratitis indicate similar
distribution among pathogens [86, 87]. Improper keratitis
treatment can lead to corneal ulcers [7, 66]. This ulceration
of the cornea can result in a penetrating wound and lead to
endophthalmitis [88]. Current treatment of bacterial keratitis
consists of topical broad spectrum antibiotics [87, 89]; how-
ever, antibiotics alone may not be the most effective treatment
since the pathogenesis during pneumococcal keratitis is not
from bacterial burden alone [90].

The polysaccharide capsule of S. pneumoniae and PLY
have been investigated for their roles in the progression of
keratitis [7, 9, 34, 35]. Using the rabbit keratitis model, one
study compared bacterial burden and infectivity of Avery’s
strain, a well-characterized encapsulated strain, and R6, the
nonencapsulated strain [9]. Reed and colleagues showed no
significant difference at 20 hours in bacterial burden or
disease severity based on biomicroscopy examination. At
48 hours after infection, they recovered significantly more
bacteria from corneas inoculated with Avery’s encapsulated
strain than with the nonencapsulated strain. The rabbits
cleared the nonencapsulated strain more quickly than the
encapsulated strain, but not before the host mediated inflam-
matory reactions caused damage to the corneas. This finding
indicated that capsule was not necessary for pathogenesis as
there was no significance difference in the biomicroscopy
scores.

The host reaction to PLY causes much of the inflamma-
tion observed during pneumococcal keratitis [38]. Studies
with strains lacking PLY have shown reduced virulence when
compared to the parent strain in the rabbit keratitis model
[31, 35, 38]. Pneumolysin appears to perform its dual roles
of cytolytic activity and elicitation of inflammation during
keratitis. First, PLY binds to lipid rafts in the corneal epithelial

cell membrane prior to subunit oligomerization and pore
formation, resulting in host cell lysis [34]. Secondly, PLY
elicits increased infiltration of neutrophils into the cornea as
evidenced by histopathology of corneas infected with wild
type bacteria compared to PLY-deficient bacteria [32, 91].
These findings indicated that much of the damage caused dur-
ing keratitis likely results from both direct corneal cell death
by PLY and immune-derived damage from proinflammatory
signaling in response to PLY. While capsule does not seem to
play a significant role in the progression of keratitis, PLY is a
key virulence factor in the devastation caused to the corneal
cells both in vivo and in vitro [9, 31, 32].

2.3. Endophthalmitis. Though keratitis and conjunctivitis
have a higher incidence than endophthalmitis, these infec-
tions are usually much less severe and easier to treat and carry
a lower risk of vision loss or enucleation [62, 63, 66, 82, 92—
95]. Approximately 0.05% of patients undergoing intraocular
surgery develop bacterial endophthalmitis, resulting in a
relatively low incidence of disease [96, 97]. The infection
most commonly occurs after cataract removal, intravit-
real injections, or a penetrating eye trauma [96-100]. The
three main pathogens that cause bacterial endophthalmitis
are coagulase-negative Staphylococcus (70%), Staphylococcus
aureus (10%), and streptococcal species (9%) [100-103]. But,
streptococcal species were three times as likely to be the cause
of bacterial endophthalmitis in patients receiving intravitreal
injections from ophthalmologists who did not wear facial
masks [104].

The polysaccharide capsule is necessary for full virulence
in pneumococcal endophthalmitis [61, 105]. In a study com-
paring a capsule-deficient isogenic mutant of a S. pneumoniae
clinical isolate to the parent strain in a rabbit endophthalmitis
model, both animal groups suffered from vitreal infections
[105]. However, rabbits infected with parent strain exhibited
significantly higher biomicroscopy scores at 24 and 48 hours,
indicating a more severe disease [105]. The same study
showed significantly more bacteria were recovered from the
eyes infected with the parent strain as well. In a separate
study, the same group investigated the benefits of passive
immunization with Pneumovax®23 (one of the currently
approved pneumococcal capsule-based vaccines) to prevent
infection due to prevalence of encapsulated pneumococcus
causing endophthalmitis. While the results did show less
severe symptoms and lower biomicroscopy scores for rabbits
immunized with Pneumovax®23, bacteria were still able to
grow and subsequently cause disease [36].

