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Abstract
Background  In recent years, as deep learning has received widespread attention in the field of heart disease, 
some studies have explored the potential of deep learning based on coronary angiography (CAG) or coronary CT 
angiography (CCTA) images in detecting the extent of coronary artery stenosis. However, there is still a lack of a 
systematic understanding of its diagnostic accuracy, impeding the advancement of intelligent diagnosis of coronary 
artery stenosis. Therefore, we conducted this study to review the accuracy of image-based deep learning in detecting 
coronary artery stenosis.

Methods  We retrieved PubMed, Cochrane, Embase, and Web of Science until April 11, 2023. The risk of bias in the 
included studies was appraised using the QUADAS-2 tool. We extracted the accuracy of deep learning in the test 
set and performed subgroup analyses by binary and multiclass classification scenarios. We performed a subgroup 
analysis based on different degrees of stenosis and applied a double arcsine transformation to process the data. The 
analysis was done by using R.

Results  Our systematic review finally included 18 studies, involving 3568 patients and 13,362 images. In the included 
studies, deep learning models were constructed based on CAG and CCTA. In binary classification tasks, the accuracy 
for detecting > 25%, > 50% and > 70% degrees of stenosis at the vessel level were 0.81 (95% CI: 0.71–0.85), 0.73 (95% 
CI: 0.58–0.88) and 0.61 (95% CI: 0.56–0.65), respectively. In multiclass classification tasks, the accuracy for detecting 
0–25%, 25–50%, 50–70%, and 70–100% degrees of stenosis at the vessel level were 0.78 (95% CI: 0.73–0.84), 0.86 (95% 
CI: 0.78–0.93), 0.83 (95% CI: 0.70–0.97), and 0.70 (95% CI: 0.42–0.98), respectively.

Conclusions  Our study shows that deep learning models based on CAG and CCTA appear to be relatively accurate in 
diagnosing different degrees of coronary artery stenosis. However, for various degrees of stenosis, their accuracy still 
needs to be further improved.
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Introduction
Coronary artery disease (CAD) is the most prevalent 
heart disease [1] and affects 7.2% of adults aged ≥ 20 in 
the United States [2]. It is a particular health concern in 
densely populated countries [3]. CAD mainly manifests 
as coronary artery stenosis, which arises from plaques 
within arteries caused by the deposition of cholesterol, 
calcium, and fat [4]. These plaques can obstruct arter-
ies, and then restrict oxygen-rich blood flowing into 
the heart, potentially leading to fatal outcomes. Conse-
quently, accurately quantifying the degree of coronary 
artery stenosis is crucial for early diagnosis, risk assess-
ment, and the management of CAD [5]. Early identifi-
cation and management of CAD is essential in clinical 
practice since it can reduce the risk of acute coronary 
events and sudden death.

While invasive coronary angiography (CAG) is still the 
gold standard for the diagnosis of stenosis [6], several 
non-invasive techniques are available, such as Electron 
Beam Computed Tomography (EBCT), Multi-Detector 
Computed Tomography (MDCT), and Coronary Mag-
netic Resonance Angiography [7]. However, these meth-
ods heavily rely on clinical practitioners’ expertise and 
experience. With recent advancements in artificial intel-
ligence and statistical theory, image-based artificial intel-
ligence has been successfully applied to the diagnosis 
and treatment of diseases in clinical practice. The appli-
cation of artificial intelligence in the medical field, par-
ticularly deep learning, has garnered significant attention 
from researchers. Deep learning has been widely utilized 
across various domains, including drug discovery and 
biomedical signal analysis. For instance, neural network-
based models have been effectively employed to pre-
dict drug permeability across the placenta [8]. Machine 
learning approaches, integrating fingerprint amalgama-
tion and data balancing, have been used to comprehen-
sively analyze drug permeability through the blood-brain 
barrier [9]. Additionally, deep learning methods have 
been applied to estimate age and gender from electro-
cardiogram signals [10], and food recognition has been 
automated via deep learning models [11]. Over the past 
decade, deep learning has made significant advance-
ments in medical information science and image analysis 
[12], particularly through the use of convolutional neural 
networks (CNNs). CNNs have made notable advance-
ments in fields like computer vision and speech recogni-
tion. For example, efficient CNNs such as ConvUNeXt 
and DRU-Net have been developed for medical image 
segmentation [13, 14], highlighting the strengths of deep 
learning in ultrasound image segmentation [15]. Addi-
tionally, neural networks with improved segmentation 
accuracy have been developed for liver CT image seg-
mentation and liver ultrasound image segmentation. [16, 
17]. Researchers have proposed a new framework that 

