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Improvingprotein stability is an important goal for basic research aswell as for clinical and industrial applications
but no commonly accepted and widely used strategy for efficient engineering is known. Beside random ap-
proaches like error prone PCR or physical techniques to stabilize proteins, e.g. by immobilization, in silico ap-
proaches are gaining more attention to apply target-oriented mutagenesis. In this review different algorithms
for the prediction of beneficial mutation sites to enhance protein stability are summarized and the advantages
and disadvantages of FoldX are highlighted. The question whether the prediction of mutation sites by the algo-
rithm FoldX is more accurate than random based approaches is addressed.
© 2018 Buß et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural

Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Increasingprotein stability is a desirable goal for different life science
purposes, this includes design of therapeutic proteins like antibodies,
human cell biology and biotechnology. It is expected that such improve-
ments result in lower process costs and in enhanced long-term stability
of the applied proteins. Enhanced protein stability in general can be
achieved due to various factors, e.g. by increasing thermostability, salt
tolerance or tolerance towards organic solvents, and consequently, in-
volves different bioinformatics approaches. The emphasis for applica-
tion of proteins for medical and chemical purposes is focused on the
fields of biosensors (e.g. blood sugar test strips [1]), biomedical drugs
(e.g. antibodies against cancer cells [2]) or on the synthesis of complex
as well as chiral substances for food (e.g. high fructose corn syrup [3])
and pharmaceutical industry (e.g. sitagliptin [4]) [5]. Obviously biosen-
sors for medical use assisting to diagnose several diseases like breast
cancer [6], diabetes [7] or infectious diseases [8] have to be functional
and reliable for a defined period of time. It seems, for example, to be
beneficial to gain more thermostable antibodies for treatment of cancer
diseases [9]. Furthermore, for the synthesis processes of drugs and phar-
maceutically relevant intermediates, applied enzymes have to be active
and functional for long batch times to prevent drastic increases in costs
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per unit of product [10–12] [13]. For industrial enzymes improved sta-
bility against heat, solvents and other relevant process parameters,
e.g. acidic or basic pH, often becomes crucial [14]. In addition, improved
thermostability of enzymes might prevent thermal inactivation and
conformational changes at higher reaction temperature, which could
in turn be beneficial to raise turnover rates and substrate concentrations
[15–19]. According to the Q10-rule of thumb, biological systems and en-
zymes tend to have a Q-factor of 2, i.e. a temperature increase of about
10 K results in doubling the reaction rate [20,21]. Contrary, stabilization
also can lead to more rigid enzymes, which are less active at the same
temperature, but show the same activity at elevated temperatures.
This can be observed when enzymes from hyperthermophilic and
mesophilic sources are compared with respect to their reaction rates
[22]. A thermostabilized enzyme might be less active at a certain tem-
perature, but longer active at higher temperatures, which allows apply-
ing the Q10-rule on the condition that the activity can bemaintained for
longer time periods at elevated temperatures [23,24]. However, it is also
possible that a thermostabilized enzyme is not impaired in activity at
moderate temperatures and is evenmore active at higher temperatures
[25–29]. Arnold et al. demonstrated that an enzyme can be simulta-
neously developed towards higher stability and activity [24,30,31,45].

Protein denaturation and degradation due to both heat and solvents
are based on the same protein unfolding processes. Themost important
forces for protein stability, which are relevant targets for the improve-
ment of protein stability, are intramolecular interactions, i.e. disulfide
bridges, ion interactions, hydrogen bonds, hydrophobic interactions
and core packings [22]. The rigidity and flexibility of proteins seem
to be the key parameters [33] and both can be influenced by using
omputational and Structural Biotechnology. This is an open access article under the CC BY
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immobilization techniques or enzymatic engineering in order to expand
the durability of protein applications.

The well-known technique to immobilize proteins to gain stabilized
proteins is applied for antibody to increase the thermostability [34,35].
Beside the improvement of thermostability using immobilization tech-
niques, directed evolution is an alternative approach, but the existence
of a robust high-throughput screening assay for the selected protein is
an important prerequisite [11,36–41]. For enzymes, activity can be
used as parameter for functionality at elevated temperatures, but for
non-catalyzing proteins a more sophisticated assay or even protein pu-
rification is necessary. Furthermore, the number of necessary protein
variants, created by using e.g. error prone PCR or other techniques, is
mostly about 103 to 105 and even higher. However, in case of enzymes,
selection might easily be performed by heating up unpurified crude ex-
tracts from cells [42]. Using this technique, proteinmelting temperature
Tm can be improved in the best screenings by far N10 °C [42–47]. The ar-
tificial evolution approach can result in a 140-fold increase in long-term
enzymatic activity like demonstrated for the alkaline pectate lyase [48].
Also for antibodies or antibody fragments evolutionary approaches can
be used [49]. For example, the protein melting temperature of a human
antibody domain was improved by N10 °C [50].

