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Abstract

The complexity of host–parasite interactions makes it difficult to predict how host–parasite

systems will respond to climate change. In particular, host and parasite traits such as sur-

vival and virulence may have distinct temperature dependencies that must be integrated

into models of disease dynamics. Using experimental data from Daphnia magna and a

microsporidian parasite, we fitted a mechanistic model of the within-host parasite population

dynamics. Model parameters comprising host aging and mortality, as well as parasite

growth, virulence, and equilibrium abundance, were specified by relationships arising from

the metabolic theory of ecology. The model effectively predicts host survival, parasite

growth, and the cost of infection across temperature while using less than half the parame-

ters compared to modeling temperatures discretely. Our results serve as a proof of concept

that linking simple metabolic models with a mechanistic host–parasite framework can be

used to predict temperature responses of parasite population dynamics at the within-host

level.

Author summary

Host–parasite interactions are impacted by temperature, and climate change is altering

the nature of these interactions. Measuring how a range of temperatures affects host and

parasite traits and how this influences the outcome of infections is infeasible in most sys-

tems. The metabolic theory of ecology provides a powerful framework to predict biologi-

cal rates in response to temperature. Using a Daphnia–parasite model system, we

collected experimental data on host survival and parasite abundance across the host’s tem-

perature range. We fitted thermal relationships based on the metabolic theory of ecology

to separate host and parasite traits, including host mortality and aging as well as parasite
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growth and virulence. We then provide empirical evidence of the predictive power of link-

ing these relationships in mechanistic within-host parasite models. This allows us to pre-

dict the outcome of individual infections continuously across a temperature gradient, as

well as to gain a better understanding of the impact of temperature changes on disease

dynamics. Due to its simplicity and generality, this framework could be a valuable

approach for predicting the effects of climate change on infection outcomes for hosts and

microparasites.

Introduction

The effects of global environmental change on infectious disease dynamics have broad conse-

quences that span human health [1], food security [2], and conservation [3]. Climate change–

driven temperature changes will likely impact the nature of host–parasite interactions, as both

host and parasite traits can be strongly affected by temperature [4]. However, the effects of

environmental change on disease dynamics are difficult to predict, because temperature can

have differing effects on host and parasite traits that together determine outcomes for disease

spread and severity [5].

There is ample evidence that temperature affects the dynamics of host–parasite interactions,

and these effects are especially profound for ectoparasites and endoparasites within ectother-

mic hosts, as environmental temperature directly determines the rate of physiological pro-

cesses in these cases [6]. In freshwater systems, for example, increased temperature typically

causes earlier and extended parasite transmission, faster parasite growth, and more genera-

tions within a given season (but also higher parasite mortality) [7], and it has also been shown

to lead to decreased parasite loads in amphibians [8]. In addition, temperature also influences

the traits that mediate the impact of infection on host survival, such as parasite development

rate [9] and virulence [10], as well as the resistance [11] and tolerance [12] of hosts to parasites.

Each of these traits may have distinct temperature responses, and it is the antagonistic and syn-

ergistic interactions among the temperature responses of host and parasite traits that deter-

mine the net consequences of temperature changes on disease dynamics [13].

Temperature can affect hosts and parasites asymmetrically, leading to complex and nonin-

tuitive infection outcomes. If traits such as host resistance and parasite growth respond simi-

larly to temperature changes, these responses may trade off, resulting in no observed effect of

temperature on parasite abundance [14]. However, if the strength of the temperature depen-

dence of the host and parasite responses differs, warming may favor either the host or the para-

site [14]. For example, higher temperatures increase host penetration but decrease successful

encystment for the parasitic trematode Ribeiroia ondatrae, resulting in the greatest amount of

parasite-induced malformations in its amphibian host at an intermediate temperature [15].

These types of dynamics are unlikely to be captured in empirical studies that expose individu-

als to a limited thermal range or in theoretical models that do not account for distinct tempera-

ture responses for host and parasite traits.

It has been suggested that the thermal dependencies of basic host and parasite traits (e.g.,

development, survival, movement) could be described by simple formulae arising from first

metabolic principles outlined in the metabolic theory of ecology (MTE). These relationships

could inform classical models of host–parasite dynamics to estimate the net effect of tempera-

ture changes on disease prevalence and severity [16–17]. However, to date, there is limited

empirical evidence that this approach can effectively predict the consequences of environmen-

tal change for host–parasite population dynamics [13,16].

Metabolic theory and within-host parasite dynamics
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MTE posits that the thermal dependencies of biological processes across levels of biological

organization can be deduced from the thermal dependency of the basic metabolic rate of indi-

vidual organisms [18]. MTE further suggests that the Van’t Hoff–Arrhenius model can predict

an organism’s metabolic rate and related processes based on temperature [18]. Indeed, the

Van’t Hoff–Arrhenius model has been shown to adequately fit the rising region of many unim-

odal temperature response curves [19]. Multiple extensions of the Van’t Hoff–Arrhenius

model exist [20] to also describe the low and high temperature threshold behaviors of (typically

unimodal) thermal response curves [6], of which the Sharpe–Schoolfield model may be the

most commonly used [21]. However, while the general functional form of the temperature

dependencies of different traits (exponentially rising with temperature over the intermediate

temperature range and unimodal over the entire temperature range) can usually be captured

with these models, different traits of an individual may show distinct sensitivities to tempera-

ture due to differing suites of rate-limiting enzymes [22]. In addition, thermal sensitivities are

likely to differ between host and parasite traits (e.g., host resistance versus parasite growth),

further complicating forecasts of temperature effects on disease, as traits may interact in an

exponential, multiplicative, or additive manner in models of the host–parasite dynamics.

