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ABSTRACT When fused with mouse L-cell cytoplasts, chick erythrocyte nuclei enlarge, take up 
proteins from the host cytoplasm, and recommence RNA synthesis. We found that during this 
transition the erythrocyte nuclei gain an internal nuclear matrix, thus providing a novel approach to 
questions concerning the nature of the salt-resistant intranuclear skeleton. A new method for 
preparation and examination of the nuclear matrix in situ is also described. 

The nuclear matrix is defined as the residual structure which 
remains after nuclei are sequentially subjected to DNase, low 
salt, and high salt treatments; additional extractions with nu- 
cleases and non-ionic detergents may also be included (re- 
viewed in 4, 44). Despite the loss of ~90% of nuclear protein 
and up to 99% of nucleic acids, the final matrix retains the 
approximate shape and internal organization of the original 
nucleus. Three structural domains of  matrix have been recog- 
nized: the peripheral pore complex-lamina, the residual nu- 
cleolus, and the interchromatinic or internal matrix (4, 44). 
The pore-lamina has been extensively characterized: its major 
components are a family of related structural proteins, the 
lamins (17, 18, 26, 27, 44, 45), which seem to be confined to the 
nuclear perimeter (17, 18, 26). The internal matrix, however, 
contains a large number of  polypeptides, most of which have 
yet to be studied (22, 40, 47). 

Current interest in the nuclear matrix has been stimulated 
by reports that the matrix is specifically associated with a 
number of  key nuclear components, including newly synthe- 
sized DNA (6, 7, 9, 14, 23, 38), newly synthesized RNA (2, 16, 
20, 21, 24, 33, 34, 36, 47), steroid hormone receptors (2, 3), 
specific genes and families of repetitious DNA (13, 37, 39, 42, 
46), and the polyoma T antigen (9). Recently, additional 
evidence has accumulated to implicate the matrix in RNA 
processing (12, 20, 35, 43). On the basis of these results, it has 
been hypothesized that the internal nuclear matrix provides a 
skeletal framework in vivo upon and around which chromatin 
is organized and transcription and replication facilitated. 

We showed recently that inactive chick erythrocyte nuclei 
lack an internal nuclear matrix (29, 31). The fact that these 
nuclei can be "reactivated" with respect to chromatin conden- 
sation and recovery of  RNA and DNA synthesis if they are 
fused with another cell or cytoplast (1, 15, 19, 28, 32) suggested 
that it would be of  interest to examine the status of the nuclear 
matrix during the reactivation process. We fend that within 16 

h of  fusion with mouse L-cell cytoplasts the chick erythrocyte 
nucleus gains an internal nuclear matrix. A preliminary ac- 
count of  this work has already been published (30). As dis- 
cussed below, this system opens the way to definitive tests of  
various aspects of the nuclear matrix hypothesis. 

MATERIALS AND METHODS 

Cell Cultures: Mouse L-929 ceils were maintained in minimal essential 
medium (Eagle) supplemented with 5% fetal calf  serum, 100 U/ml  pemcillin, 
and 100/Lg/ml streptomycin. For cell fusion experiments, cells were released 
from the flasks with trypsin and plated on 60-ram culture dishes so that individual 
cells were not touching each other. After a 12-h incubation, enucleation was 
carried out. 