can effectively bridge CNNs and transformers (Cotr) for 
precise 3D medical image segmentation [18]. In the con-
text of liver tumor diseases, image segmentation serves 
as the first step for clinicians in optimizing diagnosis, 
staging, treatment planning, and interventions, which 
could potentially impact diagnostic and therapeutic out-
comes [19]. Additionally, researchers have explored the 
risk assessment of computer-aided diagnostic software 
for hepatic resection [20]and evaluated the effectiveness 
of fusion imaging for immediate post-ablation assess-
ment of malignant liver neoplasms [21]. Deep learning 
also appears to show promising results in the diagnosis 
of certain complex cardiac diseases. For instance, arti-
ficial intelligence and deep neural networks have been 
employed to identify electrocardiographically concealed 
long QT syndrome using surface 12-lead electrocardio-
grams (ECGs), demonstrating their potential in the intel-
ligent diagnosis of diseases [22].

In this context, some researchers have explored deep 
learning models based on coronary angiography (CAG) 
or coronary CT angiography (CCTA) images to identify 
the degree of coronary artery stenosis. Nevertheless, 
comprehensive evidence substantiating their efficacy 
remains insufficient. Therefore, we conducted this sys-
tematic review and meta-analysis of previously published 
studies to provide the following evidence for the use of 
deep learning in the diagnosis of coronary artery steno-
sis: (1) A review of the accuracy of deep learning in differ-
entiating various levels of coronary artery stenosis based 
on CAG or CCTA; (2) A review of the accuracy of deep 
learning in diagnosing coronary artery stenosis for both 
binary classification and multiclass classification tasks.

Methods
Study registration
This study was carried out following the Preferred 
Reporting Items for Systematic Reviews and Meta-Anal-
yses (PRISMA) 2020 guidelines and prospectively regis-
tered with PROSPERO (ID: CRD42023444635).

Eligibility criteria
Inclusion criteria

(1)	 Studies that have fully developed deep learning 
models for identifying the degree of coronary artery 
stenosis, including both binary classification and 
multiclass classification tasks.

(2)	 Some studies may utilize the same publicly available 
database. We acknowledged the contributions of 
these studies, and included various deep learning 
investigations conducted on the same dataset.

(3)	 In previous research, there may be a small number 
of studies that have validated previously developed 
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deep learning models. These studies were also 
included in our systematic review.

(4)	 The types of studies included were case-control 
studies, cohort studies, and cross-sectional studies.

(5)	 Studies had to be written in English.

Exclusion criteria

(1)	 Meta-analyses, reviews, guidelines, and expert 
opinions were excluded.

(2)	 Studies lacking model validation were excluded.
(3)	 Studies did not report the following outcome 

measures for model accuracy: ROC, c-statistic, 
c-index, sensitivity, specificity, accuracy, recovery, 
precision, confusion matrix, diagnostic fourfold 
table, F1 score, and calibration curve.

(4)	 Studies solely focused on image segmentation and 
reconstruction.

Data sources and search strategy
PubMed, Cochrane, Embase, and Web of Science were 
thoroughly retrieved up to April 11, 2023. Both MeSH 
terms and free-text keywords were used, without restric-
tions on publication region or year. Details of the search 
strategy are available in Table S1.

Study selection and data extraction
All identified articles were imported into EndNote soft-
ware. Duplicates were automatically and manually 
removed. After checking titles and abstracts, we deleted 
irrelevant studies. The full texts of the remaining articles 
were reviewed to determine eligible studies.

Fig. 1  Visually depicts the literature screening process
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A structured form was used to extract data, includ-
ing title, first author, year of publication, author’s coun-
try, study type, patient source, image source, diagnostic 
criteria for coronary artery stenosis, degree of coronary 
artery stenosis, total number of cases, number of coro-
nary artery stenosis cases in training set, total number 
of cases in training set, generation methods of validation 
set, number of coronary artery stenosis cases in valida-
tion set, number of cases in validation set, and the type of 
models used. The literature screening and data extraction 
were independently implemented by two researchers, fol-
lowed by cross-checking. Any dissents were addressed by 
a third researcher (a cardiology expert).