In this study, we fitted a mathematical model to experimental data on Daphnia magna and

its natural microsporidian parasite Ordospora colligata to examine the effects of temperature

on host and parasite traits, their interactions, and the within-host parasite population dynam-

ics. Over nine temperatures that span the thermal range of D. magna, we quantified host life-

span for both exposed and unexposed D. magna and measured parasite abundance at death.

We used these data to fit a model for the survival of unexposed hosts (U), exposed hosts (E),

and within-host parasite abundance (P) given by

dU
dt
¼ � bU mbU tbU � 1 U ð1Þ

dE
dt
¼ � bE ðmþ aPÞbE tbE � 1 E ð2Þ

dP
dt
¼ rP 1 �

P
y

� �

; ð3Þ

where natural host mortality is modeled by a Weibull distribution with mortality rate μ and

aging parameter β. If β = 1, mortality is constant through time. If β< 1, mortality decreases

over time, and if β> 1, mortality increases over time. The parasite population growth rate is r,
the per parasite virulence additively affecting host survival is α, and parasite equilibrium abun-

dance within hosts is θ. In our model, θ is determined by both host and parasite processes and

may therefore show positive or negative temperature dependence depending on whether host

resistance or parasite processes are more strongly temperature dependent [13]. The host and

parasite traits represented by the model parameters were first fitted separately for each temper-

ature treatment and then also to all temperatures simultaneously using a global model that rep-

resented each trait using MTE formulations.

The MTE has been a major focus of ecological studies since its inception about two decades

ago. Numerous meta-analyses have tested and refined MTE’s predictions across broad inter-

specific datasets [19, 23–25]. More recently, MTE has been the focus of theoretical develop-

ments attempting to understand how temperature changes may affect the dynamics of

interacting species, such as in predator–prey or host–macroparasite systems [16, 26–28]. We

show that the thermal dependencies of host and parasite traits affecting within-host parasite

dynamics and host survival are well described by variants of the Van’t Hoff–Arrhenius and
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Sharpe–Schoolfield models and that nesting these relationships in a within-host parasite popu-

lation dynamics model captures the resulting thermal dependency of the cost of infection (i.e.,

the percent reduction in mean lifespan due to infection). Our results empirically demonstrate

the predictive power of linking MTE-based thermal relationships for host and parasite traits in

mechanistic within-host parasite models to understand the impacts of temperature changes on

disease. Because of its simplicity and generality, this framework provides a valuable approach

for predicting the outcomes and consequences of infections for hosts and parasites in light of

climate change.

Results

Data

We obtained survival and infection intensity data on 550 individuals across nine temperature

treatments (6.0 ˚C–33.3 ˚C). None of the exposed individuals at 6.0 ˚C, 9.5 ˚C, or 33.3 ˚C

became infected, while infection prevalence among exposed individuals at intermediate

temperatures ranged from 28% to 97% (Table 1). Since the fate of all individuals is known

(uncensored survival data), we report mean lifespan, which was greatest at 11.8 ˚C for both

unexposed and exposed individuals (Table 1, Fig 1). Infection intensity at death was highly

variable within and across temperatures, ranging from 1 to 805 spore clusters, with peak mean

infection intensity occurring at 11.8 ˚C (Table 1, Fig 2). We also collected data on rate of host

offspring production, which clearly indicate a temperature effect and perhaps a small effect of

the parasite on host reproduction (S6 Fig, S6 Table). However, the host reproduction compo-

nents of host–parasite population dynamics need to be analyzed using a model for disease

spread at the host population level with MTE submodels for temperature effects, an approach

that is beyond the scope of the current study.

Model fitting

We modeled the within-host dynamics using three differential equations for the changes in the

numbers of unexposed individuals (U, Eq 1), exposed individuals (E, Eq 2), and parasites

within each infected individual (P, Eq 3) over time. We fitted this model to the experimental

data and estimated host and parasite parameters across temperatures using two different

approaches. First, we estimated the model parameters independently at each temperature (dis-

crete temperature [DT] model). Second, we described each of these parameters continuously

Table 1. Summary of experimental data. Infection % is the percent of exposed individuals that were infected upon inspection at death. Infection intensity is the number

of spore clusters in an individual at death and was calculated using only individuals who had a nonzero parasite load. Mean survival time was calculated for the entire treat-

ment sample, including exposed individuals with parasite load zero.

Temp(˚C) Sample Size Infection % Infection Intensity

(mean ± s.e.)

Mean Survival Time (d)

Unexposed Exposed Unexp. Exposed

6.0 22 40 0.0 NA 33.9 38.5

9.5 20 39 0.0 NA 107.2 139.9

11.8 22 43 83.7 162.5 ± 29.5 147.7 152.2

16.2 19 35 97.1 93.8 ± 13.4 107.8 92.5

20.1 22 33 90.0 113.1 ± 17.6 75.6 61.1

24.3 21 38 91.2 41.1 ± 5.9 43.2 38.3

27.4 22 41 34.1 9.6 ± 3.5 20.5 30.4

29.7 23 39 28.2 5.4 ± 1.7 15.0 13.8

33.3 24 47 0.0 NA 2.6 2.6

https://doi.org/10.1371/journal.pbio.2004608.t001
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across temperature using variants of the Van’t Hoff–Arrhenius and Sharpe–Schoolfield models

(S1 Table). We chose the MTE function for each parameter based on how the DT estimates

appeared to change qualitatively with temperature (initially, we aimed for a model selection

approach fitting numerous MTE functions for each parameter, but this quickly became infeasi-

ble due to the large number of possible submodel combinations and the computational time it

took to fit each model). We estimated the hyperparameters (e.g., activation energies that drive

temperature sensitivity at intermediate ranges, temperature thresholds, inactivation energies

that determine how quickly trait performances fall beyond thresholds) associated with these

Fig 1. Solid lines show the proportion of unexposed (n = 195; blue) and exposed (n = 355; red) individuals surviving over the course of the 285-d experiment.