Directed evolution can be a successful strategy but might not be
applicable at any time, especially when missing a high-throughput
screening or protein purification for stabilitymeasurements is necessary.
Therefore, this mini-review focusses on protein/enzyme engineering for
thermostabilization using structure guided site-directed mutagenesis.
This strategy helps to reduce screening effort and also costs, which is
an issue in large screenings. Furthermore, we selected the popular
FoldX algorithm and would like to answer the question: how powerful
is FoldX for common protein stability improvements? FoldX is a
frequently used algorithm and many studies about protein stabiliza-
tion experiments are described in literature. A second reason is the
user-friendliness of FoldX, because it can easily be used as plugin in
the protein structure visualizer YASARA [51]. In contrast to other,
command-line based in silico approaches, which are without graphical
interface, scientists not familiar with programming languages like py-
thon, Java, R-script and so on and hide a larger workload for these kind
of approaches.

1.1. Computational Approaches for Stability Engineering

Besides FoldX, several other algorithms used for site-directed muta-
genesis are also known aiming at different inter- and intra-protein in-
teractions. One target is the introduction of artificial disulfide bridges
into proteins. As a covalent bond, a disulfide bridge is a strong physical
forcewhich helps to stabilize the 3D-structure within a protein chain or
betweenmonomers raising the protein melting temperature (Tm) up to
30 °C, and can achieve an increase of thermal stability by N40% at dis-
tinct temperature levels [52–54]. However, introduction of disulfide
bridges can also lower the Tm up to−2.4 °C [55]. Starting with the pro-
tein structure as basis for molecular dynamic simulations and energy
calculations, amino acid positions can be selected which are potentially
suitable for engineering of disulfide bridges. However, these approaches
need profound understanding of different prediction and calculation
software, often without graphical interfaces [56]. Two examples are
the algorithms for fast recognition of disulfide mutation sites FRESCO
and the open access webtool “Disulfide by Design 2” (DD2), but
only DD2 can be easily used with graphical interface [57–59]. Using
FRESCO, a temperature improvement of 35 °C was achieved due to the
combination of single disulfide bridges. Jo et al. increased the Tm of
the α-type carbonic anhydrase by 7.8 °C due to an introduction of a
disulfide bond efficiently predicted by DD2 [60]. Albeit the promising
examples, it has to be mentioned, that the extensive FRESCO strategy
cannot be understood as an end-user script, but more or less as a
blue script for improving thermostability. Wijma et al. further im-
proved FRESCO by integrating FoldX and Rosetta as additional energy
improvement tools and combined these results with Dynamic Disul-
fide Discovery algorithm based on molecular dynamic simulations
[57,145]. After in silico elimination of less stable variants, they
expressed, tested and combined beneficial point mutation sites and
disulfide bonds to gain two variants with drastically increased Tm of
34.6 and 35.5 °C, respectively. However, this strategy is very extensive
and many point mutations have to be tested and combined.

Beside the possible de novo design of disulfide bridges, further com-
putational methods like helix dipole stabilization or core repacking
exist. Core repacking aims only at the core region of proteins to increase
hydrophobic interactions. Vlassi et al. showed that a reduction of hydro-
phobic interaction decreases the protein stability [61] and computa-
tional tools like RosettaDesign and Monte Carlo simulations are
used for the optimization process [62–64]. Adapted and automated
RosettaDesign framework for repacking are available, but profound
programming capabilities are needed for applying [64]. In contrast,
helix dipole stabilization methods lead to improvements of molecular
interactions at the end of helices, which can also result in drastically in-
creased Tm by N30 °C [65,66]. However, for this strategy elaborate elec-
trostatic calculations and molecular simulations are needed to select
mutation sites. Beside these strategies, consensus sequences can also
help to improve protein stability using multiple sequence alignments.
In so-called consensus guided mutagenesis, sequences are compared
according to their amino acid frequencies to elucidate consensus
sequences. Replacing amino acid residues at certain positions with the
most prevalent ones often result in highly beneficial energy improve-
ments stabilizing proteins [67–70]. Huang et al. demonstrated that by
using consensus approach it was possible to improve the stability of
the reductase CgKR1 T5015 (temperature at which the enzyme activity is
halved within 15min) by N10 °C [71].

2. Un/folding Energy Algorithms

At least 22 standalone calculation tools are described for the predic-
tion of beneficial single and multiple point mutation sites to reduce the
Gibbs free energy of proteins. The broad diversity of these standalone
software was reviewed by Modarres et al. and beside the mentioned
FoldX algorithm, other tools like PoPMuSiC, CUPSAT, ZEMu, iRDP web
server or SDM were mentioned [72–75]. These calculation tools are
structure or sequence dependent and use energy calculation functions
or machine learning algorithms. Also databases collecting changes
in protein stability (e.g. for Gibbs free energy changes and melting
temperatures) are available like ProTherm (others are e.g. MODEL,
DSBASE), but it should be mentioned that 70% of the logged mutations
are destabilizing which leads to unintended biases [73,76]. Beside the
more popular algorithms others are published like mCSM, BeAtMuSiC
and ENCoM using different calculation approaches [77–79]. Moreover,
it is also possible to use crystallographic data gained by X-ray analysis
of protein structure. The B-factor is an indicator for the flexibility of
positions within the protein. Reetz et al. used this factor for increasing
protein stability [80].

2.1. FoldX

Considering the diversity of available algorithms, it seems to be very
difficult to choose an efficient tool for protein stabilization. In this re-
view we concentrated on the force field algorithm FoldX, which we
have used by ourselves to create a more stable ω-transaminase [81].
The force field algorithm, which was originally created by Guerois
et al. became popular as webtool in 2005 by Schymkowitz et al. and
was refined to the currently last version FoldX 4.0 [82–84].