Similarly, an intraocular infection with a PLY-deficient
strain also resulted in less tissue damage and lower biomi-
croscopy scores [25,106]. In a study comparing eye infections
with strains that produce different amounts of pneumococcal
toxin, strains with higher PLY activity caused more inflam-
mation and tissue damage [107]. Interestingly, PLY by itself
in the vitreous humor can cause the same tissue damage
and histopathology seen in an infection with the bacteria
[106]. A 2010 study by Sanders et al. immunized rabbits with
antiserum to PLY as an attempt to prevent damage accrued by
the cytolytic toxin. The immunized rabbits had significantly
lower biomicroscopy score at 24 and 48 hours, and less retinal
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TaBLE 1: Virulence factor requirement during different ocular infectious diseases.

. onjunctivitis
Virulence factor C]i
(reference)

Keratitis Endophthalmitis

(reference) (reference)

Polysaccharide capsule

dispensable [7, 15, 64, 68, 112]

dispensable [7, 9] necessary [105]

Pneumolysin (PLY) Unknown

necessary [9, 32, 34] necessary [25, 36, 37, 106]

Neuraminidase necessary [7, 68]

necessary [7, 61] unknown [108]

Zinc metalloproteinase C (ZmpC) necessary [54, 55]

necessary [55] unknown

damage; however, there was not a significant difference in
bacterial burden recovered from the vitreous [37].

The deletion of neuraminidase genes, on the other hand,
has shown a very different effect during endophthalmitis.
NanA deficient, NanB deficient, and NanAB deficient strains
were tested in the rabbit endophthalmitis model [108]. The
loss of the neuraminidases did not significantly decrease the
severity of disease, but rather eyes infected with the mutants
had significantly higher biomicroscopy scores indicating a
more severe disease [108].

Aggressive treatments for streptococcal endophthalmitis
infections include removal of the vitreous humor (vitrec-
tomy) and intravitreal injections of combinations of antibi-
otics including vancomycin and either ceftazidime or
amikacin [99, 109]. Patients receiving intraocular injections
of vancomycin unfortunately are at risk for developing hem-
orrhagic occlusive retinal vasculitis (HORV), which can also
lead to significantly decreased visual acuity or enucleation
[110]. HORYV is typically caused by a delayed onset hypersen-
sitivity to vancomycin, occurring approximately 8 days after
administration [110]. Topical antibiotic drops also have no
prophylactic effect on bacterial endophthalmitis [111]. Both
disease and treatment cause corrected visual acuity outcomes
of 20/200 to 20/70 in affected eyes; therefore, the need to
develop better endophthalmitis therapies is vital [110, 111].

3. Future Perspectives

Researchers have extensively studied many of the pneumo-
coccal virulence factors in systemic disease models, but we
know far less about the impact in the ocular environment, as
outlined in Table 1.

For instance, a literature search for PLY knockout studies
in a conjunctivitis model yields no results. Nonencapsu-
lated strains are the predominant cause of pneumococcal
conjunctivitis, which indicates that one or more factors
other than capsule is involved during infection, and PLY
is a prime candidate given its involvement in keratitis and
endophthalmitis [7, 15, 16, 64]. Therefore, without PLY to
initiate an inflammatory cytokine cascade [32, 106, 113], the
damage is likely to be less severe when compared to the
parent strain. As seen in a keratitis study, topically applied
cholesterol negates much of the damage caused by PLY,
due to cholesterol’s ability to inactivate PLY [38]. The same
treatment approach could be investigated for conjunctivitis
to spare overuse of antibiotics.