Model fits are shown by the dashed (DT) and dotted (MTE) lines. The DT model does not make predictions for exposed individuals at 6.0 ˚C, 9.5 ˚C, 29.7 ˚C, or

33.3 ˚C due to convergence and estimability issues for some of the parasite-related parameters. The data used to make this figure can be found in S1 Data. DT,

discrete temperature; MTE, metabolic theory of ecology.

https://doi.org/10.1371/journal.pbio.2004608.g001
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MTE models, allowing us to predict the host and parasite parameters and subsequently host

survival and parasite intensity continuously across temperature.

The DT estimates for the mean mortality rate of hosts (μ), as well as for the Weibull shape

parameters (βi) that describe age-related changes in these mortality rates, showed temperature

dependence. As expected, mean mortality was lowest just above the host’s lower thermal

threshold, increased with increasing temperature over most of the thermal niche, and rose

steeply to infinity (indicating immediate mortality here) at low and high temperature extremes

(μ; Fig 3). The shape parameters βi were highest at intermediate temperatures and greater than

Fig 2. The number of parasites per exposed individual at TOD. Circles show nonzero parasite loads at TOD, while crosses represent exposed individuals who had

zero parasites at TOD. Model fits are shown by the dashed (DT) and dotted (MTE) lines. Parasites were never observed at 6.0 ˚C, 9.5 ˚C, or 33.3 ˚C. The DT model

does not make predictions for exposed individuals at 6.0 ˚C, 9.5 ˚C, 29.7 ˚C, or 33.3 ˚C due to convergence and estimability issues for some of the parasite-related

parameters. The data used to make this figure can be found in S1 Data. DT, discrete temperature; MTE, metabolic theory of ecology; TOD, time of death.

https://doi.org/10.1371/journal.pbio.2004608.g002
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one for both unexposed (βU) and exposed hosts (βE; Fig 3), except at the lowest temperatures,

where the confidence interval for βU overlapped one. This indicates that mortality rate

increases as the host ages and that the aging process is strongest at the intermediate tempera-

tures, perhaps because individuals had high mortality at temperature extremes and thus did

not have an opportunity to age. There was no consistent difference in β between unexposed

and exposed hosts, although we note that β was significantly higher for unexposed hosts at

20.1 ˚C, indicating delayed mortality for unexposed individuals at this temperature.

Parasite population growth rate (r) increased from 11.8 ˚C to 24.3 ˚C before decreasing at

higher temperatures (Fig 3). Similarly, equilibrium parasite abundance (θ) decreased sharply

at temperatures above approximately 20 ˚C (Fig 3). Parasite virulence α also appeared to

increase with temperature, but high uncertainty in the estimates of α obscured any clear ther-

mal relationship (Fig 3). Combining these DT estimates of temperature dependencies within

the host–parasite model (Eqs 1–3) accurately predicted the observed lifespan of exposed and

unexposed individuals across most of the temperature range (Fig 4a). Parasite parameters were

difficult to estimate at the extreme low and high temperatures because no parasites were found

in hosts at 6.0 ˚C and 9.5 ˚C and hosts did not survive long enough to allow for within-host

Fig 3. Maximum likelihood estimates ± 95% confidence intervals for the DT model (points and vertical bars) and fitted MTE functions ± 95% confidence

intervals (lines and shaded region) for host–parasite model parameters: a) natural host mortality μ, b) natural mortality shape parameter for unexposed

individuals βU, c) natural mortality shape parameter for exposed individuals βE, d) parasite growth rate r, e) parasite equilibrium abundance θ, and f) parasite

virulence α. βU (unexposed data) and βE (exposed data) were estimated separately for DT estimates, but shared the same MTE function (Sharpe–Schoolfield with

upper threshold). The 95% confidence interval on MTE model predictions was calculated as the 95% quantiles of 1,000 Monte Carlo samples of the host–parasite

model parameters; in each Monte Carlo sample, the associated hyperparameters were chosen from a normal distribution with mean and SE of the MLE. Parameters

that were not estimable are not shown (see S1 Text for details). DT, discrete temperature; MTE, metabolic theory of ecology.

https://doi.org/10.1371/journal.pbio.2004608.g003
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parasite growth at 29.7 ˚C and 33.3 ˚C (Figs 1 and 2). Thus, at these four temperatures, we

were not able to reliably estimate r, θ, and α using the DT approach because our model-fitting

algorithm did not converge or parameters were found to be nonestimable given the available

data (see S1 Text for details).

In the MTE-based approach to estimating the temperature dependencies of model parame-

ters, we used a single β parameter for βU and βE, as DT estimates did not reveal any consistent

differences. All hyperparameters were estimable for the MTE approach, with the exception of

Fig 4. Observed (filled circles, ± 95% CI shown in b) and predicted mean lifespans of hosts from DT (a: unfilled

squares and triangles) and MTE (b: solid and dotted lines) models, as well as the MTE-predicted percentage cost

of infection across the temperature range (c). The DT model can only predict mean lifespan at the nine temperatures

where we have observed data, whereas the MTE model is able to make predictions across any temperature range of

interest. The data used to make this figure can be found in S1 Data. DT, discrete temperature; MTE, metabolic theory

of ecology.

https://doi.org/10.1371/journal.pbio.2004608.g004
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the upper inactivation energy for β and the lower inactivation energy and threshold for θ
(Table 2, S4 and S5 Figs). The activation energies of β, μ, r, and θ were all within the typical

0.2–1.2 eV range (Table 2) [19] but differed significantly from each other. The activation

energy associated with parasite population growth (0.669 ± 0.0278, Table 2), for example, was

positive, while the activation energy of equilibrium abundance was negative (−0.295 ± 0.0232,

Table 2), reflecting contrasting temperature dependencies for these parameters at intermediate

temperatures. By contrast, parasite virulence (α)—estimated as the daily per parasite-induced

host mortality—was not only very small (indicating that this parasite isolate is relatively benign

in this host genotype), but also the only model parameter that was modeled as temperature

independent due to the lack of a clear pattern in the DT estimates.

