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Chronic bacterial prostatitis usually occurs in men and seriously affects the

quality of life of patients. The efficacy of chronic bacterial prostatitis treatment is

limited by the difficulty for free drugs (e.g., antibiotics) to penetrate the prostate

epithelium and target inflammatory tissues. The advent of nanotechnology

offers the possibility to address this issue, such as the development of targeted

nanoparticle delivery strategies that may overcome these important limitations.

The physicochemical properties of nanoparticles, such as particle size, shape

and surfacemodification ligands, determine their targeting effectiveness. In this

study, nanoparticles with different physicochemical properties were prepared

to explore and confirm their targeting capacities to inflammatory prostate

tissues of chronic bacterial prostatitis, focusing on the effects of size and

different modification ligands on the targeting performance. In vivo and ex

vivo imaging results verified that folic acid-modified nanoparticles with a

particle size of 180–190 nm via tail intravenous injection had the optimal

targeting efficiency to prostate tissues. Our results provide an experimental

basis and reference value for targeted therapy of prostate-related diseases with

nanotechnology in the future.
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1 Introduction

Chronic bacterial prostatitis (CBP) accounts for 20% of chronic prostatitis and is a

common disease in men (Halabi et al., 2020); CBP can cause many clinical symptoms,

seriously affecting the quality of life of patients (Santharam et al., 2019). Recent studies

have suggested that chronic prostatitis may be related to the occurrence and development

of prostate cancer (Sfanos et al., 2018). As a result, increasing attention has been given to

the disease, but there is still a lack of effective treatment. The effectiveness of CBP therapy
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depends on the ability of free drugs (e.g., antibiotics) to penetrate

the prostate epithelium and reach the infected prostate tissues

(Xiong et al., 2020). Unfortunately, it is difficult for most

antibiotics to achieve the therapeutic effect in the prostate

gland lumen due to their intrinsic physicochemical properties,

such as lipid solubility, degree of ionization in plasma (pKa),

protein binding, molecular radius and shape (Charalabopoulos

et al., 2003). Only several antibiotics, such as fluoroquinolones

and macrolides, can pass through the prostate epithelial barrier

to reach the interior of the prostate lumen, but their efficacy

descends obviously along with the increase of multiple drug

resistance among bacteria (Su et al., 2020). There is an urgent

need to find alternative agents to manage CBP.

Recently, nanodrugs have aroused a great interest in the

treatment of antibacterial and inflammatory diseases (Wang

et al., 2020, Wang et al., 2021a, Wang et al., 2021b; Cao et al.,

2022; Ma et al., 2022; Wu et al., 2022). The advent of

nanotechnology offers the possibility to address this issue,

such as the development of targeted nanoparticle delivery

strategies that may overcome these important limitations.

Nanoparticles (NPs) are targeted to inflammatory lesions by

passive or active targeting (Cao et al., 2020), which is mainly

affected by their particle size, charge, shape, surface modification

ligands and other physicochemical properties (Duan and Li,

2013; Zhao et al., 2019). Passive targeting mainly relies on the

enhanced permeability and retention effect (EPR) (Golombek

et al., 2018), and the passive accumulation of NPs at the lesion

site is mainly determined by their particle sizes and shapes, with

particle size being particularly important (Izci et al., 2021; Shukla

et al., 2021). Active targeting is based on the overexpression of

antigens, receptors and other biomolecules at the inflammatory

sites (Attia et al., 2019). By modifying the surface of NPs with

corresponding antibodies or ligands, they can specifically bind

receptor molecules in the inflammatory area to achieve the goal

of active targeting (Pearce and O’Reilly, 2019; Yoo et al., 2019).

It has been reported that a large number of activated

M1 macrophages are infiltrated in inflammatory prostate

tissues, and folic acid receptors (FRs) are highly expressed on

the surface of activated M1 macrophages, which can specifically

bind folic acid (FA) (Poh et al., 2018; Yang et al., 2021). Because

FRs have comparable affinity for FA, FA-modified drugs or

biomolecules can actively target cells or tissues that

overexpress FRs (Muhamad et al., 2018). In our previous

study (Zheng et al., 2022), it was confirmed that FRs were

highly expressed in the prostate tissues of CBP mice,

providing an experimental basis for the active targeting of FA-

modified NPs. Studies have shown that neutrophils can be

recruited to lesion sites by inflammatory factors due to their

sensitivity to the inflammatory environment (Dorschner et al.,

2020; Hou et al., 2022) and have a natural homing effect on

prostatitis (Seo et al., 2014; Ahn et al., 2018; Safari et al., 2020).