S. pneumoniae also has three other zinc metallopro-
teinases, IgAl, ZmpB, and ZmpD [48, 114]; yet, at the time

this review was written, none have been studied in the context
of ocular diseases. ZmpB induces a TNF-« inflammatory
response, similar to PLY [113], when S. pneumoniae infects the
lower respiratory tract of mice [53]. TNF-a not only changes
the morphology, but also damages the cytoplasm of rabbit
corneal cells [115]. Mice infected intranasally with a strain
lacking ZmpB had significantly lower cytokine levels than
mice infected with the wild type strain [53]. Therefore, it is
possible that ZmpB might play a major role in both keratitis
and endophthalmitis by initiating the host inflammatory
cascade.

In conjunctivitis and keratitis, the presence of pneu-
mococcal neuraminidases leads to more severe disease [7,
15]; the opposite is true in the intraocular environment.
Only one study has analyzed the pathogenicity potential of
neuraminidases in endophthalmitis [108]. Increased expres-
sion of nanA and nanB were seen during pneumococcal
endophthalmitis; however, a deletion of nanA, nanB, or both
caused a significant increase in biomicroscopy scores [108].
Interestingly, capsule gene expression was also decreased
[108] even though the capsule is required for full virulence
during endophthalmitis [105]. One possibility of explaining
these findings is that neuraminidase activity and capsule
expression are coordinately regulated and deletion of one
or the other results in differential pathogenic effects. For
conjunctivitis, deletion of capsule results in increased neu-
raminidase production [7]. For endophthalmitis, deletion of
neuraminidase and the resulting decrease in capsule expres-
sion might involve an alternate mechanism of regulation with
a different effect than that from complete deletion of the
capsule locus.

Another aspect of pneumococcal ocular infections that
we know very little about is impact of the available nutrients.
The intraocular environment provides an ideal niche for bac-
terial growth. S. pneumoniae has been shown to proliferate to
10° CFU/mL in rabbit vitreous [105], indicating an abundance
of nutrients. The nutrients in the vitreous humor as well as the
metabolic mechanisms that allow S. pneumoniae to propagate
to such high numbers in the ocular environment remain
unknown. S. pneumoniae is able to metabolize over 30 carbon
sources in vitro [116], but prefers glucose as a carbon source
[117-120]. Glucose is readily available in the intraocular
environment, and in concentrations that mimic those found
in blood [121]. However, one study showed that an abundance
of glucose made no significant difference on the number
of bacteria recovered from an endophthalmitis infection by
utilizing insulin dependent diabetic rabbits [122]. Future
investigations should focus on resolving this discrepancy.
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4. Conclusion

While S. pneumoniae remains one of the leading causes
of serious systemic diseases such as bacterial pneumonia
and meningitis, it is also a major cause of concern in the
realm of ocular infections. S. pneumoniae remains one of
the top causative bacterial pathogens for all three types of
ocular infections described in this review. Conjunctivitis is
treatable with topical antibiotics, keratitis is treatable but can
lead to corneal scarring, and endophthalmitis more often
than not leads to severe vision loss and possible enucleation.
Though two pneumococcal vaccines exist for the prevention
of nonocular diseases, they do little to fully prevent ocular
infections.

This pathogen has several virulence factors that wreak
havoc on the conjunctiva, cornea, and intraocular system.
The polysaccharide capsule allows the bacterium to evade
the complement system. PLY mediates an inflammatory
cascade that can be just as damaging, if not more so, than
the bacterium itself. S. pneumoniae also possess three neu-
raminidases (NanA, NanB, and NanAB) that play a role adhe-
sion and subsequently colonization. The metalloproteinase
ZmpC removes crucial glycoproteins that are necessary for
the recruitment of MMP-9, an essential metalloprotease for
wound healing.

A better picture of pneumococcal virulence factors in
previously unexplored ocular infection types would lead to
a broader knowledge of their roles in pathogenesis. Under-
standing the nutritional landscape of the intraocular envi-
ronment and pneumococcal metabolism could reveal novel
virulence mechanisms. Most importantly, more knowledge
about how the pneumococcus causes ocular infections and
damage to the eye could potentially lead to sight-saving drug
discoveries. Development of new therapeutics is especially
important for endophthalmitis because one of the most used
treatment options can, unfortunately, lead to ocular damage
and loss of sight.
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