Despite having less than half as many parameters, the MTE model (20 free parameters) pre-

dicted host survival almost as well as the DT model (54 free parameters) (Figs 1, 2 and 4). The

notable exception was at 20.1 ˚C, where the survival of unexposed hosts was initially very high

and the DT model was flexible enough to capture this while the MTE model did not (Fig 1).

The parameterized MTE model appropriately predicted differences in mean survival between

unexposed and exposed individuals at 16.2 ˚C and 20.1 ˚C (Fig 4) and accurately predicted

that there will be a very small cost of infection at the lower and higher temperatures. The only

temperature at which the MTE model did not predict the cost of infection well was 11.8 ˚C,

where exposed individuals did not appear to suffer costs in survival despite a cost being pre-

dicted by the MTE model (Fig 4). Infected individuals at this temperature did have high infec-

tion loads on average (Table 1, Fig 2), suggesting decreased parasite virulence at approximately

12 ˚C. This is supported by the DT estimate of virulence at 11.8 ˚C, which is more than an

order of magnitude smaller than the next-smallest DT estimate of virulence at 16.2 ˚C

Table 2. MLEs and SE for the hyperparameters associated with metabolic models for each of the host–parasite parameters (S1 Table) from 25 clones of the data.

The MCMC chains converged for all parameters (R̂ < 1:1), but some parameters were not estimable and are highlighted in grey.

Parameter Hyperparameter MLE SE R̂ Estimable?

Mean mortality rate (μ) μ0 0.00751 0.000343 1.01 Yes

Eμ 0.801 0.0404 1.01 Yes

EHμ 4.24 0.278 1.00 Yes

TLμ 8.96 0.234 1.01 Yes

THμ 30.2 0.302 1.01 Yes

Shape parameter in Weibull (βU, βE) β0 2.28 0.107 1.00 Yes

Eβ 0.391 0.0363 1.00 Yes

EHβ 1.47 0.225 1.00 Yes

THβ 28.8 0.500 1.00 No

Parasite growth rate (r) r0 0.0998 0.00125 1.00 Yes

Er 0.669 0.0278 1.00 Yes

EHr 8.83 4.38 1.00 Yes

THr 31.2 1.14 1.00 Yes

Parasite equilibrium abundance (θ) θ0 131 1.41 1.00 Yes

Eθ -0.295 0.0232 1.00 Yes

ELθ 357 1320 1.01 No

EHθ 6.32 0.189 1.00 Yes

TLθ 9.87 0.896 1.00 No

THθ 23.9 0.0985 1.00 Yes

Parasite virulence (α) α0 5.12E-06 4.40E-06 1.00 Yes

Abbreviations: MCMC, Markov chain Monte Carlo; MLE, maximum likelihood estimate.

https://doi.org/10.1371/journal.pbio.2004608.t002
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(S4 Table). However, as mentioned above, the relatively large standard error associated with

the DT estimates of virulence obscured any clear pattern across temperature, which is why we

modeled virulence as temperature independent.

Discussion

Accurate predictions of how climate change will alter host–parasite dynamics and disease

require models that successfully integrate distinct thermal dependencies for a range of host

and parasite traits. Here, we analyzed experimental data of host survival and parasite burden

across a temperature gradient using an MTE-based model of within-host parasite population

dynamics to capture the thermal dependencies of host aging and mortality as well as of parasite

virulence, population growth rate, and equilibrium abundance. Our results offer new insights

into how the thermal dependence of these traits can affect within-host parasite dynamics and

show that linking MTE models with mechanistic host–parasite models provides an effective

method for predicting disease dynamics across a wide thermal range. Our modeling approach

allows prediction of disease dynamics as a continuous variable of temperature throughout the

host’s and parasite’s thermal range, efficiently interpolating beyond and between the discrete

temperature treatments, and at a cost of less than half the parameters that would need to be

estimated when modeling temperature discretely. More generally, our results reveal that tem-

perature does not impact host and parasite traits equally or symmetrically, which will likely

complicate forecasting efforts for how climate change will affect disease dynamics.

MTE proved capable of capturing how four traits of the host–parasite system change with

temperature. The natural mortality rate of hosts (μ) was modeled using the Sharpe–Schoolfield

function, and the fitted model aligns closely with the DT estimates of μ (Fig 3a). Although it

was unsurprising that the model fit well at the high and low temperatures, as mortality often

peaks at extreme temperatures [16,20,29], MTE also accurately described the increasing mor-

tality rate with rising temperature throughout the intermediate temperature range. Our model

for host survival used a Weibull distribution that allows the natural mortality rate to change

over time according to a shape parameter β, which can be interpreted as a measure of aging

[30]. Our results suggest that the rate of aging in D. magna is temperature dependent, a finding

that has been shown in ectotherms before (e.g., [31]). Notably, the chemical processes that reg-

ulate aging have been thought to be temperature dependent for decades [32], and if we con-

sider the aging process in a physiological framework, a mechanistic link between aging and

temperature can be drawn [18].

