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Purpose: Timely diagnosis of eye diseases is paramount to obtaining the best treatment outcomes. OCT and
OCT angiography (OCTA) have several advantages that lend themselves to early detection of ocular pathology;
furthermore, the techniques produce large, feature-rich data volumes. However, the full clinical potential of both
OCT and OCTA is stymied when complex data acquired using the techniques must be manually processed. Here,
we propose an automated diagnostic framework based on structural OCT and OCTA data volumes that could
substantially support the clinical application of these technologies.

Design: Cross sectional study.
Participants: Five hundred twenty-six OCT and OCTA volumes were scanned from the eyes of 91 healthy

participants, 161 patients with diabetic retinopathy (DR), 95 patients with age-related macular degeneration
(AMD), and 108 patients with glaucoma.

Methods: The diagnosis framework was constructed based on semisequential 3-dimensional (3D) con-
volutional neural networks. The trained framework classifies combined structural OCT and OCTA scans as
normal, DR, AMD, or glaucoma. Fivefold cross-validation was performed, with 60% of the data reserved for
training, 20% for validation, and 20% for testing. The training, validation, and test data sets were independent,
with no shared patients. For scans diagnosed as DR, AMD, or glaucoma, 3D class activation maps were
generated to highlight subregions that were considered important by the framework for automated diagnosis.

Main Outcome Measures: The area under the curve (AUC) of the receiver operating characteristic curve and
quadratic-weighted kappa were used to quantify the diagnostic performance of the framework.

Results: For the diagnosis of DR, the framework achieved an AUC of 0.95 � 0.01. For the diagnosis of AMD,
the framework achieved an AUC of 0.98 � 0.01. For the diagnosis of glaucoma, the framework achieved an AUC
of 0.91 � 0.02.

Conclusions: Deep learning frameworks can provide reliable, sensitive, interpretable, and fully automated
diagnosis of eye diseases.
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Diabetic retinopathy (DR), age-related macular degeneration
(AMD), and glaucoma each represents a leading cause of
blindness.1e5 Although the pathophysiologic processes of
vision loss in each of these diseases are unique, they share
qualities that make early diagnosis essential. Each is usually
asymptomatic during early development.2,5,6 In the case of
DR and glaucoma, treatment during early stages is
effective for slowing disease progression and preventing
otherwise incurable vision loss.7,8 In patients with AMD,
conversion to the exudative form of the disease can also
lead to rapid, catastrophic vision loss; the diagnosis of wet
AMD is, consequently, a major treatment indicator.6
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Therefore, for DR, AMD, and glaucoma, effective
screening and early diagnosis are key to preventing poor
visual outcomes. However, current diagnostic protocols
face important challenges. Among these is reliance on
qualitative traits that may instill subjectivity into
diagnoses. Additionally, protocols that recommend
multiple imaging modalities (e.g., fundus photography
supplemented with OCT to confirm the presence of edema
or exudation)8dwhich increases the screening cost,
requires more training for instrument technicians, and can
encourage patient noncompliance with clinician
recommendationsdare problematic.9
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These issues can be alleviated through the use of OCT and
OCT angiography (OCTA), which together provide depth-
resolved, 3-dimensional (3D), micrometer-scaleeresolution
structural and vascular images of the retina.10e13 Numerous
studies bymultiple investigators have confirmed the ability of
combinedOCTandOCTA imaging to diagnose and detect the
pathology of DR, AMD, and glaucoma using quantitative
measurements.14e22 Additionally, combined structural OCT
and OCTA have several advantages as a screening technol-
ogy. Since 2014, OCT has been the most common procedure
in ophthalmic practice and is cost effective relative to allied
modalities such as color fundus photography or dye-based
angiography.23 Furthermore, because OCTA images can be
acquired from structural OCT scans via alternative data
processing, only 1 procedure is required to obtain both
structural and vascular information.24 Finally, because these
procedures are noninvasive, combined OCT and OCTA
imaging can be performed at will.