Risk of bias assessment
The QUADAS-2 tool (Quality Assessment of Diagnostic 
Accuracy Studies-2) was leveraged to discern the risk of 
bias and applicability of the included studies [23]. This 
tool encompassed specific questions in four aspects: 
patient selection, index test, reference standard, and flow 
and timing. Each question was answered as Yes, No, or 
Unclear, which suggested a low, high, or unclear risk of 
bias, respectively. Studies were graded at low risk of bias 

if all key questions in each domain were answered with 
Yes. If all signal questions were answered as No, there was 
potential bias. An unclear risk was considered if there 
was no sufficient information for a definitive judgment.

The quality assessment was independently conducted 
by two researchers (a clinician with 5 years of experience 
in cardiology and a clinician with over 5 years of cardiol-
ogy experience). Then their results were cross-checked. 
Discrepancies were resolved by a third researcher (a car-
diology expert).

Outcomes
This study assessed the accuracy of deep learning in 
detecting the degree of coronary artery stenosis. Notably, 
the degree thresholds for defining stenosis were inconsis-
tent across studies from different countries, and > 25%, 
> 50%, and > 70% were mainly used.

Synthesis methods
Since a limited number of the included studies reported 
the number of cases and images of different stenosis 
degrees, we failed to perform the planned meta-analysis 
using a bivariate mixed-effects model and diagnostic 

Fig. 2  Results of vessel-based meta-analysis for binary classification tasks
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2 × 2 tables, as described in the registered protocol. Con-
sequently, a meta-analysis of sensitivity was conducted 
instead. Heterogeneity across studies was examined uti-
lizing the Q test and I² index. A fixed-effects model was 
employed for meta-analysis if I² <50%, while a random-
effects model was applied if I² >50%. Subgroup analyses, 
sensitivity analyses, and meta-regression analyses were 
implemented to discern the sources of heterogeneity.

Results
Study selection
A total of 2,139 reports were identified from PubMed, 
Cochrane, Embase, and Web of Science. After the 
removal of 749 duplicate publications, titles and abstracts 
were checked, and 42 potentially relevant studies were 
selected. After a thorough full-text review, 18 stud-
ies were eligible and included [4, 24–39]. The literature 
screening process is shown in Fig. 1.

Study characteristics
The 18 included studies encompassed 3,568 patients 
and 13,362 vascular images. These studies were pub-
lished between 2019 and 2023, and these studies were 
conducted in China, the United States, Australia, Japan, 
Mexico, Portugal, and the Netherlands. Five studies were 
multicenter studies [25, 32, 33, 35, 37], while the remain-
ing were single-center studies. Regarding image sources, 
3 studies relied solely on CAG images [27, 28, 31], 11 uti-
lized only CCTA images [4, 24–26, 28–30, 33, 37–39], 
and 4 used both modalities [27, 32, 35, 36]. Twelve stud-
ies used binary classification tasks [24–26, 28, 29, 31, 32, 
34–36], while six focused on multiclass tasks [4, 27, 30, 
33, 37, 38]. The threshold for defining coronary artery 
stenosis varied across studies, with > 25%, > 50%, and 
> 70% being the most commonly used. Five studies used 
25% as the threshold for defining coronary artery ste-
nosis [26, 28, 30, 33, 37], seven used 50% [24, 25, 28, 32, 
36–38], four used 70% [30, 33, 37, 38], and two did not 
explicitly define the threshold [4, 35]. Detailed informa-
tion is provided in Table 1.

Risk of bias
While all included studies employed a case-control 
design, this design did not impact the assessment of 
the performance of deep learning. Thus, the risk of bias 
in patient selection is considered low. Additionally, 
although the included studies did not describe whether 
the index tests were interpreted without the knowledge 
of the results of the reference standard, their results were 
obtained using artificial intelligence, which did not affect 
the assessment of the performance of deep learning. As 
such, the risk of bias in the index test was also deemed 
low. Besides, most studies lacked explicit information on 
the blinding in the assessment of the reference standard. N
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However, there was a reasonable interval between the 
index tests and reference standard, and all patients 
received a reference standard, suggesting a low risk of 
bias in flow and timing.

Meta-analysis
Binary classification tasks
For binary classification tasks, most studies mainly 
used < 50% and > 50% as the threshold for defining cor-
onary artery stenosis, while limited studies used 25% 
and 70%. Based on vascular images, the meta-analysis 
revealed that the accuracy of deep learning models was 
0.79 (95% CI: 0.64–0.94) for detecting < 50% stenosis and 
0.73 (95% CI: 0.58–0.88) for > 50% stenosis. However, the 
results for 25% and 70% stenosis should be interpreted 
with caution (Fig.  2). Likewise, based on patients, the 
meta-analysis showed higher performance of deep learn-
ing models in the diagnosis of < 50% stenosis (0.83, 95% 
CI: 0.74–0.93) compared to > 50% stenosis (0.79, 95% CI: 
0.66–0.91) (Fig. 3).