Therefore, the affinity of the cRGD peptide for the αvβ1 integrin
receptor (which is highly expressed on the neutrophil surface)

(Hou et al., 2019) provides a theoretical basis for the active

targeting of cRGD-modified NPs to inflammatory prostate

tissues.

As mentioned above, the physicochemical properties of NPs,

such as particle size and surface modification ligands, determine

their ability to passively target and actively target in vivo. In a

previous study (Zheng et al., 2022), our group first proved the
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feasibility of nanodrugs in the treatment of CBP, and verified the

biosafety and effectiveness of nanodrugs at the cellular level and

animal level, but the targeting capacities of NPs to inflammatory

prostate tissues were not studied in depth. Since NPs penetrating

the prostate epithelial barrier and achieving targeted delivery to

prostate tissues are crucial to improve the efficacy of chronic

prostatitis, it is of great significance to study the targeting

capabilities of NPs with different physicochemical properties

to prostate tissues, which may provide reference for targeted

therapy of prostate-related diseases by nanotechnology in the

future.

To verify the targeting efficiencies of NPs to inflammatory

prostate tissues, we prepared NPs with different physicochemical

properties, including comparison of three particle sizes (150–160,

180–190 and >220 nm) and two different surface modification

ligands (FA and cRGD peptide), and the differences between the

two different injection methods (tail intravenous and urethral

injection) were discussed. Herein, NPs were fabricated by using

ROS-responsive materials (4-(hydroxymethyl) phenylboronic

acid pinacol ester-modified cyclodextrin, Oxi-αCD) that had

good biocompatibility and were endowed with three different

particle size distributions. NPs were externally decorated with

polyethylene glycol (PEG) and FA or cRGD peptide to achieve

long circulation and active targeting in the body. Both in vivo and

ex vivo imaging experiments demonstrated that the accumulation

of modified NPs in the prostate tissues was significantly

increased. Among them, FA-modified NPs with a particle size

of 180–190 nm via tail intravenous injection were superior in

targeting efficiency.

2 Materials and methods

2.1 Materials

α-Cyclodextrin (α-CD) was provided by Tokyo Chemical

Industry Co., Ltd. (Tokyo, Japan). 1-(3-Dimethylaminopropyl)-

3-ethylcarbodiimide hydrochloride, 4-(hydroxymethyl)

phenylboronic acid pinacol ester, 4-dimethylaminopyridine

(DMAP), 1,1′-carbonyldiimidazole (CDI), tetrahydrofuran

(THF), dimethyl sulfoxide (DMSO), acetone and Pluronic

F127 were supplied by Sigma–Aldrich Co., Ltd. (Shanghai,

China). 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-

N-methoxy (polyethylene glycol)-2000 (DSPE-PEG2000), folic

acid-conjugated DSPE-PEG-3400 (DSPE-PEG3400-FA) and

cRGD-conjugated DSPE-PEG-2000 (DSPE-PEG2000-cRGD)

were acquired from Xi’an Ruixi Biological Technology Co.,

Ltd. (Xi’an, China). Lecithin (refined) was supplied by Alfa

Aesar (Shanghai, China). Cy5 free acid was purchased from

Lumiprobe, LLC (Hallandale Beach, FL, United States). 4′,6-
Diamidino-2-phenylindole (DAPI) was obtained from Beyotime

Biotechnology Co., Ltd. (Shanghai, China). Oxi-αCD and Cy5-

conjugated Oxi-αCD were synthesized according to our

previously reported strategy (Wang et al., 2019). All chemicals

were of analytical grade and used without further purification.

Ultrapure water was used throughout this study.

2.2 Bacteria and animals

Escherichia coli (E. coli) isolates were obtained from patients

with urinary infection at the First Affiliated Hospital of Army

Medical University (Third Military Medical University), and

E2519 was selected to establish a murine model of chronic

prostatitis (Zheng et al., 2022).