The free radical theory of aging posits that oxidants such as O2
− and H2O2 play a key role in

the aging of an organism [33–34]. Since these oxidants are inadvertently produced during aer-

obic metabolism [35], if metabolism scales with temperature as predicted by MTE, then so

should the rate of aging. Under this framework, the rate of accumulation of oxidants and,

therefore, the rate of change in the mortality hazard (i.e., aging) will scale with temperature. In

addition to the free radical theory, there are several further physiological and evolutionary the-

ories of aging that may be operating independently or in combination with other mechanisms

[36]. Ultimately, many of these theories invoke physiological mechanisms, such as DNA muta-

tions, protein damage, and waste accumulation [36]. This again suggests that in organisms

where these mechanisms are believed to operate, the rate of aging should vary with tempera-

ture. Overall, the average rate of mortality will depend on both the rate of aging (β) and the

mortality scale parameter (μ), both of which are temperature dependent but in different man-

ners (Fig 3).

Virulence was the only model parameter that seemed unaffected by temperature. Although

defined here as the daily per parasite–induced host mortality, virulence can be viewed as an
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interaction term between the host and the parasite. The temperature dependency of virulence

arises from a product of two temperature-dependent functions: one describing the damage a

parasite does (e.g., cell lysis rate) and one describing the host’s counteracting responses (e.g.,

immune function) [13]. The observed temperature independence of virulence thus indicates

that the temperature dependencies of the counteracting host and parasite processes determin-

ing virulence may have cancelled each other out in our system. In general, however, this need

not be the case in other systems; for example, thermal mismatches between amphibian hosts

and a fungal pathogen can significantly affect the host’s susceptibility to infection [37]. Fur-

thermore, other within-host parasite traits whose thermal dependency is also determined by

the interacting temperature dependencies of host and parasite metabolism do not need to can-

cel each other out fully either.

In our system, both the growth rate (r) and equilibrium abundance (θ) of parasites are likely

influenced by host and parasite processes. Increased parasite metabolism should result in faster

spore replication, which in turn will lead to the acceleration of host cell lysis and subsequently

higher transmission between cells and increased growth rate. MTE suggests that the thermal

dependencies of these processes can be captured using the Sharpe–Schoolfield model [38]. The

thermal dependencies of r and θ, thus, should also (at least approximately) follow the Sharpe–

Schoolfield equation [13], as is indeed observed (Fig 3). Interestingly, r increases with tempera-

ture while θ decreases with temperature throughout the intermediate temperature range (Fig

3). As with virulence, these temperature dependencies likely reflect counteracting temperature

dependencies of host and parasite processes cancelling each other out to some degree [13],

though in this case, not entirely.

The lower temperature threshold and inactivation energy for θ were not estimable

(Table 2), but this is simply because no successful infections (nonzero parasite abundances)

occurred below 11.8 ˚C (Fig 2). We suspect that the impaired infectivity below 11.8 ˚C may be

due to mechanical failure of the spore’s infection apparatus at low temperatures, but the exact

threshold temperature beneath which infection becomes impossible is unknown. We note that

the most cogent approach would be to independently model the host processes that determine

the parasite population growth rate and equilibrium abundance (e.g., number of available gut

epithelial cells, immunity, body size [39,40]) as well as the parasite processes that counteract

the host processes (e.g., parasite’s ability to infect a cell) and then to link these models mecha-

nistically [13]. Although our experimental design could not decouple the host and parasite

processes that determine parasite growth rates and equilibrium abundance, the net effect of

these processes on host survival could nevertheless be predicted (Fig 4).

As expected, discrete temperature estimates were generally better at capturing the survival

dynamics of unexposed and exposed individuals compared to estimates predicted from MTE

(Figs 1, 2, 4): a model with more parameters will almost always fit the data better. However,

while the discrete temperature model appears to be a better fit, it may not have high predictive

power or provide general insight. Using the MTE-based submodels for the thermal dependen-

cies of host and parasite traits, by contrast, required fewer parameters (20 compared to 54 in

the DT model) and allows predicting survival and infection dynamics throughout the host’s

thermal range by mechanistically interpolating and extrapolating model predictions relative to

the structure of data inputs. However, although the MTE model had fewer parameters than

the DT model, there were problems with estimability of three parameters associated with tem-

perature thresholds (Table 2). These estimability problems may have resulted from structural

identifiability problems in the model or, more likely, because we lacked data on parasite

growth and survival at extreme temperatures. The nonestimability of these model parameters

introduces higher uncertainty in the estimates of survival and the cost of infection near the
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upper and lower thermal limits of the host and parasite relative to the uncertainty in the inter-

mediate temperature range.

The strong performance of the MTE model over most of the intermediate thermal range

suggests that the MTE approach could be useful in predicting responses of infectious disease

to climate change–induced temperature changes over most of the geographic range of a host–

parasite combination. Problems with parameter estimability led to limited predictive power at

the temperature extremes, but our results suggest satisfactory model performance for the

majority of the temperature range. An among-host model of infectious disease dynamics

could help to formally disentangle nonestimable parameters (e.g., [16–17]). In the case of the

D. magna–O. colligata system, the limits to estimability may not impose practical limits on the

utility of the modeling framework for predicting disease responses to climate change if the

estimability issues only occur at the extreme temperatures that are rarely experienced by the

host–parasite pair.