Despite these advantages for the diagnosis of DR, AMD,
and glaucoma, a diagnostic platform based on combined
structural OCT and OCTA imaging will still require innova-
tion before it can be translated to clinics. Combined structural
OCT and OCTA data sets are large, and manual review of
these datasets can be prohibitively time consuming. Manual
review is, nonetheless, often required, particularly in analytic
frameworks that rely on en face images because retinal slab
segmentation errors (which are common in more pathologic
retinas) can introduce artifacts.25 In underserved areas, the
clinical infrastructure required to meet these image analysis
demands may not be available.26 To resolve these issues,
automated image analyses are required. Deep learning is a
data-driven technique that is currently the most powerful
tool for medical image classification tasks.27 Previously,
diagnostic deep learning networks were proposed for
DR,28e33 AMD,34,35 and glaucoma.36e39 However, none of
these methods can be used for automated diagnosis of all 3 of
these diseases simultaneously, whichmeans that eachmust be
applied sequentially. This has the net effect of undermining
generality and requires technicians to be familiar with several
algorithms. Therefore, here, we present a deep-lear-
ningebased platform using combined structural OCT and
OCTA data volumes as inputs capable of simultaneously
diagnosing DR, AMD, and glaucoma. By relying on data
volumes, this platform avoidsmissegmentation artifacts on en
face images (which are difficult to correct). Providing a uni-
fied diagnostic framework also ensures that each of these
important diseases is screened for and saves computational
resources by checking for each disease type simultaneously.
In addition, the network outputs 3D class activation maps
(CAMs) to highlight disease-related biomarkers that are
helpful for treatment decisions and management as well as
verifying the algorithm’s predictions.
Methods

Data Acquisition

In this study, 102 eyes of 91 healthy participants, 161 eyes of 161
patients with DR, 142 eyes of 95 patients with AMD, and 121 eyes
of 108 patients with glaucoma were examined at the Casey Eye
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Institute, Oregon Health & Science University, Portland, Oregon.
Each patient had 1 or both eyes scanned; the entire data set used in
this study included 526 volumetric scans. For each eye, the mac-
ular region was scanned using a commercial 70-kHz spectral-
domain OCT system (Avanti RTVue-XR; Optovue Inc) with a
central wavelength of 840 nm. The scan depth was 1.6 mm in a
6.0 � 6.0-mm2 region (640 � 400 � 400 pixels) centered on the
fovea. Blood flow was detected using the split-spectrum amplitude-
decorrelation angiography algorithm based on the speckle variation
between 2 repeated B frames.13 OCT structural images were
obtained by averaging 2 repeated B frames. For each data set, 2
volumetric raster scans (1 x-fast scan and 1 y-fast scan) were
registered and merged using an orthogonal registration algorithm
to reduce motion artifacts.40 In addition, a projection-resolved
OCTA algorithm was applied to all OCTA scans to remove flow
projection artifacts in the deeper plexuses.41,42 According to the
manufacturer’s recommendations and our experience, OCT or
OCTA scans with a signal strength index of < 50 are generally
low quality and were excluded.

A masked, trained retina specialist (T.S.H.) graded 7-field color
fundus photographs based on the ETDRS scale43,44 to generate
positive ground truth labels for the DR data volumes. Diabetic
macular edema was identified based on the central subfield
thickness using structural OCT based on the Diabetic
Retinopathy Clinical Research Network standard.45 Eyes with an
ETDRS score of 14 or worse or any stage with diabetic macular
edema were graded as DR cases. Another masked, trained retina
specialist (S.T.B.) generated positive AMD ground truth labels
by grading 7-field color fundus photographs based on the Age-
Related Eye Disease Study scale.46 Eyes with an Age-Related
Eye Disease Study simplified score of 1 or worse were graded as
AMD cases. Glaucomatous eyes were determined using clinical
diagnosis, and the inclusion criteria for this study were an optic
disc rim defect (thinning or notching) or nerve fiber layer defect
visible using slit-lamp biomicroscopy (D.H.). The participants
were enrolled after informed consent in accordance with an insti-
tutional review boardeapproved protocol, and this study was
conducted in compliance with the Declaration of Helsinki and
Health Insurance Portability and Accountability Act.

Data Inputs

Although 3D OCT and OCTA scans can provide much more
detailed information than 2-dimensional data projections, it is also
much more challenging to train a network to extract the relevant
information from data volumes than from images. This difficulty
was compounded in our study by the need to extract relevant
features for 3 different diseases. To improve the computational and
space efficiency of the framework, each volumetric OCT and
OCTA scan was resized to 160 � 224 � 224 voxels and
normalized to voxel values between 0 and 1. Combining the
structural OCT and OCTA volumes, the final input dimensions
were 160 � 224 � 224 � 2 pixels (Fig 1).