Enucleation and Cell Fusion: These procedures were based on 
those described by Lipsich et at. (32). The cells were treated with l0 ~g/ml  
cytochalnsin B (Aldrich Chemical Co., Inc., Milwaukee, W[) in growth medium 
for 20 rain, following which the nuclei were released by centrifuging the inverted 
culture dishes at 12,000 g for 45 rain at 37°C (GSA rotor, Sorvall RC-5 centrifuge; 
DuPont Instruments-Sorvall Biomedical Div., DuPont Co., Wilmington, DE). 
To achieve this, the dishes were inverted in 150 ml of medium containing l0/~g/ 
ml cytochalasin B in flat-bottomed centrifuge bottles from which the tops had 
been cut. After centrifugation, the dishes were removed and the cytoplasts were 
given fresh medium and allowed to recover for 90 rain. One dish was then stained 
with Giemsa's to monitor the enucleation efficiency. Sendal virus, inactivated by 
UV irradiation, was then added at a concentration of  200 haemagghitination U /  
ml in Earle's balanced salt solution at 4°C. After 5 rain, excess virus was removed 
and the ceils were overlaid with a suspension of 14-18-d chick embryo erythro- 
cytes (about l0 s per dish) in balanced salt solution. The dishes were then 
incubated at 4°C for 15 rain and then transferred to a 37°C incubator. Following 
a further 60-min incubation, the unfused erythrocytes were washed off  and the 
reconstituted ceils supplied with fresh complete medium. For most of the exper- 
iments reported here, the cells were examined after 16-h of incubation. 

Nuclear Matrix Production In 5itu: Cell monolayers on 60-mm 
culture dishes were first overlaid with collagen (11). The stock solution of  0.2% 
collagen (Type VII, Sigma Chemical Co., St. Louis, MO) in 0.1% acetic acid was 
neutralized and diluted into minimal essential medium to a final concentration 
of  0.16% just before use. After removing the culture medium, 0A ml of  ice-cold 
collagen suspension was placed in each dish, and the cells were incubated at 37°C 
for 10-15 rain. During the incubation, collagen monomers polymerize to form a 
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protective skin over the cells, which can then be irrigated with aqueous solutions 
without becoming detached from the plastic. To render the cells permeable to 
DNase, they were first treated with 0.1% Triton X-100 containing 0.001% 
spermine for 15 min at 0°C. Other detergent mixtures tried were 0.1% Triton X- 
100, 5 mM MgCI2, 25 mM KCI, 10 mM Tris; pH 7.5, and 0.1% Nonidet P-40, 5 
mM MgCI~, 130 mM KCI, 15 mM NaC1, 10 mM PIPES, pH 7.5. These attempts 
to devise a more "physiologically balanced" permeabillzing medium had litde 
effect on the appearance of L-cell nuclei or nuclear matrix. After detergent 
treatment, the cells were washed extensively with DNase buffer (5 mM MgC12, 
! mM CaC12, l0 mM Tris, pH 7.4) and then digested with 200/tg/ml DNase I 
(Worthington Biomedical Corp., Freehold, NJ) for 30 rain at 0°C in the same 
buffer. A further wash with digestion buffer or 0.2 mM MgC12, 10 mM Tris, pH 
7.4, was followed by extraction with 2.0 M NaCI, 0.2 mM MgC12, 10 mM Tris, 
pH 7.4 (44), for 90 min at 0°C. Finally, the cells were washed once more with 
low salt buffer before preparation for electron microscopy. The protease inhibitor, 
phenylmethylsulfonyl fluoride, was included at a concentration of 1.0 mM in the 
detergent and high salt solutions, and in some cases 1 mM sodium tetrathionate 
was also included (5). To test for the efficiency of the DNase treatment, some 
plates were washed with PBS (0.14 M NaC1, 0.01 M sodium phosphate buffer, 
pH 7.2), then stained for 15 min with acridine orange, ethidinm bromide, or 
Hoechst 33258, all at concentrations of l0/~g/ml in PBS. After further thorough 
washing with PBS, the dishes were drained, a drop of 50% glycerol in PBS was 
added, and a coverslip placed over the cells. DNA fluorescence was measured 
using a Leitz microscope with epl-illumination and quantitative fluorescence 
attachments. For each treatment, the fluorescence from 20 to 40 individual nuclei 
was measured and corrected for background. 