Based on vascular images, the meta-analysis showed 
that the accuracy of CCTA-based models was 0.80 (95% 

CI: 0.76–0.84) for detecting < 50% stenosis, 0.76 (95% CI: 
0.53–0.99) for > 50% stenosis, 0.81 (95% CI: 0.76–0.84) 
for < 25% stenosis, and 0.81 (95% CI: 0.75–0.88) for > 25% 
stenosis (Fig.  4). Based on patients, the meta-analysis 
revealed that the accuracy of these models was 0.87 (95% 
CI: 0.67–1.07) for detecting < 50% stenosis, 0.70 (95% CI: 
0.62–0.79) for > 50% stenosis, 0.85 (95% CI: 0.81–0.90) 
for < 25% stenosis, and 0.72 (95% CI: 0.62–0.82) for > 25% 
stenosis (Fig. 5).

Multiclass classification tasks
For multiclass classification tasks, based on vascular 
images, the meta-analysis revealed that the accuracy of 
deep learning models was 0.78 (95% CI: 0.73–0.84) for 
detecting 0–25% stenosis, 0.86 (95% CI: 0.78–0.93) for 
25–50% stenosis, 0.83 (95% CI: 0.70–0.97) for 50–70% 
stenosis, and 0.70 (95% CI: 0.42–0.98) for 70–100% 
stenosis (Fig.  6). Based on patients, the meta-analysis 
revealed that the accuracy of deep learning models was 
0.72 (95% CI: 0.48–0.95) for detecting 0–25% stenosis, 
0.78 (95% CI: 0.55–1.00) for 25–50% stenosis, 0.65 (95% 

Fig. 3  Results of per-patient-based meta-analysis for binary classification tasks
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Fig. 5  Results of per-patient-based meta-analysis for models based on CCTA images

 

Fig. 4  Results of vessel-based meta-analysis for models based on CCTA images
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CI: 0.30–1.00) for 50–70% stenosis, and 0.74 (95% CI: 
0.54–0.94) for 70–100% stenosis (Fig. 7).

Discussion
Summary of the main findings
Deep learning is relatively accurate in detecting coronary 
artery stenosis, especially > 50% and < 50% stenosis. In 
binary classification tasks, the accuracy of deep learning 
models in detecting < 50% stenosis at the vessel level was 
0.79 (95% CI: 0.64–0.94), and 0.73 (95% CI: 0.58–0.88) for 
> 50% stenosis. In the multiclass classification tasks, the 
accuracy was 0.86 (95% CI: 0.78–0.93) for 25–50% steno-
sis and 0.83 (95% CI: 0.70–0.97) for 50–70% stenosis.

Coronary artery stenosis is often caused by atheroscle-
rosis which narrows the coronary artery lumens. In most 
studies, significant stenosis is typically defined as a 50% 
or higher degree of stenosis [40]. The treatment of CAD 
primarily relies mainly on drugs, often combined with 
reperfusion therapies through interventional procedures 
or bypass surgery. These treatments aim to improve 
coronary blood flow, prevent cardiovascular events, 
and enhance quality of life [41]. The specific treatment 

approach would be formulated according to the severity 
and number of coronary artery stenosis. Existing studies 
mainly focus on significant stenosis (> 50%). Our find-
ings demonstrate the high accuracy of deep learning in 
detecting stenosis > 50%, suggesting that deep learning is 
a feasible technique.

Recent research has mainly used image-based tech-
niques to detect coronary artery stenosis. Song-Bai Deng 
et al. [42] reported that FFRCT showed a sensitivity of 
90% (95% CI: 85–93%) and a specificity of 72% (95% CI: 
67–76%) in the diagnosis of CAD. A review by Zhenhua 
Xing et al. [43] described the accuracy of quantitative 
flow ratio (QFR) in the assessment of moderate coro-
nary artery stenosis, with a sensitivity of 0.89 (95% CI: 
0.86–0.92) and a specificity of 0.88 (95% CI: 0.86–0.91). 
Shun-Lin Guo [44] reported that dual-source computed 
tomography (DSCT) achieved a sensitivity of 0.957 (95% 
CI: 0.943–0.969) and specificity of 0.930 (95% CI: 0.910–
0.940) in the diagnosis of CADs when the degree of ≥ 50% 
was used as the threshold to define significant stenosis. 
Although these studies have reported promising perfor-
mance of deep learning in binary classification tasks, they 