Here, we have focused on the within-host parasite population dynamics only, so we did not

measure or model density-dependent drivers of the host dynamics or their influence on para-

site transmission or host demographics. However, host density can affect parasite prevalence

and transmission rates in natural communities (e.g., [41]), and expanding this work to include

density dependence at the host population level could reveal interesting host–parasite interac-

tions and temperature dependencies not captured here. For example, persistence of malaria

in East Africa is affected by the interplay between host density and temperature [42]. Our

approach of embedding MTE relationships within a system of differential equations describing

within-host parasite dynamics could easily be expanded to models of the between-host micro-

parasite dynamics, as has been done for macroparasites [16]. In our system, the between-host

dynamics could be represented using a simple susceptible–infected model with environmental

transmission, where the parameters composing the model include contact rate between hosts

and parasites as well as the rate of shedding of parasites out of the host and parasite mortality

in the environment. Such an approach would lead to the potential of nesting the within-host

model described here within a between-host model, allowing for the characterization of dis-

ease dynamics across temperature for two intricately linked levels of biological organization

[43]. The general capability of this approach will hinge on how well MTE can capture the addi-

tional demographic parameters involved in transmission and host population dynamics,

which further empirical studies can help resolve.

Previous work has investigated the ability of MTE models to describe the temperature

responses of an organism’s metabolism [23], as well as the responses of specific, distinct traits

such as mortality and development [16,19]. In addition, theoretical papers have recently

explored the multiple ways in which such traits can interact to determine population dyamics

and among-species interactions [27–28]. Our findings build on this literature, demonstrating

how differing thermal sensitivities of different traits interact in a model system to determine

within-host parasite dynamics. While the Daphnia–parasite model system may be relatively

simple, MTE principles are likely to hold in natural and more complex host–parasite systems

[44]. Our study provides a proof of concept that MTE functions can accurately represent the

thermal dependence of demographic parameters at the within-host level and that disease mod-

els based on these functions can capture empirical data across a wide thermal range. Applica-

tion of similar principles to more complex systems could constitute a major step toward

forecasting the epidemiological impacts of climate change.

The overall utility of combining host–parasite models with MTE in other systems will hinge

on two factors. First, the population dynamics and interactions of hosts and parasites need to

be described by an adequate model (Eqs 1–3 in our system), a problem of structural uncer-

tainty that can be addressed by natural history knowledge and model selection statistics.
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Second, the temperature dependence of model parameters needs to be described, requiring

knowledge of both the functional relationship between temperature and a parameter (e.g., the

Sharpe–Schoolfield model) and estimates for each function’s hyperparameters (e.g., activation

energies). Appropriate a priori choices for these relationships and parameters can initially be

informed using MTE [13] and subsequently refined in empirical studies as done here. The

multiple interacting temperature dependencies of host–parasite systems complicate forecast

attempts, but explicitly formulating these dependencies in models based on first principles is a

key step toward a predictive framework that is both generalizable and customizable across dif-

ferent transmission modes, species, and regions.

Materials and methods

Study species

The zooplankton species D. magna (order Cladocera) is a model organism widely used for test-

ing and refining biological theories, including those concerning host–parasite interactions

[45]. O. colligata is a natural microsporidian parasite of D. magna that infects the host’s gut epi-

thelial cells [46]. After encysting, O. colligata replicates intracellularly, forming clusters of up to

64 spores that are released during cell lysis and subsequently either infect adjacent gut cells or

are expelled into the water column, where they can infect new hosts. This parasite can have a

high prevalence in natural populations and has low virulence compared to other D. magna par-

asites [45]. Both the host clone and parasite isolate were originally collected from the Tvär-

minne Archipelago in Finland.

Experimental procedure

We exposed individual juvenile females of a single clone of D. magna to spores of O. colligata
at nine different temperatures that encompass the full thermal tolerance range of D. magna
(6.0 ˚C–33.3 ˚C, S5 Table). In total, we had 48 replicates for the parasite exposure treatment

and 24 replicates for the parasite-free (control) treatments, each crossed by nine temperatures

for a total of 648 D. magna. Prior to giving birth, mothers of the juveniles were kept in stan-

dardized conditions at approximately 20 ˚C to minimize maternal effects. When the juvenile

D. magna were between two and four d old, they were randomly assigned to a temperature

and parasite exposure treatment and transferred into individual mesocosms containing 80 ml

Artificial Daphnia Medium (ADaM) [47] and 15 million batch-cultured algae (Monoraphi-
dium minutum), where they acclimated for 48 h at their assigned temperature. Prior to apply-

ing any infection treatments, all individuals that died during the acclimatization period were

replaced with backups that had been treated identically up to that point.

After acclimatization, we exposed 48 randomly selected individuals at each temperature to

O. colligata by adding 1 ml spore solution containing approximately 28,000 spores to their

mesocosm each day for four d for a total dose of approximately 112,000 spores. The remaining

24 unexposed individuals received 1 ml of a placebo each day for four d. On day 0 of the exper-

iment, we fed each individual approximately 15 million algae; subsequently, for the remainder

of the experiment, they were fed approximately 30 million algae three times per wk. Every

seven d, each individual was transferred into a new mesocosm containing fresh ADaM and

algae.

The experiment ran for 285 d. We followed individuals until their death so that we could

determine lifespan, fecundity, and parasite abundance at time of death; the last individual died

on day 285. We assessed host vitality daily by examining individuals for movement and col-

lected data on host reproduction (S6 Fig, S6 Table) by counting and removing offspring twice

per wk (S1 Text). Both exposed and unexposed individuals were immediately dissected upon
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death and observed using a 400x phase contrast microscope to determine the parasite load,

defined as the number of spore clusters in a host at death. No unexposed individuals were

infected, confirming that no contamination occurred. Deceased exposed individuals that we

were unable to successfully dissect were placed in microcosms with uninfected juveniles, and

juveniles were dissected after 14 d for infection status. Eight microcosms were found to con-

tain infected juveniles, and in these cases, the primary individual was recorded as infected but

with an unknown parasite load at death. Further details on temperature treatments, acclimati-

zation, and experimental methods can be found in S1 Text.