Male C57BL/6J mice (6–8 weeks old) were kept in an SPF-

level sterile animal room and acclimatized for 1 week after arrival

and were supplied by Hunan SJA Laboratory Animal Co., Ltd.

(Changsha, China). All animal experiments were performed in

accordance with the guidelines approved by the Laboratory

Animal Welfare and Ethics Committee of Third Military

Medical University (Chongqing, China).

2.3 Fabrication and characterization of
Oxi-αCD NPs

Our previous work reported a self-assembly strategy to

produce Oxi-αCD NPs (ROS-responsive drug carriers), which

exhibited good biocompatibility and could be used as excellent

drug delivery carriers (Zhang et al., 2015; Wang et al., 2019; Ni

et al., 2020, Wang et al., 2021c.). Briefly, lecithin and DSPE-

PEG2000 were dispersed in anhydrous ethanol and ultrapure

water. The mixed solution was stirred gently at 65°C for 0.5 h.

Subsequently, the organic solvent containing Oxi-αCD was

added dropwise into the dispersed solution with 3 min of

vortexing. The obtained mixture was cooled to 25°C and self-

assembled for 2 h. Oxi-αCD NPs were harvested by

centrifugation at 15000 rpm for 10 min, washed with 10 ml

5% F127 and 10 ml ultrapure water, and resuspended with

0.2 ml ultrapure water. FA-modified Oxi-αCD NPs (FA-Oxi-

αCD NPs) and cRGD-modified Oxi-αCD NPs (cRGD-Oxi-αCD
NPs) were synthesized in a similar procedure except that DSPE-

PEG2000 and DSPE-PEG3400-FA or DSPE-PEG2000-cRGD were

used. In addition, Cy5-conjugated Oxi-αCD was added to

fabricate Cy5-labeled NPs. Herein, by adjusting the dose

required for synthesis, the size of the NPs was controlled.

2.4 Murine model of CBP

10 μl of E. coli E2519 (1×108 colony forming units/mL) was

injected intomice to establish amouse model of CBP as described

previously (Zheng et al., 2022). Mice were maintained with

urinary retention under anesthesia for at least 0.5 h to

facilitate bacterial culture. Moreover, 10 μl of PBS was
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inoculated into the control mice. The CBP mouse model was

expectedly completed after 30 days of inoculation.

2.5 In vivo biodistribution study

CBP mice were randomly divided into 4 groups and were

administered free Cy5, Cy5-labeled Oxi-αCD NPs, Cy5-labeled

FA-Oxi-αCD NPs or Cy5-labeled cRGD-Oxi-αCD NPs (20 μg/

100 μl of Cy5 per mouse in each group) via tail intravenous

injection or urethral injection. In parallel, the control mouse

group was injected with 100 μl of saline. After 2, 4, 8, 24 and 48 h

of injection, mice were anesthetized, and fluorescence images of

free Cy5 or Cy5-labeled NPs were observed using a live animal

imaging system (Biolight Biotechnology Co., Ltd. Guangzhou,

China) with a 625 nm excitation filter and a 680 nm emission

filter. Furthermore, mice were euthanized at 24 and 48 h

postinjection, and the prostates were collected and rinsed with

PBS for ex vivo imaging. The fluorescence intensity was

determined by a live animal imaging system. Subsequently,

the prostates were collected for cryosection preparation

(treated with 4% paraformaldehyde and DAPI staining) to

detect the distribution of Cy5 or Cy5-labeled NPs in prostate

tissues via confocal laser scanning microscopy (CLSM). All in

TABLE 1 Synthesis formula table of (A) (a, c, e) Cy5-labeled Oxi-αCD NPs and (b, d, f) Cy5-labeled FA-Oxi-αCD NPs; (B) (a, c, e) Cy5-labeled Oxi-αCD
NPs and (b, d, f) Cy5-labeled cRGD-Oxi-αCD NPs.