The software package FoldX includes different subroutines e.g.
RepairPDB, BuildModel, PrintNetworks, AnalyseComplex, stability and
so on. For example the repair function of FoldX reduces the energy con-
tent of a protein-structure model to a minimum by rearranging side
chains and the function BuildModel introducesmutations andoptimizes



27O. Buß et al. / Computational and Structural Biotechnology Journal 16 (2018) 25–33
the structure of the new protein variant. The energy function of FoldX is
only able to calculate the energy difference in accuratemanner between
the wildtype and a variant of the protein [83].

ΔΔG ¼ ΔGwildtype−ΔGvariant kcal mol−1
h i

FoldX is also able to calculate total energies of objects, but this func-
tion is only valid to predict, whether a problem with the structure is
given or not. The total energy results are not able to predict experimen-
tal results [51,83]. The core function of FoldX, the empirical force field
algorithm, is based on free energy (ΔG) terms aiming to calculate the
change of ΔG in kcal mol−1 (Eq. (1)). This equation includes terms for
polar and hydrophobic desolvation or hydrogen bond energy ΔGwb

of a protein interacting with solvent and within the protein chain.
Increased protein rigidity works against entropy and consequently,
results in entropy costs.

ΔG ¼ a ΔGvdw þ b ΔGsolvH þ c ΔGsolvP þ d ΔGwb þ e ΔGhbond

þ f ΔGel þ g ΔGkon þ h TΔSmc þ k TΔSmc þ l ΔGclash

Furthermore the energy algorithm also addresses the free energy
change at protein interfaces of oligomeric proteins. This term is mainly
ΔGkon which calculates the electrostatic contribution of interactions at
interfaces [83]. The parameters which are important for the energy cal-
culationwere determined in laboratory experiments, e.g. for amino acid
residues and explored on protein chains. Beside this distinct parameters
the letters of the total energy equation, a to l, represent the weights of
separate terms [83]. The algorithm works with optimal accuracy when
the hypothetical unfolding energy difference of the hypothetical energy
from awild-type variant is determined in comparison to amutated pro-
tein. For this purpose, FoldX uses the 3D structure to calculate the hypo-
thetical unfolding energy. The algorithm was first implemented as free
available web server tool and is now a commercially available software,
which can be used free of charge for academic purposes. As a prerequi-
site, a highly resolved crystal structure is necessary to calculate the
energy changes for site-directed mutagenesis experiments. Users can
also automate the calculations e.g. by using the programming code
Python to calculate whole protein amino acid exchanges at every dis-
tinct position [85,86]. Furthermore, FoldX shows very good perfor-
mance with respect to calculation time even on single core computers.
Compared to e.g. ZEMu, FoldX needs only half the time for calculating
single site mutations (calculated on one single processor) and is faster
than RosettaDDG [75,87]. As mentioned earlier, it can be used with
a graphical user interface as plugin tool in YASARA, which opens
FoldX towards a broad community of researchers.

2.2. FoldX-applications

FoldX was applied for different stability tests, especially when pro-
tein design was performed to predict whether distinct mutations are
destabilizing. Therefore FoldX shows to be beneficial for different
approaches and is not strictly limited to a distinct function. Moreover
the peptides, individual domains andmulti-domain proteins can be ad-
dressed for experiments [88,89]. The algorithmhas been used to explain
and predict stability improvements when designing solvent stable en-
zymes. The group of U. Schwaneberg designed a laccase with improved
resistance in ionic liquids for using hardly soluble lignin lysates and
increased tolerance towards high molarity of salts [90]. Beside its suit-
ability for protein energy calculations, it is also possible to calculate
the energy changes of DNA-protein interactions [91]. Furthermore,
FoldX is implemented in a lot of approaches like Fireprot, FRESCO,
TANGOor in combinationwith Voronoia 1.0. Voronoia helps to engineer
protein core packing and is based on energy calculations using FoldX as
force field algorithm [92,93]. The program FRESCO (Framework for
Rapid Enzyme Stabilization by Computational libraries) joins Rosetta
with FoldX energy calculations and combines single point mutations
with disulfide predictions for drastic energy improvements of enzymes
[57]. The direct alternative to FoldX is the Rosetta energy algorithm. It
was shown, that Rosetta predicts other possible mutation sites than
FoldX for energy improvements, but only 25% of allmutationswere pre-
dicted by both algorithms for the same protein [57]. Additionally, the
authors of this work excluded 52% of the selected mutations manually,
e.g. excluding hydrophobic mutations on surface exposed sites andmu-
tations to a proline residue or a proline residue to a non-proline residue.
At the end around 65% of the predicted mutation sites were calculated
by FoldXand thereby 35% of all predicted siteswere discarded. Voronoia
in combination with FoldX helps to predict and to explain why hydro-
phobic interactions in the core region can have a huge impact on protein
stability, as it was demonstrated for the thermophilic lipase T1 [93].
Another approach is TANGO, which helps to predict the aggregation
of proteins and, in combinationwith FoldX, is a powerful tool for the in-
vestigation of predicted mutations regarding solubility, e.g. protective
site-directed mutations for the Alzheimer's αβ peptide [83,94,95]. Fur-
thermore, FoldX can also support protein design. For engineering the
zinc-finger nuclease, FoldX was used as prediction algorithm to detect
if the binding energy of a distinct DNA-sequence was increased or de-
creased [96]. Also, FoldX can help to estimate protein-protein binding
energy and resulting stabilities of protein complexes. Szczepek et al.
redesigned the interface between dimeric zinc finger nucleases using
FoldX as prediction tool [97]. After deeper in silico calculations, only
9.3% of predicted variants were expressed and proved to be beneficial
for stability [97]. Considering these and other experiments the perfor-
mance for FoldX should be critically evaluated.