Diagnostic Framework for DR, AMD, and
Glaucoma

The proposed automated diagnostic framework for DR, AMD, and
glaucoma uses a semisequential classifier, which includes 2 parts
(Fig 1). The first part is a classifier used to diagnose DR and AMD
in parallel. This part was trained based on the entire data set with a
ground truth label of 3 classes (DR, AMD, and neither). The
second part is used to diagnose glaucoma using data that were
not diagnosed as DR or AMD by the first part, which means that
glaucoma was sequentially diagnosed after the diagnosis of DR
and AMD. Therefore, the combination of these 2 parts was



Figure 1. Automated diagnostic framework for diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma using combined
volumetric OCT and OCT angiography (OCTA) data as inputs. Structural OCT and OCTA data volumes are resampled and combined to form the input
for a semi-sequential classifier. The first part of the classifier then diagnoses DR and AMD. Data not diagnosed as DR and AMD by the first part are fed to the
second part for glaucoma. Eyes not diagnosed with DR, AMD, or glaucoma can be considered normal or as having other diseases. For the diagnosis of any
disease, the network also generates 3-dimensional (3D) class activation maps (CAMS).
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named as a semisequential classifier because it contained both
parallel and sequential diagnoses. The reason for using a
semisequential structure to diagnose glaucoma is that the
difference between normal and glaucoma in macular OCT or
OCTA scans is much smaller than the difference between normal
and DR or AMD. In our experience, glaucoma could not be
accurately detected if only 1 part was used for the diagnosis of
DR, AMD, and glaucoma at the same time (see the Results
section). To ensure that the second part only focused on the
difference between normal and glaucoma, it was trained based
on only the normal and glaucoma data with 2-class labels.
Therefore, the 2 parts were trained separately. Data that were not
diagnosed as DR, AMD, or glaucoma could be considered as
normal in our training framework, which relied on healthy eyes
being distinguished from eyes with these 3 diseases. However, we
noted that other eye diseases could still be present in a clinical
context. The classifier of each part used a customized 3D con-
volutional neural network architecture with 16 convolutional layers
(Fig S1, available at www.ophthalmologyscience.org). For the first
part, 2 output layers were designed for the diagnosis of DR and
AMD. For the second part, only 1 output layer was used to
classify each input as normal or glaucoma. Each output layer is a
fully connected layer with a softmax function. For scans
diagnosed as DR, AMD, or glaucoma by the full semisequential
classifier, 3D CAMs are generated by projecting weight
parameters from the corresponding output layer back to the
feature maps of the last convolutional layer before global
average pooling.
Evaluation and Statistical Analysis

The area under the curve (AUC) for receiver operating character-
istic (ROC) and precision-recall curves was used as the primary
evaluation metric to quantify the diagnostic accuracy for each
disease. Quadratic-weighted Cohen kappa47 was used as the metric
to evaluate the diagnostic performance for multiple diseases. In
addition, the overall accuracy, sensitivity, and specificity were
calculated. Fivefold cross-validation, with 60% of the data
reserved for training, 20% for validation, and 20% for testing, was
used to assess the performance reliability. Data from a single
participant were included in only the training, validation, or test
data set. The parameters and hyperparameters in our framework
were trained and optimized using only the training and validation
data sets. The test data set was used exclusively for evaluation to
guarantee that performance was not biased. In addition, adaptive
label smoothing was used during training to reduce overfitting.33

To evaluate the performance improvement caused by the
semisequential structure, a parallel classifier with 3 output layers
was constructed to classify each input as normal, DR, AMD, or
glaucoma. The parallel classifier was trained, validated, and eval-
uated based on the same data set as the semisequential classifier.
However, unlike the semisequential classifier, glaucoma would be
parallelly classified with DR and AMD by the parallel classifier.
Results

The framework achieved reliable performance, as indicated
by the AUCs of the ROC curves of the test data set, which
exceeded 0.9 for each disease in this study (Table 1 and Fig
2). For the precision-recall curves, the diagnosis of both DR
and AMD achieved high AUCs (> 0.9). Although a separate
part in the semisequential classifier was used to diagnose
glaucoma, the AUCs of both the ROC and precision-recall
curves for the diagnosis of glaucoma were still lower than
those for the other 2 eye diseases (Fig 2). The overall
accuracy of the diagnosis of multiple eye diseases
(normal, DR, AMD, and glaucoma) was w80%.