Fig. 6  Results of vessel-based meta-analysis for multiclass classification tasks
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overlook multiclass scenarios. However, assessing vary-
ing degrees of coronary artery stenosis is prevalent in 
clinical practice. Hence, our comprehensive review high-
lights favorable performance of machine learning in the 
diagnosis of vascular stenosis in multiclass settings, with 
an accuracy rate of 0.78 (95% CI: 0.73–0.84) for 0–25% 
stenosis, 0.86 (95% CI: 0.78–0.93) for 25–50% stenosis, 
and 0.83 (95% CI: 0.70–0.97) for 50–70% stenosis.

Image segmentation is a key technique in the field of 
computer vision. It involves the process of dividing an 
image into multiple regions or objects [45]. In medical 
imaging, particularly in cardiovascular imaging, seg-
mentation is a critical step for enhancing the diagno-
sis of cardiovascular diseases [46]. Segmenting images 
facilitates the extraction of quantitative data, such as 
the degree of luminal stenosis, plaque burden, and arte-
rial wall thicknes [47]. Additionally, segmented images 
can provide a clear and detailed visual representation of 
the coronary arteries, which enables clinicians to eas-
ily identify areas of concern [48]. Reproducibility in 

image segmentation is vital for disease detection, yet it 
remains a significant challenge in ongoing research [20]. 
Segmented images can be integrated with other diag-
nostic modalities, such as CT angiography, MR angiog-
raphy, or intravascular ultrasound (IVUS), to provide a 
comprehensive assessment of coronary artery disease 
[49, 50]. Segmentation methods include automated and 
semi-automated approaches based on deep learning, 
as well as manual segmentation. Deep learning-based 
segmentation reduces the time and effort required for 
manual segmentation and minimizes human error [51]. 
In current research, segmented images are often analyzed 
using specialized software to extract texture features, 
which are then used to construct traditional machine 
learning models for disease diagnosis or prognosis pre-
diction [52, 53]. These approaches have shown promising 
results. Similarly, researchers can adopt deep learning 
methods to directly train on segmented images for dis-
ease diagnosis. In the diagnosis of certain diseases, deep 
learning appears to have advantages over traditional 

Fig. 7  Results of per-patient-based meta-analysis for multiclass classification tasks
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machine learning [54]. In the original studies included 
in our systematic review, the research focused on deep 
learning models built on image segmentation, which 
demonstrated promising accuracy in improving the iden-
tification of coronary artery stenosis.

Nowadays, artificial intelligence research based on 
imaging faces several great challenges. The develop-
ment of AI across different imaging modalities presents 
certain difficulties. For example, in the study by Snig-
dha Mohanty et al. [55], a novel non-rigid method was 
introduced to register both the same and cross-imaging 
modalities, such as MRI, CT, and 3D rotational angiogra-
phy. Even within the same modality, the impact of noise 
during the image segmentation process remains a seri-
ous challenge in practical applications [56, 57]. The speed 
of segmentation during the process is also a challenge, 
and some researchers have been exploring solutions to 
improve running speed [58]. Additionally, in manual seg-
mentation, the reproducibility of results remains a signifi-
cant challenge due to the reliance on the prior knowledge 
of human experts.

Strengths and limitations
This study is the first to discuss the accuracy of deep 
learning in detecting coronary artery stenosis, provid-
ing valuable evidence for future research. However, it still 
has some limitations. First, despite our systematic search, 
the number of the included studies is limited. Therefore, 
more studies are required for validation in the future. 
Second, these studies employed diverse thresholds for 
defining coronary artery stenosis, with some thresholds 
analyzed in only a few studies. Hence, the results should 
be interpreted cautiously. Third, the models were mainly 
built on both CCTA and CAG images and seldom on 
CAG images, and thus the results should be interpreted 
with caution.

Conclusions
In summary, deep learning methods have recently gained 
significant attention and have been widely used in the 
intelligent detection of coronary artery stenosis. Our 
meta-analysis reveals that these methods are relatively 
accurate for detecting coronary artery stenosis. Existing 
studies focus on both binary and multiclass classification 
tasks, but actually, the latter appears more applicable to 
clinical practice. However, accurately detecting smaller 
degrees of stenosis in multi-class settings remains chal-
lenging. Therefore, future research is needed to develop 
more efficient deep learning models to enhance the 
detection of coronary artery stenosis.
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