Therefore, we gathered FoldX experiments and analyzed available
publications if FoldX was helpful for increasing protein stability
(Table 1). In general, the amount of standalone FoldX calculations for
protein stability improvement in literature is relatively low compared
to approaches, which are using FoldX as an additional tool for stability
calculation. Furthermore, FoldX is often only used as algorithm for
explanations of the impact of mutagenesis in proteins with respect to
stability or towards predictions of protein-protein or protein-DNA
binding. Therefore, in Table 1 only mutations with effects based on
FoldX predictions are pointed out, even when authors used additional
calculation tools. When no pre-selection of distinct protein sites are in-
dicated, a complete calculation of every position in the protein was per-
formed. In this case, every amino acid was exchanged with the 19
standard amino acid residues. This calculation setup results very fast
in high numbers of predicted variants. One criterion for excluding
many variants is to set an energy barrier for ΔΔG between −0.75 and
−5 kcal mol−1 for stabilizingmutations and for destabilizingmutations
of N+1 kcal mol−1 in accordance to the Gaussian distribution of FoldX
predictions (SD for FoldX 1.78 kcal mol−1 [95]) [98]. After this pre-
selection a large number of variants can be excluded. Furthermore, mu-
tations nearby active sites, proline residue mutations or variants which
seem to be critical for protein structure can be also excluded. In addition
to manual exclusion of variants, also MD-simulations can be performed
to excludemore variants. Aiming to indicate the grade of improvement,
protein melting temperature Tm or half-life activity is frequently used.
The largest positive changes in stability were reached for the T1 lipase,
phosphotriesterase, Flavin-mononucleotide-based-fluorescent-protein
and for the haloalcohol dehalogenase ranging from 8 up to 13 °C using
single site mutations [99]. However, FoldX also allows prediction of
destabilizing mutations, which were performed very accurately for
the thermoalkalophilic lipase with a negative ΔTm of 10 °C. Noticeably,
stabilizing predictions are useful for biotechnology and are therefore
mentioned in studies with biotechnological background, whereas
destabilizing predictions seem to bemore applicable for human disease
studies [95]. Beside mere stability studies, also protein design was
performed towards specific enzyme-DNA binding or antibody-antigen
binding, which can reduce the size of antibody libraries for distinct
antigen targets. Moreover, FoldX can also be used to adapt or to select



Table 1
Summary of different FoldX applications for single pointmutations regarding stability and ligand binding. The changes achieved i.e. Tm is listed for changes in proteinmelting temperature.
ΔΔG displays the change in free energy bymutation/design of proteins. “Criteria” describes the settings for experiments. “Cut-off”means, that the authors excluded those indicated FoldX
predictions (with a higher or lower ΔΔG) from further experiments. ΔΔG is defined as: ΔΔG= ΔGfold(mutation)− ΔGfold(wild type).

Aim of the study Protein/Source Criteria Number of
tested
predictions

Number
of correct
predictions

Greatest impact Resolution
crystal
structure

Ref.

Enzyme stabilization Endoglucanase
(Hypocrea jecorina)

Cut off value b ΔΔG−1.75 kcalmol−1 43 6 Stabilization
(ΔTm = 3.2 °C)

1.62 Å [65]

Phosphotriesterase
(Pseudomonas oleovorans)

Cut off value b ΔΔG−0.72 kcalmol−1 52 32 Stabilization
(ΔTm = 8.6 °C)

2.25 Å [103]

T1 Lipase (Geobacillus zalihae) One mutation site was selected
and exchanged against Val, Ile,
Met, Phe, Trp compared to
wild type

7 1 Stabilization
(+ΔTopt- = 10 °C)

1.5 Å [93]

Thermoalkalophilic lipase
(Bacillus thermocatenulatus)

3 sites preselected and amino
acids were exchanged against
Phe, Try and Trp.