Electron Microscopy: Cells at each stage in the experiment were fixed 
on the culture dishes for electron microscopy. After rinsing with 0.1 M sodium 
phosphate buffer pH 7.4 containing 2.5% sucrose, the cells were fixed for 30 min 
at room temperature with 2% glutaraldehyde in the same buffer, washed three 
times with buffer, and postflxed with I% osmium tetroxide in phosphate buffer. 
Following a brief water wash, the cultures were stained with 2% aqueous uranyl 
acetate, washed again, and then stained briefly with aqueous toluidine blue. This 
latter procedure greatly facilitated the selection of areas for examination and did 
not affect the ultrastructure of the cells. Finally, after dehydration in an ethanol 
series, the cells were embedded in an Epon-Araldite mixture. Once the resin had 
set, it was possible to release the cells from the plastic dish for sectioning parallel 
to the plane of the cell monolayer. Sections were cut on a MT-2 ultramicrotome 
(DuPont-SorvaIl), stained with lead citrate and uranyl acetate, and examined in 
a Siemens 102A electron microscope operated at 60 kV. 

RESULTS 

U s i n g  the  c y t o c h a l a s i n  B t e c h n i q u e  (32, 41), it was  poss ib le  to 

o b t a i n  > 9 9 %  e n u c l e a t i o n  o f  m o u s e  L-cel ls  (T ab l e  I). C o u n t s  o f  

TABLE I 
Counts o f  Enucleation and fusion Efficiency after 16-h 

Reactivation 

% of cells 

L-cell nucleus retained (not enucleated) 0.5 
Without nuclei, or with one or more erythrocyte 99.5 

nuclei 
Of cells with erythrocyte nuclei, number of nuclei 

per reconstituted cell 
1 64 
2 27 
3 8 
4 1 
5 1 

Data represent the average of two experiments; total n = 900 cells. 

FIGURES 1 and 2 Giemsa's stain of fusions between L-cell cytoplasts 
and 17-d chick erythrocytes after 16-h incubation. Fig. 1 is an 
example of the 0.5% of L-cells which fail to become enucleated. Fig. 
2 shows a cytoplast containing four reactivating chick nuclei. A fifth 
nucleus (arrowhead) lies on top of the cytoplast and indicates the 
size of the unreactivated erythrocyte nucleus. (n)  Nuclei. Bar. 10 
/~m. x 1,500. 

G i e m s a - s t a i n e d  p la tes  (Figs.  1 a n d  2) a f t e r  f u s i o n  i n d i ca t ed  

t ha t  55% o f  cy top la s t s  h a d  t a k e n  u p  a t  leas t  o n e  e r y t h r o c y t e  

nuc l eus ,  s o m e  o f  t h e m  m o r e  t h a n  o n e  (Fig.  2, T a b l e  I). T h e  
i m p l a n t e d  nuc l e i  s h o w e d  d i f fe ren t  deg rees  o f  r eac t i va t i on  as 

j u d g e d  by  the i r  size, w h i c h  i nc r ea sed  u p  to a m a x i m u m  t en fo ld  

v o l u m e  c h a n g e  ( a s s u m i n g  t ha t  t he  n u c l e i  r e m a i n e d  spher ica l ) .  

E lec t ron  m i c r o g r a p h s  o f  t he  r eac t iva t ed  nuc l e i  s h o w e d  a d r a -  

m a t i c  d e c o n d e n s a t i o n  o f  the  c h r o m a t i n  w h e n  c o m p a r e d  w i th  

the  s t a r t ing  m a t e r i a l  (Figs.  3 a n d  4), a n d  g r a n u l a r  m a t e r i a l  

a p p e a r e d  in  t he  i n t e r c h r o m a t i n i c  areas .  T o  s t u d y  t he  n u c l e a r  

m a t r i x  in  r econs t i t u t ed  cells, we  dev i s ed  a n  in  s i tu  m e t h o d  o f  

r evea l ing  t he  ma t r ix .  T h i s  p r o v i d e s  two i m p o r t a n t  a d v a n t a g e s :  

r eac t iva ted  nuc le i  do  n o t  h a v e  to be  i so la ted ,  a n d  the re  is n o  

poss ib i l i ty  t ha t  m a t r i c e s  de r i ved  f r o m  c o n t a m i n a t i n g  L-cel l  