(A) Lecithin
(mg)

DSPE-
PEG2000

(mg)

DSPE-
PEG3400-FA
(mg)

Ethanol
(ml)

Ultrapure
water
(ml)

Methanol
(ml)

Another
solvent
(ml)

Oxi-
αCD
(mg)

Cy5-oxi-
αCD
(mg)

(a) 5.5 6.4 / 400 20 2 /

(b) 5.2 4.0 4.0 400 20 2 /

(c) 6.5 6.0 / 800 20 1.5 2 (THF) 45 5

(d) 6.6 4.1 4.0 800 20 1.5 2 (THF)

(e) 6.5 6.2 / 800 20 1.5 2 (acetone)

(f) 6.9 4.0 4.0 800 20 1.5 2 (acetone)

(B) Lecithin
(mg)

DSPE-
PEG2000 (mg)

DSPE-PEG3400-
cRGD (mg)

Ethanol
(ml)

Ultrapure
water (ml)

Methanol
(ml)

Another
solvent (ml)

Oxi-
αCD (mg)

Cy5-Oxi-
αCD (mg)

(a) 5.2 5.9 / 400 20 2 /

(b) 4.9 5.0 5.0 400 20 2 /

(c) 6.7 9.0 / 200 5 1 2 (DMSO) 45 5

(d) 6.5 5.0 5.0 200 5 1 2 (DMSO)

(e) 6.0 6.0 / 200 5 1 2 (acetone)

(f) 4.0 5.0 5.0 200 5 1 2 (acetone)

TABLE 2 Size, PDI and zeta potential of (A) (a, c, e) Cy5-labeledOxi-αCDNPs and (b, d, f) Cy5-labeled FA-Oxi-αCDNPs; (B) (a, c, e) Cy5-labeledOxi-αCD
NPs and (b, d, f) Cy5-labeled cRGD-Oxi-αCD NPs.

(A) (a) (b) (c) (d) (e) (f)

Size (nm) 165 ± 1 155 ± 2 179 ± 2 183 ± 2 226 ± 5 226 ± 2

PDI 0.24 ± 0.02 0.21 ± 0.01 0.16 ± 0.02 0.18 ± 0.01 0.34 ± 0.01 0.32 ± 0.01

Zeta potential (mV) −27.8 ± 0.4 −28.2 ± 0.1 −20.2 ± 0.4 −22.2 ± 0.6 −21.8 ± 0.7 −20.9 ± 0.3

(B) (a) (b) (c) (d) (e) (f)

Size (nm) 165 ± 1 156 ± 2 183 ± 1 185 ± 2 269 ± 1 332 ± 4

PDI 0.17 ± 0.01 0.12 ± 0.01 0.18 ± 0.02 0.18 ± 0.01 0.27 ± 0.02 0.30 ± 0.02

Zeta potential (mV) −24.2 ± 0.4 −25.3 ± 0.6 −23.6 ± 0.5 −22.7 ± 0.5 −25.3 ± 0.4 −28.6 ± 0.8
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vivo experiments were performed using 3 mice in independent

experiments.

2.6 Statistical analysis

All results are expressed as the mean ± standard deviation

(SD) of at least three independent experiments. Statistical

analysis was conducted by GraphPad Prism software using

one-way variance (ANOVA) with Tukey’s multiple

comparison test for more than three groups and Student’s

t test for two groups. For all statistical tests, p < 0.05 was

considered to be statistically significant.

3 Results

3.1 Preparation and characterization
of NPs

As previously described, by adjusting the dose required for

synthesis, the particle sizes of Cy5-labeled Oxi-αCD NPs and

Cy5-labeled modified Oxi-αCD NPs were controlled (Table 1).

The physicochemical properties of the NPs are shown in Table 2.