9 2 Destabilizing variants
(ΔTm = −10 °C)

2.0 Å [104]

Haloalkane dehalogenase
(WT and one mutant)
Sphingomonas paucimobilis

Cut off value b ΔΔG
−0.84 kcal mol−1 + visual
inspection and MD-simulation

b150 5 Stabilization
(ΔTm = 3 °C)

0.95 Å [105]

Limonene-1,2-epoxide
hydrolase
(Rhodococcus erythropolis)

Cut off (ΔΔG b −1.2 kcal mol−1)
performed additionally further
pre-selection

21 6 Stabilization
ΔTm = 6 °C

1.2 Å [57]

Cellobiohydrolase
(Hypocrea jecorina)

43 mutations selected
(ΔΔG b −0.75 kcal mol−1)

43 10 Stabilization
ΔTm = 0.7 °C

2.35 Å [70]

ω-Transaminase
(Variovorax paradoxus)

Cut off value ΔΔG b−6.5 kcalmol−1 11 3 ΔTm = 4 °C 2.28 Å [81]

Amine transaminase
(Aspergillus terreus)

B-factor was used as pre-filter
for FoldX predictions towards
stabilization

19 6 Stabilization
ΔT1/210min = 3.5°C

1.63 Å [106]

Laccase (Trametes versicolor
and fungus PM1)

Molecular dynamic averaged
structures were used for FoldX
calculation

11 Standard
deviation max.
ΔΔG b 1 kcalmol−1

ΔTm = 3–5 °C 2.4 Å [107]

Haloalcohol dehalogenase
(Agrobacterium tumefaciens)

Cut off (ΔΔG b −1.2 kcal mol−1)
775 mutants were predicted by
FoldX and reduced using
Rosetta-dgg and MD-simulation

55 29 Stabilizing
ΔTm = 13 °C

1.9 Å [99]

Chalcone synthase
(Physcomitrella patens)

Calculation of total energy
ΔG= −63 up to 67 kcal mol−1

Single site variant

19 2 1 variant showed
high thermal stability

Homology
modeling

[108]

Carbonyl reductase
(Streptomyces coelicolor)

Variants with ΔΔG b−4 kJ mol−1

were selected
3 1 Stabilization of

ΔT5015 = 1.3°C
1.6 Å [109]

Peptide Amidase
(Stenotrophomonas
maltophilia)

Cut off value ΔΔG b−5 kJ mol−1 44 6 Stabilizing
ΔTm = 6 °C

1.8 Å [110]

Enzyme stabilization
and comparison
to other tools

Penicillin G acylase
(Escherichia coli)

Not reported 21 8 – 1.9 Å [111]

Enzyme destabilization Triosephosphate isomerase
(Saccharomyces cerevisiae)

Selection of all energy predictions
between ΔΔG = 3–8.5 kcal mol−1

23 6 No correlation
between T1/2 and
ΔΔGFoldx observed

1.9 Å [112]

Protein-protein
interaction
prediction

SH2 domain (Gallus gallus) Random sequences for binding 50,000 Area under the
ROC curve 0.79
(accuracy)

FoldX can predict
better than random
binding events

2.1 Å [113]

Improvement of
DNA binding

Zinc finger nucleases
(Homo sapiens)

Cut off value b ΔΔG−5 kcalmol−1

420 predicted engineering sites
Cut off value b ΔΔG−10 kcalmol−1

420 60% (low
binding energy)
95% (high
binding energy)

Improved DNA
binding
(−13 kcal mol−1)

1.6 Å [96]

Protein stabilization Anti-hVEGF antibody
(Homo sapiens)

Single point mutations no cut off
value reported

60 40% of tested sites
were more stable

Stabilization
(+ΔTm = 2.2 °C
(single site))
ΔTm = 7 °C
(combination)

Structure
modeling

[86]

Destabilization of
salt bridges

Subtilisin-like proteinase
(Thermus aquaticus)

Salt bridge amino acids were
mutated to Phe, Gln, Asn, Glu. FoldX
calculation were performed 5 times
and averaged for each mutation.

8 6 Highest destabilization
(−ΔTm = −8.8 °C)

1.55 Å [114]

Protein stabilization Growth factor 2
(Homo sapiens)

Cut off (ΔΔG b −1 kcal mol−1) 5 2 Stabilization
ΔTm = 3.7 °C

1.6 Å [115]

Flavin mononucleotide
based fluorescent
Protein (Bacillus subtilis)

Cut off (ΔΔG b −1 kcal mol−1)
performed additionally further
pre-selections

22 15 Stabilization
ΔTm = 11.4 °C

Resolution
under 2.2 Å

[116]

Endolysin PlyC
(Bacteriophage)

Cut off (ΔΔG b −1 kcal mol−1)
92 mutants were determined by
FoldX and reduced by visual
inspection and by Rosetta

12 3 Stabilization
ΔTm = 2.2 °C

3.3 Å refined
using Rosetta
Relax

[117]

Database (known mutations) Cut off value ΔΔG b−1.0 kcalmol−1 30 20 n.d. 1.5 to 2.25 Å [87]

28 O. Buß et al. / Computational and Structural Biotechnology Journal 16 (2018) 25–33



Table 1 (continued)

Aim of the study Protein/Source Criteria Number of
tested
predictions

Number
of correct
predictions

Greatest impact Resolution
crystal
structure

Ref.