We also constructed 2 confusion matrices (for the first
part of the semisequential classifier and the full semi-
sequential classifier) using the overall results from the
fivefold cross-validation (Fig 3). In the first part, which only
diagnoses DR and AMD, most misdiagnoses were between
normal or glaucoma and DR. In the full semisequential
classifier (which also includes glaucoma and normal
diagnoses), normal eyes were most often misdiagnosed,
and when diseased eyes were misdiagnosed, it was most
often as normal eyes.

To quantify the performance improvement caused by the
semisequential structure, a comparison between the glau-
coma classification performances of the semisequential and
parallel classifiers was performed (Table 2). The comparison
was performed only based on the normal and glaucoma test
data. With the semisequential classifier, the sensitivity,
specificity, and AUC of the ROC curve were improved by
3
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Table 1. Automated Disease Diagnosis Performance

Metric DR Diagnosis AMD Diagnosis Glaucoma Diagnosis Eye Disease Diagnosis

Overall accuracy 90.19 � 2.03% 94.53 � 0.71% 89.25 � 1.75% 79.43 � 2.01%
Sensitivity 90.00 � 2.34% 88.28 � 5.60% 71.67 � 4.08%
Specificity 90.27 � 1.99% 96.88 � 1.76% 94.39 � 1.98%
AUC of ROC 0.95 � 0.01 0.98 � 0.01 0.91 � 0.02

AUC of precision recall 0.91 0.95 0.71
Quadratic-weighted kappa 0.78 � 0.05 0.86 � 0.02 0.68 � 0.05 0.57 � 0.05

AMD ¼ age-related macular degeneration; AUC ¼ area under the curve; DR ¼ diabetic retinopathy; ROC ¼ receiver operating characteristic.
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12.00%, 6%, and 0.1, respectively. This improvement was
because the semisequential diagnosis of multiple disease
makes more sense than the parallel diagnosis of multiple
diseases in this context given the fact that the difference
between normal and glaucoma data is much smaller than
the differences between normal and AMD or DR data.
During training, the parallel classifier mostly focused on
learning the unique features of DR and AMD and ignored
those of glaucoma. The improvement caused by the
Figure 2. Receiver operating characteristic (ROC) and precision-recall curves d
(DR), age-related macular degeneration (AMD), and glaucoma based on the fu
curves. The models achieved AUCs of 0.95 � 0.01 and 0.91 for ROC and preci
0.95 for ROC and precision recall, respectively, for the diagnosis of AMD, and A
the diagnosis of glaucoma. In addition, the precision-recall curve for glaucoma lo
was a combination of the 2 parts of the semisequential classifier. std. dev. ¼ st

4

semisequential structure was critical for the glaucoma
diagnostic performance of the proposed diagnosis
framework.

To aid confirmation of the model’s outputs and interpret
its decision making, our framework also produced 3D
CAMs (Figs 4, 5). We found that the CAMs frequently
highlighted a pathology that is known to be associated with
the diseases in this study, for example, nonperfusion and
low-perfusion areas around the fovea were highly weighted
erived from fivefold cross-validation for the diagnosis of diabetic retinopathy
ll framework. The area under the curve (AUC) was calculated for both the
sion recall, respectively, for the diagnosis of DR, AUCs of 0.98 � 0.01 and
UCs of 0.91 � 0.02 and 0.71 for ROC and precision recall, respectively, for
oked different from that of the other 2 diseases because glaucoma prediction
andard deviation.



Figure 3. Confusion matrices for the first part of the semisequential classifier (left) and the full semisequential classifier (right) based on the overall results of
fivefold cross-validation. AMD ¼ age-related macular degeneration; DR ¼ diabetic retinopathy.

Zang et al � Diagnosis of DR, AMD, and Glaucoma
for decision making for DR (highlighted regions in Fig 4A).
In the AMD data, the CAMs highlighted most of the drusen
areas (Fig 5C, D).