DLS measurements showed that Cy5-labeled Oxi-αCD NPs had

average diameters of (a) 165, (c) 179 and (e) 226 nm, while Cy5-

labeled FA-Oxi-αCD NPs were (b) 155, (d) 183 and (f) 226 nm,

respectively. For cRGD modification, to roughly unify the

FIGURE 1
Size distribution and TEM images of (A,C,E) Cy5-labeled Oxi-αCD NPs and (B,D,F) Cy5-labeled FA-Oxi-αCD NPs: (A,B) 150–160 nm,
(C,D) 180–190 nm, and (E,F) > 220 nm.
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synthesis conditions of nontargeted and targeted NPs, the

formulations of nontargeted NPs were somewhat different

from the abovementioned Cy5-labeled Oxi-αCD NPs in the

FA group. The average sizes of Cy5-labeled Oxi-αCD NPs and

cRGD-Oxi-αCD NPs were (a) 165, (c) 183, and (e) 269 nm and

(b) 156, (d) 185, and (f) 332 nm, respectively. In addition, the zeta

potential of NPs was not significantly altered by surface

modification or particle size. Notably, all NPs exhibited a low

polydispersity index (PDI), indicating a good distribution of

these NPs, which can also be obtained from the DLS results.

Through TEM images, we confirmed that the morphology of

Cy5-labeled Oxi-αCD NPs, FA-Oxi-αCD NPs and cRGD-Oxi-

αCD NPs was spherical and homogenous (Figure 1, Figure 2).

3.2 In vivo biodistribution of FA-modified
NPs with different particle sizes

To investigate the targeting capabilities of NPs with

different particle sizes to prostate tissues, in vivo

biodistribution of Cy5-labeled NPs was detected in CBP

mouse models by a living imaging assay. Since the prostate

was too small to be accurately observed, we chose the entire

lower urinary tract and parts of the reproductive system to

study the targeting efficiency of NPs.

The fluorescence intensity of CBP mice treated with free

Cy5 decreased significantly with the extension of observation

time, especially after 2 h of injection, indicating that Cy5 dyes

FIGURE 2
Size distribution and TEM images of (A,C,E) Cy5-labeled Oxi-αCD NPs and (B,D,F) Cy5-labeled cRGD-Oxi-αCD NPs: (A,B) 150–160 nm, (C,D)
180–190 nm, and (E,F) > 220 nm.
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FIGURE 3
In vivo distribution of Cy5-labeled Oxi-αCDNPs and FA-Oxi-αCDNPs in a murine model of CBP. (A) In vivo fluorescence images of (I) saline, (II)
free Cy5, (III) Cy5-labeled Oxi-αCD NPs and (IV) Cy5-labeled FA-Oxi-αCD in a murine model of CBP at different time points after intravenous
injection (the region in the yellow circle indicates the lower urinary tract and part of the reproductive system). (B–C) Ex vivo fluorescence images of
the excised prostates at 24 h (B) and 48 h (C) postinjection: (a) saline, (b) free Cy5, (c) Cy5-labeled Oxi-αCDNPs (150–160 nm), (d) Cy5-labeled
FA-Oxi-αCD NPs (150–160 nm), (e) Cy5-labeled Oxi-αCD NPs (180–190 nm), (f) Cy5-labeled FA-Oxi-αCD NPs (180–190 nm), (g) Cy5-labeled Oxi-
αCDNPs (>220 nm) and (h) Cy5-labeled FA-Oxi-αCDNPs (>220 nm). (D–H) ROI analysis of fluorescence intensity in the lower urinary tract and part
of the reproductive system was performed at different time points after intravenous injection (n = 3 per group). (I) ROI analysis of the fluorescence
intensity of the excised prostate at 24 h and 48 h *, significantly different at p < 0.05; **, significantly different at p < 0.01; ***, significantly different at
p < 0.001; ****, significantly different at p < 0.0001.
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FIGURE 4
CLSM images of prostate tissues treated with Cy5 or Cy5-labeled NPs for 24 and 48 h. Red indicates NPs, and blue indicates DAPI. (A)
150–160 nm, (B) 180–190 nm and (C) > 220 nm. The scale bar represents 50 μm.
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FIGURE 5
In vivo distribution of Cy5-labeled Oxi-αCD NPs and RGD-Oxi-αCD NPs in a murine model of CBP. (A) In vivo fluorescence images of (I) saline,
(II) free Cy5, (III) Cy5-labeled Oxi-αCD NPs and (IV) Cy5-labeled RGD-Oxi-αCD in a murine model of CBP at different time points after intravenous
injection (the region in the yellow circle indicates the lower urinary tract and part of the reproductive system). (B–C) Ex vivo fluorescence images of
the excised prostates at 24 h (B) and 48 h (C) postinjection: (a) saline, (b) free Cy5, (c) Cy5-labeled Oxi-αCDNPs (150–160 nm), (d) Cy5-labeled
cRGD-Oxi-αCD NPs (150-160 nm), (e) Cy5-labeled Oxi-αCD NPs (180-190 nm), (f) Cy5-labeled cRGD-Oxi-αCD NPs (180-190 nm), (g) Cy5-labeled
Oxi-αCD NPs (>220 nm) and (h) Cy5-labeled cRGD-Oxi-αCD NPs (>220 nm). (D–H) ROI analysis of fluorescence intensity in the lower urinary tract
and part of the reproductive system was performed at different time points after intravenous injection (n = 3 per group). (I) ROI analysis of the
fluorescence intensity of the excised prostate at 24 h and 48 h *, significantly different at p < 0.05; **, significantly different at p < 0.01; ***,
significantly different at p < 0.001; ****, significantly different at p < 0.0001.
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were quickly cleared from the body. However, both Cy5-labeled