Model

We described the host–parasite dynamics using three differential equations for the changes in

the numbers of unexposed individuals (Eq 1), exposed individuals (Eq 2), and parasites per

infected individual (Eq 3) over time. To capture potential changes in the natural mortality

rate of hosts with age [30], host survival was modeled using a two-parameter Weibull distribu-

tion that allows for a nonconstant hazard of dying. The scale parameter of this Weibull distri-

bution (μ) is proportional to the mean mortality rate, and the shape parameter (β) controls

how the mortality rate changes over time. If β = 1, mortality is constant over time and the con-

stant hazard model described by the exponential distribution is recovered; however, if β< 1,

mortality decreases over time, and if β> 1, mortality increases over time. We allowed β to dif-

fer between unexposed (βU) and exposed (βE) individuals because we anticipated that the

progression of infection over the course of the experiment might influence how mortality

changes over time. Infected individuals also suffered parasite-induced mortality, which we

modeled as a linear increase per parasite in the scale parameter (i.e., mean mortality) at rate α
[48]. Parasite population growth was modeled using a two-parameter logistic growth model,

based on the maximum growth rate (r) and the equilibrium abundance (θ). Here, θ is inter-

preted as a stable equilibrium number of parasites resulting from interacting host and parasite

processes, rather than the carrying capacity of parasites per host. The assumption of density

dependence is supported by an inspection of the data that indicate a density-dependent con-

straint on upper levels of parasite abundance. A simple linear model of parasite growth pro-

vides a poor fit to the parasite abundance data whose time series, though variable, are clearly

not concave up (Fig 2).

In order to understand the net effect of temperature on the host–parasite dynamics, we

allowed each model parameter (μ, β, α, r, and θ) to be a function of temperature. First, we esti-

mated parameters independently for each temperature (DT model). However, we were more

interested in whether basic relationships from MTE could accurately describe the relationships

between parameters and temperature. According to MTE, within intermediate temperatures

of the organism’s thermal niche, rates will scale in proportion to the Boltzmann factor, exp(-E/

kT), where E is the activation energy, k is Boltzmann’s constant (k = 8.62 × 10−5 eV K−1), and T
is temperature in K [23]. The resulting equation for the rate at temperature T, with the Boltz-

mann factor standardized to a reference temperature of T0, is known as the Van’t Hoff–Arrhe-

nius relation. To accommodate high or low temperature inactivation of metabolic enzymes,

the Van’t Hoff–Arrhenius relation can be adapted to include upper and lower temperature

bounds on rates, resulting in the Sharpe–Schoolfield function [21]. The Sharpe–Schoolfield

relation is desirable because it captures the unimodal dependence of physiological rates on

temperature and possesses the flexibility to include just the upper or lower bound, which we

refer to as the modified Sharpe–Schoolfield model.

The MTE function for each parameter was chosen based on the qualitative temperature

dependence of the DT estimates, as a model selection approach for all combinations of
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parameters was computationally infeasible. The equilibrium parasite abundance (θ) was mod-

eled using the full Sharpe–Schoolfield relation with both upper and lower thresholds and an

activation energy that may be positive or negative. If θ were regarded as a carrying capacity

and solely determined by the parasite’s requirements, it would be expected to be negatively

temperature dependent [49]; however, in our model, θ represents an equilibrium abundance

that is determined by both host and parasite processes and may therefore show positive or neg-

ative temperature dependence depending on whether host resistance or parasite processes are

more strongly temperature dependent [13]. Both parasite growth rate (r) and the Weibull

shape parameter (β) were described by the modified Sharpe–Schoolfield with only an upper

bound. The DT estimates did not show consistent differences between βU and βE, so we chose

to use one β parameter described by the same modified Sharpe–Schoolfield function for both

exposed and unexposed hosts. Unlike the other rates determining the host–parasite dynamics,

mortality tends to peak at extreme rather than intermediate temperatures. However, the typical

U-shaped thermal dependence of mean mortality (μ) (see S1 Fig) can still be captured using an

adapted Sharpe–Schoolfield model due to the inverse relation between mean survival time and

mortality rate [16], an approach that we adopted here. Virulence (α) tended to increase slightly

with temperature, but high uncertainty in the DT estimates obscured any clear pattern, so we

modeled virulence as a temperature-independent parameter. The MTE functions each contain

4–6 hyperparameters, and the MTE model contains 20 free parameters in total compared to 54

free parameters used in the DT model to fit temperatures separately.

We fitted model equations (Eqs 1–3), including the MTE functions for each parameter, via

a likelihood function that used as data inputs the time of death for unexposed and exposed

individuals as well as the number of parasites per infected individual at the time of death. The

probabilities associated with the time of death data were calculated by adapting the model (Eqs

1–3) into a statistical survival model, whereas the probabilities associated with the parasite

abundances at the time of death were modeled as a Poisson random variable with expectation

equal to the model prediction from Eq 3. The final likelihood function was then the product of

Bernoulli and Poisson probabilities associated with the data on time of death and parasite

abundance at death. The model was fitted using data cloning [50], a statistical approach that

yields unbiased maximum likelihood estimates using Markov chain Monte Carlo (MCMC)

and allows for the diagnosis of parameter nonestimability [51], which was a potential concern

given the complexity of the metabolic host–parasite model. We implemented data cloning

using the MCMC software JAGS [52], interfacing with R [53] via the package dclone [54]. Fur-

ther details of the likelihood function, model fitting (S2 and S3 Tables), and parameter estim-

ability (S2–S5 Figs) are given in S1 Text.