Protein destabilization Repair protein MSH2
(Homo sapiens)

Cut off value (ΔΔG N 5 kcal mol−1) 24 22 Destabilization
of N3 kcal mol−1

3.3 Å [85]

cblA-Type methylmalonic
aciduria (Homo sapiens)

Cut off value ΔΔG between 3.48
and 11.15 kcal mol−1

22 22 – 2.64 Å [118]

Investigation of
proline influence
on stability

Fungal chimeric
cellobiohydrolase Cel6A
(Humicola insolens)

ΔΔG of exchanges of wild type
amino acid against Pro exchange
was calculated

17 57% were predicted
correctly as
destabilizing
43% as stabilizing

Destabilization
ΔTm =−4 °C
Stabilization
ΔTm =+4 °C

1.3 Å [119]

Influence of core
residue substitutions
on stability

Glycoside-hydrolase
(Neisseria polysaccharea)

Settings not reported. 133 (7 sites)
mutants were investigated towards
stabilization or destabilization

57
(stabilizing)
76 (rest)

9 (stabilizing)
24 (destabilizing)

Stabilizing up to
ΔTm = 2°
Destabilizing
ΔTm =− 6 °C

1.4 Å [120]

Validation of
estimations
using FoldX

Laccase (T. versicolor) 2 sites selected as targets for
stability in ionic liquid

2 2 1 variant showed
stability improvement
in ionic liquid

2.4 Å [90]
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mutations to increase stability in ionic liquids. For this, FoldX calcula-
tions were performed with increasing salt concentration during the
simulations, but currently no further experiments towards ionic liquid
improvement can be found. In literature also numerous examples can
be found dealing with diseases caused by protein mutations. These in-
vestigations aim to prove whether human proteins are less stable with
a mutation compared to the wild-type or might interact differently
with other proteins [100–102].

2.3. Accuracy of FoldX

From the FoldX studies summarized in Table 1 it can be deduced that
the crystal-structure quality is crucial for accurate calculations. From a
benchmark test on myoglobin mutants Kepp concluded that some pro-
tein stability predicting algorithms are extremely sensitive towards
crystal structure quality and some are very robust [121]. It seems plau-
sible that interactions are in the order of atomic resolutions and there-
fore the crystal structure quality has an important influence on energy
calculations [107,121–123]. However, for the prediction algorithms
PoPmuSic, I-Mutant 3.0 and other tools the influence of the crystal
structure qualitywas only in the order of 0.2 kcal mol−1 (standard devi-
ation using different structure data of superoxide dismutase 1) [123].
According to Christensen et al. FoldX belongs to themore structure sen-
sitive methods and Kepp suggested to use only structures solved in
scales of near-atomic-resolutions [107,121]. With reference to Table 1,
all cited studies were based on crystal structures with an resolution
better than 3.3 Å and an average resolution of 1.87 Å which is nearby
atomic resolution (1 Å is approximately the diameter of an atom plus
the surrounding cloud of electrons). Furthermore, also protein-protein
interactions might have an influence on the prediction power, which
are not addressed in some performance studies like from Tokuriki
et al., because only monomeric proteins were selected [124], but
e.g. Pey et al. and Dourado and Flores showed that also oligomers can
be utilized for calculations (using extra terms:ΔGkon electrostatic inter-
action, ΔStr translational and rotational entropy) [125,75]. The root-
mean-square deviation (RMSD) in a dataset of protein complexes,
with known energy impacts, was determined to be 1.55 kcal mol−1

(for single mutants) [75]. In contrast the algorithm ZEMu addresses
such mutations on interfaces better than FoldX [75].

Based on experimental results, it can be concluded that the predic-
tion of destabilizingmutations ismore accurate than prediction of stabi-
lizing mutations. After pre-selection of experiments with the aim to
increase stability, it can be concluded that the approximate success
rate for mutations predicted as stabilizing (according to their negative
ΔΔG-values) is only 29.4% (focusing on 13 single mutation experi-
ments). For experiments with focus on detection of destabilizing muta-
tions or for simple proof of destabilizing events, sample size is only five
but the average success rate is 69%. However, with regard to the small
sample size a valid statement about success rates cannot be made. It is
likely that many unsuccessful experiments were not published and
therefore, the real success rate might be much lower. Khan et al. evalu-
ated the performance of 11 protein stability predictors by using a
dataset containing N1700 mutations in 80 proteins which were taken
from ProTherm database. It was shown that FoldX was among the
three most reliable algorithms, predicting 86 true positives and 133
false positives for stabilization from 776 variants, which is a success
rate of 64%. OnlyDmutant andMultiMutatewere comparably successful
in predicting stabilization events [102].

Compared to other results, this success rate might be higher than
expected. As an example for an investigation of the performance of an
adapted FoldX algorithm, laccase isoenzymes were used. The large cal-
culation setup included 9424 FoldX predictions per isoenzyme using
an adapted algorithm. These calculations were evaluated by using mo-
lecular dynamic simulations and additional different settings within
FoldX were tested. Like mentioned before, the authors remarked that
FoldX needs high-resolution crystal structures of proteins and that
FoldX performs well in predicting stability trends, but not in a quantita-
tive accuracy [75]. Using the deciphering protein (DPP) as an example,
Kumar et al. showed on the basis of 54 DPP mutants how accurate the
prediction power of FoldX is compared to other tools. The study focused
on destabilizingmutation events, whichwere described inmedical data
sets of DPP and concluded that the R-value (correlation coefficient) was
only 0.45 to 0.53. The quality of the crystal structures in this study
ranged between 1.07 and 1.93 Å [77]. Potapov et al. utilized for perfor-
mance investigation a protein database set regarding 2156 variants in
59 proteins. The crystal structure qualities were not reported. However,
they concluded that 81.4% of Tm changes were qualitatively predicted
correctly [127].