Oxi-αCD NPs and FA-Oxi-αCD NPs showed higher

fluorescence signals in the lower urinary tract and parts of the

reproductive system than free Cy5 after 4, 8 and 24 h of

administration, whereas the 180–190 nm group still

maintained obvious fluorescence intensity at 48 h (Figure 3A).

Semiquantitative analysis indicated that mice that received Cy5-

labeled FA-Oxi-αCD NPs in the 180–190 nm group exhibited

stronger fluorescence intensity in the lower urinary tract and

parts of the reproductive system of CBP mice at all five

observation time points compared to other NPs in the

150–160 nm group and >220 nm group (Figures 3D–H).

To further investigate the targeting efficiency of NPs to

prostate tissues in CBP mice, the isolated prostate tissues were

subjected to ex vivo imaging at 24 and 48 h of administration.

Bright fluorescence intensity was observed in the prostate tissues

of the NPs group, which indicated that their accumulation in

prostate tissues was increased, and the fluorescence signals of

CBP mice treated with Cy5-labeled FA-Oxi-αCD NPs remained

stronger than that of CBP mice treated with Cy5-labeled Oxi-

αCD NPs at 48 h postinjection (Figures 3B,C). Our previous

work demonstrated that overexpression of FRs was detected in

prostate tissues of CBP mice, which favors the specific binding of

FA-modified NPs to FRs in prostate tissues. Therefore, this

promoted the accumulation of FA-modified NPs in prostate

tissues, which was higher than that of nontargeted NPs. In

accordance with the in vivo imaging results, Cy5-labeled FA-

Oxi-αCD NPs in the 180–190 nm group displayed the highest

fluorescence signals in prostate tissues than the other NPs

(Figure 3I), suggesting that FA-modified Oxi-αCD NPs with a

size of 180–190 nm had longer blood circulation and a better

targeting ability. These NPs are relatively suitable as a nanodrug

platform for the targeted delivery of anti-inflammatory agents to

prostate tissues. In addition, the basic cell experiments and

biosafety of FA-modified Oxi-αCD NPs approximately

180–190 nm were verified in our previous study (Zheng et al.,

2022).

Furthermore, frozen sections of the excised prostate

tissues were collected to observe and analyze which NPs

can better penetrate prostate tissues. The frozen section

results also demonstrated that Cy5-labeled FA-Oxi-αCD
NPs could effectively accumulate in the prostate tissues

(Figure 4). Consistent with the previous conclusion, Cy5-

labeled FA-Oxi-αCD NPs in the 180–190 nm group

demonstrated maximum accumulation in the prostate

tissues, and some fluorescence signals were found in the

prostate lumen (Figure 4B), indicating that they had the

potential to deliver drugs to the interior of prostate tissues.

3.3 In vivo biodistribution of cRGD-
modified NPs with different particle sizes

As mentioned above, NPs modified with cRGD peptide, a

ligand of αvβ1 integrin receptor, are expected to achieve efficient

recognition of neutrophils, thereby improving the function of

active targeting to prostate tissues. Therefore, we explored the

targeting ability of cRGD-modified NPs to inflammatory prostate

tissues and discussed the effect of particle size on the targeting

efficiency.