From the classification of glaucoma (Fig 6), we observed
that the semisequential classifier was mostly focused on the
vanished nerve fiber layer, which is consistent with the
known pathophysiology of glaucoma (Fig 6D).48,49 In
addition, the low-perfusion area was also highlighted by
the CAMs (Fig 6A). These attention maps offer many
opportunities for us to validate the performance of deep
learning frameworks and discover new potential
biomarkers for understanding and diagnosing diseases.
Discussion

In this study, we proposed an automated diagnostic frame-
work based on volumetric OCT or OCTA data that di-
agnoses DR, AMD, and glaucoma. The framework uses a
semisequential classifier, which consists of 2 parts with
identical architecture, one of which diagnoses DR and AMD
and the other of which diagnoses glaucoma. We found that
this semisequential structure, which uses separate parts
(classifiers) for AMD or DR and glaucoma, outperformed a
single parallel classifier that learns to diagnose all 3 dis-
eases. The framework achieved an AUC of ROC curve of
> 0.9 for the diagnosis of each disease. These results
indicate that our automated framework achieved reliable
Table 2. Comparison between the Glaucoma Classification P

Overall Accuracy Se

Semisequential classifier 77.33 � 3.82% 78.3
Parallel classifier 63.11 � 4.35% 56.6

AUC ¼ area under the curve; ROC ¼ receiver operating characteristic.
diagnostic performance for DR, AMD, and glaucoma using
only a single ophthalmic imaging modality.

Compared with current deep-learningeaided diagnostic
methods based on OCT or OCTA for eye diseases, our
framework also includes several advantages. The first
advantage is that our framework can be used to diagnose
DR, AMD, and glaucoma simultaneously, which can
reduce the time and financial costs of screening. In addi-
tion, ophthalmologists can have a more comprehensive
understanding of the eye condition of referred patients
based on our diagnosis results. The second advantage is the
use of the entire 3D volume. Other approaches that rely on
en face images are prone to segmentation errors and may
miss important features without access to cross sectional
information (such as small drusen or retinal fluid).
Furthermore, traditional frameworks that perform diag-
nosis based on the presence or absence of known patho-
logic features may not account for undiscovered relevant
features or information and fail to utilize all of the infor-
mation available in combined structural OCT and OCTA
data volumes. In contrast, our approach is biomarker or
feature agnostic, which means that correlations or struc-
tures within the data volume that may be difficult for a
human to identify can still be incorporated into decision
making. As a corollary, our framework may also have
greater capacity to improve with more training data
because a full data volume contains far more information
than an image formed by projection.
erformances of the Semisequential and Parallel Classifiers

nsitivity Specificity AUC of ROC

3 � 5.53% 76.19 � 6.73% 0.78 � 0.03
7 � 6.24% 70.48 � 3.56% 0.68 � 0.03
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Figure 4. Class activation map based on the diabetic retinopathy output layer of the semisequential classifier for an eye with correctly classified diabetic
retinopathy. A, OCT angiography (OCTA) en face projection of the superficial vascular complex ([SVC] inner 80% of the ganglion cell complex). The
nonperfusion and low-perfusion areas were highlighted by the class activation map. B, Corresponding B scan at the position of the red line in (A). C,
Structural OCT en face image of the ellipsoid zone ([EZ] the boundary between the outer nuclear layer and the EZ to the boundary between the EZ and the
retinal pigment epithelium). D, Corresponding B scan at the location of the red line in (C).
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Another significant advantage of our framework is the
inclusion of 3D CAMs. Deep learning algorithms are often
likened to a “black box” because their decision making is
difficult to interpret. This is problematic because opaque
decision making may hide important biases that could prove
to be disadvantageous for certain groups. The interpret-
ability provided by 3D CAMs would allow clinicians to
verify and understand diagnosis decisions and ensure that
they are correct, an essential requirement for any diagnostic
framework. Compared with 2-dimensional CAMs, 3D
CAMs indicate which retinal layer in each B scan is relevant
for each diagnosis. We verified that the CAM output by our
model highlighted features known to be associated with
each of the diseases examined in this study: nonperfusion
areas in the diagnosis of DR (Fig 4A), drusen in the
diagnosis of AMD (Fig 5D), and nerve fiber layers with
abnormal structure in the diagnosis of glaucoma (Fig 6D).
Although the 3D CAMs did not demonstrate all features
used for the diagnosis of eye diseases, they found many
key features, indicating that our framework successfully
AA BB CC

Figure 5. Class activation map based on the age-related macular degeneration o
age-related macular degeneration. A, OCT angiography (OCTA) en face projec
cell complex). B, Corresponding B scan at the position of the red line in (A).
between the outer nuclear layer and the EZ to the boundary between the EZ and
the red line in (C). The drusen area was highlighted by the class activation m
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learned relevant features and that 3D CAMs could be
useful for clinical review and sanity checks. In addition,
the 3D CAMs were used to highlight biomarkers that
were selected by our framework; however, not all
biomarkers were selected. The fact that only some of the
biomarkers were highlighted means that these biomarkers
were already sufficient for our framework to make the
diagnosis decision.