Furthermore Potapov et al. headlined their work for analyzing
different protein stability tools “Assessing computational methods for
predicting protein stability upon mutation: good on average but not in
the details”, and proved that FoldX has potential to predict if a certain
mutation is stabilizing or destabilizing, but its prediction power de-
creases, when ΔΔG is correlated with ΔΔGexperimental or with stability
parameters like Tm [127]. The correlation coefficient R, plotting
ΔΔGtheoretical against ΔΔGexperimental values from databases was only
0.5 (for negative and positive ΔΔG), but it also depends on the crystal
structure and on the nature of the protein [127].

For better comparison, we summarized statistical parameters given
for the different algorithms derived from Kumar et al., and other studies
(as indicated) in Table 2, but not for every algorithm we were able to
find a full set of data. For example, Kumar et al. analyzed the predictive
power of eight different tools, i.e. PoPMuSiC 3.1, BeatMuSiC, CUPSAT,
I-Mutant 2.0/3.0, mCSM, ENCoM and FoldX, using the example of the



Table 2
Summary of different algorithms evaluated in performance tests considering prediction accuracy in comparison to experimentally investigated mutations and calculated statistical
parameters. This table displays reported standard deviations of predicted true positives and true negatives. Accuracy is defined as ratio of true positives/true negatives to the total number
of predictions. R-values (correlation coefficients) describe how precisely the predicted energies fit to database values.

Algorithm Standard deviation Accuracy range (min.–max.) R-values

FoldX 1.0 to 1.78 kcal mol−1 [118,116,95] 0.38 to 0.8 [128]
Average accuracy: 0.69 [87,103,127,129]

0.29 [130] to 0.73 [118]

BeatMuSiC 1.2 kcal mol−1 [77] 0.46 [77]
CUPSAT 1.8 kcal mol−1 [77] 0.5 [102] 0.3 [77]
I-Mutant 2.0/3.0 1.2 to 1.52 kcal mol−1 [77,95] 0.48 [102] to 0.75 [127] 0.16 [77] to 0.51 [95]
PoPMuSiC 1.1 kcal mol−1 to 1.32 [77,95] 0.62 [129] to 0.85 [129] 0.51 to 0.55 [95,77]
mCSM 3.2 kcal mol−1 [77] 0.23 [77]
ENCoM 1.5 kcal mol−1 [77] 0.04 [77]
Rosetta-ddG 2.3 kcal mol−1 [95] 0.71 [127] to 0.76 [87] 0.26 [127] to 0.54 [95]
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human superoxide dismutase1 [73]which is involved in themotor neu-
ron disease [131]. In this benchmark test FoldX and PoPMuSiC per-
formed best by far. FoldX showed in this test a correlation coefficient
R of 0.53 and a standard error of 1.1 kcal mol−1, whichwas only slightly
surpassed by PoPMuSiC [77]. In conclusion, the authors described FoldX
as more sensitive and accurate towards difficult mutation sites but
PoPMuSiC asmore accurate to all kinds of mutations. Also, they demon-
strated that FoldX can interpret patient data for dismutase diseases
quite well with an R of 0.45 compared to other tools. Bednar et al. com-
pared FoldX with Rosetta-ddG, ERIS and CUPSAT [87] and determined
FoldX and Rosetta-ddG as best algorithms for improving stability. Foit
et al. showed for the immunity protein 7 that FoldX was able to predict
destabilizing mutations very well (Coefficient of determination (R2)
of 0.62), but the algorithmwas unable to predict the influence of stabi-
lizing mutants. However in comparison to I-Mutant 2.0, PoPMuSiC and
Eris, FoldX showed a better performance for prediction of destabilizing
mutagenesis events (R2-values of: 0.34, 0.24, 0.3) [132]. Tian et al. and
by Broom et al. determined the R-value of FoldX with known true pos-
itives and true negatives to be 0.5 with an accuracy of 0.67 [98,95].
Ayuso-Tejedor et al. determined R-value with 0.20 to 0.29 for the corre-
spondingmutants against predicted negativeΔΔG-values [130]. In con-
trast, by investigating 582 mutants of seven proteins, R was 0.73 with
a standard deviation of 1.02 kcal mol−1 [134]. The best result was a cor-
relation coefficient of 0.73 for a lysozyme structure [127] and was in-
creased to 0.74, when only hotspot areas were chosen for prediction.
The standard deviation (1.37 kcal mol−1) was in the same range of
Broom et al. (1.78 kcal mol−1) [95]. However, Tokuriki et al. calculated
that the average ΔΔG for any protein is +0.9 kcal mol−1 ΔΔG, which
clearly shows, that the probability of destabilization events is much
higher, which concludes that the number of stabilizing theoretical mu-
tants ismuch lower [135]. Not only the number of theoretical stabilizing
mutations seems to be lower, also the correlation for predicted stabiliz-
ingmutations towards real stabilization is weaker than for destabilizing
mutations [57,111]. In contrast, Khan et al. showed for human proteins
that FoldX predicts more stability increasing variants than destabilizing
variants, whichmight be a hint that human proteins are relatively non-
rigid and less thermostable compared to other protein sources or
that distribution of ΔΔGcalculated against the frequency of stabilizing
and destabilizing mutations is only protein depending [102]. Further-
more, the calculatedΔΔGFoldx energies deviate from realΔΔGmeasure-
ments. The values can be recalculated using an experimental factor
ΔΔGexperimental = (ΔΔGcalculated + 0.078) 1.14−1 [135,136]. Depending
on the method used to evaluate FoldX, the accuracy will be in the
range from 0.38 to 0.80 [102,129]. Obviously, FoldX can predict posi-
tions which are important for stability, but the discrimination between
different amino acid residues at one site is not really powerful, e.g. an
exchange of lysine to glutamate did not result in any change of ΔG,
but experimentally a stabilization was observed [120,128]. The sum-
marized results in Table 2 demonstrate that actually all algorithms
are not able to design or predict single mutation events towards trust-
worthy one mutation protein designs. However, FoldX shows a good
performance in most of the studies compared to other algorithms,
but it is necessary to increase the number of experimental mutations
above 3 to achieve probable true positive results for protein engineering
experiments. A general disadvantage of FoldX and other algorithms
seems to be that FoldX often predicts hydrophobic interactions but at
the expense of protein solubility [95].