nuc l e i  will  be  m i s t a k e n  for  e r y t h r o c y t e  mate r i a l .  T h e  in  s i tu  

t e c h n i q u e  is a n a l o g o u s  to m a t r i x  p r e p a r a t i o n  in  i so la ted  nucle i ,  

t he  d e t e r g e n t - p e r m e a b i l i z e d  cells  be ing  t r ea ted  s e q u e n t i a l l y  

wi th  D N a s e ,  low m a g n e s i u m  b u f f e r  (0.2 m M  MgCI2, 10 m M  

Tris ,  p H  7.4), a n d  h i g h  sal t  b u f f e r  (0.2 m M  MgCI2, 2.0 M 

NaCI ,  10 m M  Tris ,  p H  7.4; see  M a t e r i a l s  a n d  M e t h o d s  for  

detai ls) .  To  d e t e r m i n e  w h e t h e r  t h e  D N a s e  t r e a t m e n t  was  effec-  
t ive u n d e r  t he se  c i r c u m s t a n c e s ,  n u c l e a r  D N A  c o n t e n t  was  
m e a s u r e d  be fore  a n d  af te r  d iges t i on  u s i n g  t he  D N A  f luoro-  

FIGURES 3-8 Electron micrographs of untreated cells and nuclear matrix preparations using the collagen overlay method. Bars 
(Figs. 3-8) 1 #m; (insets) 0.1 ~m. (n) Nucleus. (c) Cytoplasm. Fig. 3: Untreated 17-d embryonic erythrocyte. Fig. 4: Cytoplast 
containing two reactivating erythrocyte nuclei 16 h postfusion. Extensive chromatin decondensation has occurred. Inset shows 
nucleus-cytoplasm boundary from another preparation. Fig. 5: Untreated L-cell with inset showing nucleus-cytoplasm boundary. 
Fig. 6: L-cell after in situ matrix production. The boundary of the nucleus (pore-complex lamina) is indicated by arrowheads and 
shown enlarged in the inset. Arrow on inset shows intermediate filaments in the residual cytoplasm. Fig. 7: 17-d embryonic 
erythrocyte after in situ matrix production. Nuclear material is restricted mainly to the pore-complex lamina (arrowheads). Fig. 8: 
Reactivating erythrocyte 16 h postfusion after nuclear matrix preparation. In contrast to Fig. 7, an internal matrix is present. 
Arrowheads indicate nucleus-cytoplasm boundary which is enlarged in the inset. Arrow points to intermediate filaments. (Figs. 3 
and 7) x 10,000. (Fig. 4) x 12,000. (Figs. 5 and 6) x 5,000. (Fig. 8) x 15,000. 
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chromes acridine orange, ethidium bromide, and Hoechst 
33258. The results showed that 90-95% of nuclear DNA was 
removed during the 30-rain DNase treatment at 0°C. This can 
be compared with the removal of ~75% of DNA during the 
initial DNase digestion of isolated nuclei prior to nuclear 
matrix isolation (4). Subsequent high salt treatment reduced' 
the DNA content (as measured by fluorescence) still further, 
indicating that the in situ method provides an extraction proc- 
ess analogous to the standard nuclear matrix isolation proce- 
dure. 

To prevent the cell and cell contents from becoming dis- 
lodged from the culture dish, they were first overlaid with a 
thin layer of collagen which provides a fully permeable protec- 
tive sheet. After collagen treatment, erythrocytes and L-cells 
retain their normal ultrastructure (Figs. 3 and 5). When treated 
by the in situ method, L-cells show a typical nuclear matrix, 
with pore complex-lamina, nucleolar matrix, and interchro- 
matinic matrix clearly visible (Fig. 6). The salt-resistant cyto- 
skeletal elements, including intermediate filaments, are well- 
preserved, although the plasma membrane is heavily damaged 
(Fig. 6). A similar preservation of both nuclear and cytoskeletal 
elements in critical-point-dried material has recently been re- 
ported (10). 