There are 3 aspects of the diagnostic performance of our
framework that could be improved in future studies. First,
our data set contained only healthy eyes or eyes that had 1 of
the 3 diseases (DR, AMD, or glaucoma), whereas in clinical
practice, an eye may experience a different condition (e.g.,
branch retinal vein occlusion) or even multiple diseases
simultaneously (e.g., AMD with DR or AMD with retinitis
pigmentosa). This limitation may lead to performance loss
in our model if it were attempted on an eye with conditions
that were not included in our data set. Second, the use of the
semisequential structure increased the diagnosis accuracy
for glaucoma but also limited the framework for the
DD

utput layer of the semisequential classifier for an eye with correctly classified
tion of the superficial vascular complex ([SVC] inner 80% of the ganglion
C, Structural OCT en face image of the ellipsoid zone ([EZ] the boundary
the retinal pigment epithelium). D, Corresponding B scan at the location of
ap.



Figure 6. Class activation map based on the glaucoma output layer of the semisequential classifier for an eye with correctly classified glaucoma. A, OCT
angiography (OCTA) en face projection of the superficial vascular complex ([SVC] inner 80% of the ganglion cell complex). The low-perfusion area is
highlighted in (B). Corresponding B scan at the position of the red line in (A). C, Structural OCT en face image of the inner retina (the boundary between
the vitreous and the inner limiting membrane to the boundary between the outer plexiform layer and the outer nuclear layer). D, Corresponding B scan at
the location of the red line in (C). The region of the vanished nerve fiber layer was highlighted.
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diagnosis of eyes with both glaucoma and DR or glaucoma
and AMD. This framework solved the multiple classifica-
tion problem for a single diagnosis among 3 eye diseases;
however, future studies need to generalize our strategy to
make multiple simultaneous diagnoses of more diseases or
eyes with multiple diseases. Finally, some of the design
choices that led to the second limitation were to improve the
diagnostic performance for glaucoma (Table 2); however,
even so, the sensitivity for the diagnosis of glaucoma
(71.67 � 4.08%) was lower than that for the other 2
diseases (90.00 � 2.34% for DR and 88.28 � 5.60% for
AMD). Because only scans of the macula were used in
this study, information from the optic disc, where the
pathology of glaucoma is more prominent,50 was
unavailable for decision making. Training on a larger data
set with cases of multiple diseases would likely improve
performance for not only glaucoma but also the other
diseases in this study. In particular, the accuracy of the
parallel classifier could probably be similar to that of the
semisequential classifier in the main module if more
glaucoma data for training were available. This limitation
of the framework could, therefore, be solved using a
better-trained parallel classifier.

In addition to diagnostic performance, currently, there are
also limitations if we use our framework in real-world clinical
applications. Our framework can only be used in clinics with
both OCT and OCTA available. However, this limitation will
gradually disappear as OCTA applications become more
widespread. In addition, all the data sets used in this study
were scanned using Avanti RTVue-XR at Casey Eye Insti-
tute, Oregon Health & Science University, and only scans
with a signal strength index of > 50 were preserved. The
diagnostic performance may be lower with external or lower-
quality data or data scanned on other OCT devices. There-
fore, to improve the clinical utility of our framework, data
without these limitations will also be included in the future.
Conclusions

We proposed a deep-learningeaided diagnostic framework
for DR, AMD, and glaucoma that takes combined 3D
structural OCT and OCTA data as inputs. Our framework
achieved reliable performance in the diagnosis of each dis-
ease for which it was designed and produced 3D CAMs that
can be used to interpret the model’s decision making. Using
our framework, the number of scanning procedures and eye
examinations required for the diagnosis of the 3 different
eye diseases was reduced to just a single OCT or OCTA
procedure. In addition, using 3D data as inputs, our
framework can totally avoid the influences of unstable
retinal layer segmentation. Finally, our results showed that
the biomarker-agnostic framework based on 3D OCT and
OCTA could be beneficial for clinical practice.
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