2.4. The Next Generation of FoldX Based Predictions

Due to the low accuracy of all algorithms for stabilizationmutations,
algorithms often are combined to find coincident predictions or to
prove predictions with a second algorithm. A popular combination is
FoldX and Rosetta-ddG to gain more stabilizing mutation predictions.
It was shown that FoldX and Rosetta-ddG predictions overlapped only
in 12%, 15% or 25%, respectively, which means that a good coverage of
beneficial mutations can only be achieved when more than one tool is
used [57,87,105]. As a consequence of low prediction accuracy, popular
algorithms are continuously improved. Recently a refinement of the
Rosetta energy algorithm was reported with increased accuracy and
faster calculation times. This demonstrates also the continuing impor-
tance of stability prediction in the field of protein engineering, but the
authors stated that it is still far away from a final gold standard in the
field of energy content prediction [137].

A sophisticated approach is the freeware webtool FireProt [138].
The FireProt algorithm uses FoldX as a pre-filter to select beneficial
mutations which are subsequently proved in a second round using
Rosetta-ddG. Only if Rosetta-ddG also predicts thesemutations as puta-
tively stabilizing they will be used for the experimental realization
of these amino acid exchanges. Furthermore, the algorithm uses a con-
sensus analysis of the protein-sequences to predict evolutionary bene-
ficial mutation sites towards stability. These selected sites are then
evaluated for their suitability using FoldX. The algorithm is divided
into three stages using different methods for crosschecking the accu-
racy of the calculations and combines putative beneficial mutations to
gain further improvement of stability. The free webtool of FireProt al-
lows even inexperienced users to perform protein energy calculations.
Bednar et al. demonstrated at two examples the utility of this algo-
rithm using the example of two enzymes and combined many muta-
tion sites with overall improvements of ΔTm of 21 °C and 24 °C for
the combination of all sites [87]. However, to verify if FireProt is useful
or not, more studies are necessary. Furthermore, the core function
of FoldX algorithm does not simulate backbone movements of the
protein, which might be a potential factor to improve FoldX [75]. The
stability prediction tool of Goldenzweig et al. might be an alternative
to the mentioned Fireprot -algorithm. Similar to Fireprot, it combines
information gained in sequence homology alignments and of energy cal-
culations using crystal structure data and Rosetta-ddG. Using the human
acetylcholinesterase, an improvement in stability (ΔTm = 20 °C) was
demonstrated and simultaneously, the expression level in E. coli
BL21 was increased. They hypothesized, that putatively destabilizing
mutations can be excluded from mutation libraries using homologous
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sequence alignments to prohibit certain types of amino acid exchanges
[139].
3. Conclusion

The performance of FoldX depends drastically on the quality of the
crystal structure and it is unclear if the protein source might have an
influence on the accuracy of such algorithms. Nevertheless, FoldX
seems to be more accurate for the prediction of destabilizing mutations
and less accurate for the prediction of stabilizing mutations, but in
both cases it was shown that FoldX is clearly better than random
approaches: e.g. Christensen et al. described FoldX as one of the most
accurate single site stability predictors and Potapov et al. even de-
scribed the accuracy of FoldX as impressive compared to other algo-
rithms [122,127]. The natural success rate for random mutagenesis
is only ~2%, which was surpassed by most experiments [95,140].
Therefore, FoldX seems to be a promising tool for protein design, but
as mentioned by Thiltgen et al. we agree that FoldX cannot serve as a
gold-standard for generally improving stability of proteins. Moreover,
using FoldX together with other algorithms for reciprocal control of
calculation results, Rosetta-ddG or PoPmuSiC as filter for true positive
results will most probably increase the accuracy and the success rate
of thermostability engineering [141,87,95]. In general the accuracy
can be improved additionally, when mutation outliers are eliminated
or additional MD-simulations are performed [83]. FoldX was used suc-
cessfully in different approaches (Table 1) aiming from enzyme stabili-
zation towards predictions of protein-protein interactions (especially
for drug design) or for the prediction of disease-associated mutant
proteins, making FoldX a versatile tool for life science [81,142–144].
The progress in protein stability prediction is striking, however up to
now no in silico calculation can fully spare experimental procedures,
although the existing tools can reduce the amount of lab experiments
significantly.
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