To analyze the cost of O. colligata infection to D. magna in relation to temperature, we cal-

culated the expected lifespan for unexposed and exposed individuals from both the DT and

MTE models using the Darth Vader Rule [55], which states that the expected lifespan is equal

to the integral of the survival function, which we obtained by discretizing and simulating Eqs

1–3. The expected lifespans were compared for both DT and MTE models graphically, and

for the MTE model, we also calculated the percent reduction in lifespan due to infection as a

function of temperature. We were not able to apply formal model selection statistics to com-

pare DT and MTE models because parasite growth or abundance parameters in the DT

model are not estimable at 6.0 ˚C and 9.5 ˚C due to lack of parasite growth and also at

29.7 ˚C and 33.3 ˚C because rapid host mortality precludes observation of parasite growth

(S1 Text, S4 Table, S3 Fig). Consequently, the MTE model is fitted to a larger dataset than the

DT model, which prohibits us from formally comparing these two models using methods

such as AIC.
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Supporting information

S1 Table. Metabolic models. Equations for the different temperature models applied to

parameters in the host–parasite equations (Eqs 1–3).

(XLSX)

S2 Table. Priors for DT model. Parameterization of the lognormal priors on the discrete tem-

perature parameters. DT, discrete temperature.

(XLSX)

S3 Table. Priors for MTE model. Parameterization of the normal (†) and lognormal priors on

the metabolic hyperparameters. MTE, metabolic theory of ecology.

(XLSX)

S4 Table. DT model estimates. MLEs and SE for the host–parasite parameters from 15 clones

of the data, estimated independently at each temperature. Parameters for which convergence

of the MCMC chains could not be achieved are highlighted in yellow (R̂ > 1:1), and parame-

ters that converged but were not estimable are highlighted in red. DT, discrete temperature;

MCMC, Markov chain Monte Carlo; MLE, maximum likelihood estimate.

(XLSX)

S5 Table. Temperature data. Mean and standard deviation of temperature treatments.

(XLSX)

S6 Table. Summary of reproduction data. Mean fecundity (offspring produced per d) of indi-

viduals in the unexposed and exposed treatments across temperature. The 95% confidence

intervals overlap at all temperatures excluding 29.7 ˚C. Exposed individuals at 29.7 ˚C

appeared to have reduced reproduction during the four-d exposure period, despite having

very low levels of infection (Table 1).

(XLSX)

S1 Fig. Modified Sharpe–Schoolfield model. Examples of (a) the original Sharpe–Schoolfied

model as applied to the shape parameter (β), parasite growth rate (r), and parasite equilibrium

abundance (θ) and (b) the modified Sharpe–Schoolfield model as applied to the host mean

mortality rate (μ). Equations are given in S1 Table. Parameters were the same in both plots:

E = 0.65 eV, EH = EL = 5E, TH = 30 ˚C, TL = 12 ˚C.

(TIFF)

S2 Fig. DT model estimability. Estimability diagnostics for discrete temperature parameter

estimates, shown as the variance in the posterior divided by the variance in the posterior at

one clone, over increasing numbers of clones (from 1 to 15). If parameters are estimable, the

scaled variance will approach zero as K!1 (grey line). If the MCMC algorithm did not con-

verge (open circles), we cannot infer anything about estimability (e.g., r at 6.0 and 9.5 ˚C). DT,

discrete temperature; MCMC, Markov chain Monte Carlo.

(TIFF)

S3 Fig. DT model estimates and convergence. DT estimates (points) with MTE predictions

(lines). Points in green converged and were estimable (shown in main text), points in red con-

verged but were found to not be estimable, and points in yellow did not converge (S4 Table).

DT, discrete temperature; MTE, metabolic theory of ecology.

(TIFF)

S4 Fig. MTE model estimates over increasing number of clones. Posterior estimates (± one

standard error) for 20 hyperparameters in the metabolic model (Table 2) over increasing
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number of clones from 1 to 25. The grey line shows the prior density (S3 Table). Constant or

increasing variance over increasing number of clones indicates parameter estimability prob-

lems (e.g., THβ). Green points represent convergence, whereas red points did not converge.

MTE, metabolic theory of ecology.

(TIFF)

S5 Fig. MTE model estimability. Estimability diagnostics for metabolic hyperparameters,

shown as the variance in the posterior divided by the variance in the posterior at one clone,

over increasing number of clones from 1 to 25. If parameters are estimable, the scaled

variance will approach zero as K!1 (grey line). Convergence of the MCMC was not an

issue for any of these hyperparameters. Green points represent convergence, whereas red

points did not converge. MTE, metabolic theory of ecology; MCMC, Markov chain Monte

Carlo.

(TIFF)

S6 Fig. Cumulative reproduction through time for each Daphnia magna individual. Red

represents exposed individuals, while blue represents unexposed individuals. Each individual’s

cumulative reproduction is shown for the duration of its lifespan, with each line ending on the

day that that individual died. Since offspring production was quantified twice per wk while

mortality was checked daily; in some cases, the last clutch produced by an individual was

counted up to three d after that individual was observed to have died. The small number of off-

spring that were quantified after host death are not shown as part of this time series, though

they are included in the reproduction summary statistics in S6 Table. The data used to make

this figure can be found in S2 Data.

(TIF)

S1 Data. Data on Daphnia magna lifespan and infection load.

(CSV)

S2 Data. Data on Daphnia magna survival and reproduction through time.

(CSV)

S1 Text. Supporting information.

(PDF)
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šek, Pepijn Luijckx.

Formal analysis: Devin Kirk, Stephanie Peacock, Martin Krkošek.

Investigation: Devin Kirk, Natalie Jones, Stephanie Peacock, Jessica Phillips, Pepijn Luijckx.

Methodology: Devin Kirk, Natalie Jones, Stephanie Peacock, Jessica Phillips, Péter K. Molnár,
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Péter K. Molnár, Martin Krkošek, Pepijn Luijckx.
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