As expected from earlier results (29, 31), whole erythrocytes 
from 14--18-d embryos lack an internal matrix after this treat- 
ment (Fig. 7). Some whole erythrocytes remain attached to the 
outside of the cytoplasts during fusion and provide a useful 
internal control for the matrix preparation technique. In con- 
trast to the original nuclei (Fig. 7), reactivated nuclei show a 
distinct internal matrix 16 h postfusion (Fig. 8). In general, the 
amount of internal matrix material was proportional to the 
extent of reactivation, as judged by the size increase of the 
nucleus: the larger the nucleus, the greater the amount of 
internal matrix present. This is illustrated in Figs. 9-11 which 
depict matrix preparations of erythrocyte nuclei which, by light 
microscopic examination (c.f., Fig. 2), showed no increase in 
size (Fig. 9) or little increase in size (Figs. 10 and 11) after 
incorporation into L-cell cytoplasts. The paucity of  internal 
matrix material in these cases allows us to reject the possibility 
that the mere placement of an erythrocyte nucleus in a cytoplast 
results in the generation of an internal matrix, as would be 
observed if it were due to a failure of the extraction process. 

Sodium tetrathionate has been shown to increase the amount 
of protein in the nuclear matrix, as well as the proportion of 

newly replicated DNA associated with the matrix (5), and was 
included in some experiments to ensure that even under con- 
ditions most favorable for matrix formation unreactivated ma- 
ture erythrocytes really lacked an internal matrix (Figs. 7 and 
9-11). However, it has recently been shown that much of the 
action of  tetrathionate can be attributed to its property of 
promoting S-S bonding (25). This raises the possibility that 
matrix structures may be induced by the reagent and suggests 
that it should be used with caution in nuclear matrix experi- 
ments, In the procedure described here, sodium tetrathionate 
did not induce an internal matrix in unreactivated erythrocyte 
nuclei, nor did it affect the ultrastructure of L-cell nuclear 
matrices. 

DISCUSSION 

We have shown that during reactivation of erythrocyte nuclei 
in mouse L-cell cytoplasts, an internal nuclear matrix is gen- 
erated. The new matrix presumably arises from proteins taken 
up from the cytoplasm by the implanted nucleus, indicating 
that each cytoplast either has or can synthesize sufficient 
protein to generate a matrix in several erythrocyte nuclei. In 
heterokaryons, it has been shown that such protein uptake is 
not random but includes nuclear marker proteins and excludes 
cytoplasmic marker proteins (1). Lipsich et al. (32) have shown 
that many of the morphological features of reactivation in 
cytoplast-erythrocyte hybrids, including nuclear swelling and 
chromatin decondensation, occur in the presence of cyclohex- 
imide. This may suggest that a large proportion of the matrix- 
forming proteins pre-exist in the cytoplasm and are not syn- 
thesized in response to the implanted nucleus. 

The generation of an internal matrix under these conditions 
provides an experimental framework within which some of the 
properties of the matrix can be tested. For example, it will be 
possible to determine which polypeptide species contribute to 
the erythrocyte matrix and to compare them to L-cell matrix 
polypeptides. The nuclear matrix hypothesis would predict that 
the two sets of polypeptides should be very similar. Also, a 
comparison can be made between the erythrocyte matrix pro- 
teins accumulated by nuclei reactivated in L-cells and those in 
nuclei reactivated in chick fibroblast cytoplasts (8). Finally, 
studies are in progress to relate the time course of matrix 
generation to the time course of transcriptional recovery and 
to the onset of DNA synthesis. Correlations between these 

FtGURe 9-11 Erythrocyte nuclei which were implanted in L-cell cytoplasts but showed little or no swelling or other signs of 
reactivation. In contrast to Fig. 8, little internal matrix material is present. Arrowheads indicate nucleus-cytoplasm boundary. Bars, 
1 gin. X 11,000. 
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nuclear activities and internal matrix generation would support 
the hypothesis that the matrix plays a functional role in such 
metabolic events. 
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