Compared with the control group, only weak fluorescence

intensity was observed in the lower urinary tract and parts of the

reproductive system of CBP mice treated with free Cy5 at 24 and

48 h postinjection, indicating that few Cy5 dyes aggregated at the

sites of prostatitis. In contrast, an obvious fluorescence signal was

still detected in CBP mice treated with NPs in the 180–190 nm

group, suggesting that the retention time of these NPs in the body

was longer than that of free Cy5 (Figure 5A). Semiquantitative

analysis also proved that mice that received Cy5-labeled cRGD-

Oxi-αCD NPs in the 180–190 nm group exhibited higher

fluorescence intensity in the lower urinary tract and parts of

the reproductive system of CBP mice after 24 and 48 h of

administration than other NPs in the 150–160 group

and >220 nm group (Figures 5D–H).

In the same way, ex vivo prostate tissue imaging was

performed at 24 and 48 h to further study the targeting ability

of NPs on CBPmouse prostate tissues. After 24 h of injection, the

prostate tissues of each group showed bright fluorescence signals

compared with the free Cy5 group. However, only the

fluorescence intensity of CBP mice treated with NPs in the

180–190 nm group retained a significant fluorescence signal at

48 h postinjection (Figures 5B,C). Moreover, Cy5-labeled cRGD-

Oxi-αCD NPs in the 180–190 nm group displayed the highest

fluorescence signals in prostate tissues (Figure 5I), which was in

accordance with the in vivo imaging results, indicating that

cRGD modification could enhance the accumulation of NPs

in inflammatory prostate tissues.

Frozen sections of the excised prostate tissues also

demonstrated that Cy5-labeled NPs with particle sizes of

180–190 nm could effectively accumulate in the prostate

tissues both after 24 and 48 h of injection, and the targeted

NPs were superior to the nontargeted NPs (Figure 6B). However,

the fluorescence of mice treated with Cy5-labeled NPs in the

150–160 nm group and >220 nm group almost disappeared at

48 h postinjection (Figures 6A,C). Based on the above results,

similar to the conclusions discussed with FA-modified NPs,

cRGD-modified NPs with particle sizes of 180–190 nm had a

satisfactory targeting efficiency to prostate tissues.
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FIGURE 6
CLSM images of prostate tissues treated with Cy5 or Cy5-labeled NPs for 24 and 48 h. Red indicates NPs, and blue indicates DAPI. (A)
150–160 nm, (B) 180–190 nm and (C) > 220 nm. The scale bar represents 50 μm.
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FIGURE 7
CLSM images of prostate tissues treated with Cy5, Cy5-labeled RGD-Oxi-αCD NPs (180–190 nm) and Cy5-labeled FA-Oxi-αCD NPs
(180–190 nm) for 24 and 48 h. Red indicates NPs, and blue indicates DAPI. The scale bar represents 50 μm.

FIGURE 8
Effect of injection mode on NPs targeting inflammatory prostate tissue. (A) In vivo fluorescence images of (a) saline, (b) free Cy5 (Urethral
injection), (c) Cy5-labeled FA-Oxi-αCDNPs (Urethral injection) and (d) Cy5-labeled FA-Oxi-αCD (Tail intravenous injection) in amurinemodel of CBP
at 24 h after intravenous injection (the region in the yellow circle indicates the lower urinary tract and part of the reproductive system). (B) Ex vivo
fluorescence images of the excised prostates at 24 h postinjection. (C)CLSM images of prostate tissues treatedwith Cy5 or Cy5-labeled NPs for
24 h. Red indicates NPs, and blue indicates DAPI. The scale bar represents 50 μm. (D) ROI analysis of fluorescence intensity in the lower urinary tract
and part of the reproductive systemwas performed at 24 h after intravenous injection (n = 3 per group). (E) ROI analysis of the fluorescence intensity
of the excised prostate at 24 h ****, significantly different at p < 0.0001.

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Hu et al. 10.3389/fbioe.2022.1021385

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1021385


3.4 Comparison of FA-modified and
cRGD-modified NPs

The targeting ability of FA-modified and cRGD-modified

NPs with different particle sizes was discussed above, and both

showed the optimal targeting efficiency to inflammatory prostate

tissues when the particle size was 180–190 nm. Their targeted

penetration capabilities to prostate tissues at the same particle

diameter were further explored.

Through the frozen sections (Figure 7), it was observed that

some fluorescence signals were found in the prostate lumen after

the mice were treated with Cy5-labeled FA-Oxi-αCD NPs,

suggesting that the FA-modified NPs could be effectively

transferred to the prostate lumen and thus accumulated in the

glandular lumen, which was superior to the mice treated with

Cy5-labeled cRGD-Oxi-αCD NPs.

3.5 Comparison of different injection
methods

Based on the discussion above, it was apparent to conclude

that FA-modified NPs with a particle size of 180–190 nm were

the optimal nanodrug delivery platform for targeting and

penetrating prostate tissues. Since the mouse model of CBP

was established by bacterial infection through the urethra, we

also investigated the effects of two different injection modes,

urethral injection and tail intravenous injection, on the

targeting efficiency of the above optimal NPs to prostate

tissues.

CBP mice were treated with Cy5-labeled FA-Oxi-αCD NPs,

180–190 nm, by tail intravenous injection, and considerable

fluorescence signals were observed at 24 h postinjection by

living imaging assay, while the fluorescence signal was

extremely weak by urethral injection (Figure 8A). The

intensity of isolated prostate fluorescence in each group was

similar to the in vivo imaging results (Figure 8B). According to

semiquantitative results, the fluorescence intensity of mice

injected with NPs through the tail vein was the strongest, and

there was a statistically significant difference from other groups

(Figures 8D,E). Frozen sections of prostate tissue were detected

using CLSM, and it demonstrated that NPs via tail intravenous

injection accumulated the most in prostate tissues (Figure 8C),

revealing that intravenous injection expressed a preferable

targeting efficiency compared with urethral injection.

4 Discussion

The therapeutic efficacy of CBP caused by bacterial

infection is limited by the difficulty of free agents (e.g.,

antibiotics) penetrating the prostate epithelium and

targeting inflammatory tissues. To address this question, we

further investigated the performance of NPs targeting

inflammatory prostate tissues on the basis of previous

nanotechnology treatment of CBP (Zheng et al., 2022).

Spherical NPs with different physicochemical properties

have been successfully prepared to verify their targeting

capabilities to inflammatory prostate tissues of CBP,

including comparison of three particle sizes (150–160,

180–190 and >220 nm) and two different surface

modification ligands (FA and cRGD peptide), and the

differences between the two different injection methods

(tail intravenous and urethral injection) were discussed.

In vivo and ex vivo imaging results confirmed that both FA-

modified NPs and cRGD-modified NPs could enhance their

accumulation in prostate tissues of CBP mice due to the high

expression of FRs and increase in neutrophils in inflammatory

prostate tissues, respectively. We found that 180–190 nm was

the most suitable particle size range, while the other two

groups remained in the body for less time, which was not

conducive to long circulation and passive targeting. For

example, in the >220 nm group, NPs modified with FA and

cRGD peptide both showed almost the weakest fluorescence

signals, which may be because NPs larger than 200 nm were

easily cleared by the liver and spleen (Sunoqrot et al., 2014;

Blanco et al., 2015; Fan et al., 2020). In addition, immune cells

such as macrophages phagocytose foreign particles in a size-

dependent manner, with larger particles being more likely to

be phagocytosed by macrophages than smaller particles (Fang

et al., 2006; Pacheco et al., 2013; Miyamoto et al., 2021). The

active targeting and penetrating capabilities of FA-modified

NPs to prostate tissues were superior to those of cRGD-

modified NPs, and tail intravenous injection was beneficial

for NPs to enter the blood circulation and achieve the purpose

of targeting prostate tissues.

In summary, we studied and discussed the influencing

factors of NPs targeting inflammatory prostate tissues,

focusing on the effects of size and different modification

ligands on the targeting performance, and proved that FA-

modified NPs with particle sizes of 180–190 nm can perform

preferable targeting efficiency via tail intravenous injection.

The results provide a new experimental basis and theoretical

support for the targeted treatment of prostate-related diseases

with nanotechnology in the future.
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