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Abstract: Natural processes along with increased industrial production and the irresponsible be-
havior of mankind have resulted in environmental pollution. Environmental pollutants can be
categorized based on their characteristics and appearance into the following groups: physical, biolog-
ical, and chemical. Every single one of them represents a serious threat to the male reproductive tract
despite the different modes of action. Male gonads and gametes are especially vulnerable to the effect
of exogenous factors; therefore, they are considered a reliable indicator of environmental pollution.
The impact of xenobiotics or radiation leads to an irreversible impairment of fertility displayed by
histological changes, modulated androgen production, or compromised spermatozoa (or germ cells)
quality. The present article reviews the exogenous threats, male reproductive system, the mode of
action, and overall impact on the reproductive health of humans and animals.

Keywords: heavy metals; radiation; endocrine disruptors; mycotoxins; testes; spermatozoa; seminal
plasma; oxidative stress; mode of action; risk factors

1. Introduction

The present society is largely focused on the creation and optimization of technological
methods. This effort for financial or personalistic gain, or the process simplification of
production brings along high, although on first sight, imperceptible sacrifice. The develop-
ment and spread of diseases of affluence reflect the negative impact of various byproducts
of industrial production or other anthropogenic activities. Accordingly, the most advanced
industrial areas are usually also known for the enormous environmental pollution. The
accumulation and consecutive synergism of toxicants in the living environment leads to
impairment of individual physiological processes or even death [1].

Contaminants, commonly known also as risk factors, may have different characteris-
tics depending on their origin. Physical contamination is caused by ubiquitous ionizing and
nonionizing radiation. Micro-organisms and their metabolites or pollens can be considered
as risk factors of biological origin. Chemical contaminants include endocrine disruptors or
toxic metals [2].

Pollutants tend to accumulate in different organs and harm their functions. Poisoning
or contaminant-derived diseases can be acute (episodic) or can develop over time (chronic
intoxication). They are often accompanied by skin problems, breathing complications,
convulsions, digestive disorders, or serious failures of the central nervous system and
endocrine activity. The most terrifying effects, affecting even the progeny, are mutagenicity
and carcinogenicity [3–8].

A good example of the consequence of high environmental pollution is the year to year
decrease in the infertility of wild animals, domestic animals, or even humans. A negative
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effect of toxicants (decrease in concentration, motility, or longevity of spermatozoa) is often
monitored on the individual or the group of individuals, however, the mechanism of action
of toxicants on the cellular level is not studied enough. If so, most of the time only one
compound is studied at a time and studies do not take into consideration the possible effect
of synergism or antagonism of xenobiotics [9–12].

Previous studies imply that the exogenic effect of toxicants is strongly related to
the enhanced production of reactive oxygen species (ROS) and reactive nitrogen species
(RNS), resulting in the degradation of biomolecules or even apoptosis [13]. On the other
hand, it is important to mention that ROS are necessary for the physiological processes of
spermatozoa such as capacitation or acrosome reaction. Therefore, spermatozoa may be
affected by several exogenic and endogenic factors where the determining variables are
the imbalance between antioxidants and free radicals and appropriate proportion between
individual components of seminal plasma [14].

The present article describes exogenous agents in general and summarizes the current
knowledge about their effects on male reproductive system and their modes of action.

2. Environmental Pollution

The pollution of the environment has a serious consequence in the endangerment
of human and animal health. It is caused primarily by growing industrial production,
transportation, chemical substances used in agriculture [15,16], and pharmaceutical reme-
dies [17]. Soil contamination and thus the pollution of foods of plant origin is one of
the most pressing issues in discussion about food safety on the European [18] or even
global [19] level.

Gonads and gametes serve as a very sensible and reliable barometer of the incidence
of risk elements in the environment. They are affected via the degeneration of seminiferous
epithelium, abortion of connection with the basal membrane, defects in spermatozoa
development, and generation of ROS thereby reducing male fertility [20–23]. Donkin and
Barres [24] report that environmental factors along with diet and lifestyle are reflected in
spermatozoa epigenetics. More important, these genetic changes may be passed on to the
next generations via epigenetic inheritance. We recognize three types of contaminants that
can eventually cause environmental pollution and we divide them based on their character
and appearance on physical biological and chemical contaminants [2].

2.1. Physical Contamination

The Glossary of Environment Statistics issued by the United Nations Department
for Economic and Social Information and Policy Analysis defines physical pollution as
pollution caused by color, suspended solids, foaming, thermal conditions, or radioactiv-
ity [25]. This definition was adopted by the Organization for Economic Cooperation and
Development (OECD) and is still used today [26]. Color pollution is the result of color
contamination by an inappropriate arrangement of colors that induces a disorder in the
perception of the visual field within the natural or urban environment [27]. Suspended
solids are contaminants of the water environment in the form of microplastics. Microplas-
tics are serious polluting agents themselves, moreover, they may have a role as pathogen
carriers. Their presence in a marine environment is a threat not only to aquatic flora and
fauna but also to human food safety in the form of seafood and salt [28,29].

Temperature changes in the aquatic system may also cause thermal pollution which is
reflected in degraded water quality. The source of thermal pollution is frequently found in
the activity of power plants. The negative effect is then shown on soil erosion or on fish
that exhibit thermal shock, metabolism alterations, and reproductive dysfunction [30,31].
Another water-related contaminant causing physical pollution is foaming. Due to the ap-
pearance of the foam on the surface of the freshwater, contamination can be easily visually
recognizable. Foam pollution may find a cause in the natural processes of aquaculture
or anthropogenic activity. Man-made pollution is often caused unintentionally by of oil,
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detergent, or lignosulfonate leaks. Foam lines are formed from the surfactants which
reduce the tension of the water surface and enable the foam bubbles occurrence [32].

Radiation is an extensively occurring contaminant of the environment. Radiation can
be divided based on the amount of emitted energy into ionizing and non-ionizing, which
determinates the power and further features of the radiation. Non-ionizing radiation causes
electron excitation which can induce heat generation. Ionizing radiation possesses enough
energy to induce the emission of electrons from atoms and electrons being a threat to all
living organisms [33,34]. Radioactive compounds are usually the waste of nuclear power
generation, production of nuclear fuels, weapons development, biomedical interests, and
industrial activities. However, radioactive contaminants can also originate in nature [35].
Radiation is the only exogenous agent of the group of physical contaminants that have a
direct effect on male reproduction. As the ubiquitous aspect of the modern age, radiation
may be considered a serious threat based on its emitted energy, frequency, and dose of
exposure (Table 1).

Table 1. The effect of non-ionizing and ionizing radiation on the most targeted sites in male reproduction.

Radiation
The Site of the Effect

Testis Epididymis Spermatozoa

Non-ionizing

• dilatated and congested blood
vessels in tunica albuginea
and interstitium

• degenerated
spermatogenic cells

• diminished Sertoli cells
containing numerous vacuoles,
swollen mitochondria, and
broken organelles

• enhanced production of
cytokines by Sertoli cells

• germ cells arrested in
pre-meiotic stages

• induced generation of ROS

[36–38]

• reduced weight of epididymis
• decreased sperm count
• morphological defects of

spermatozoa
• increased lipid peroxidation
• diminished content

of glutathione
• degeneration of

epithelium cells

[39–43]

• dose & frequency-dependent
effect on motility

• spontaneous
acrosome reaction

• sperm head malformations
• increased DNA damage

[33,36,44–46]

Ionizing

• decreased testis weight
• damaged seminiferous tubules
• disorganized

spermatogenic cells
• declined number of

spermatocytes and
spermatogonia

• induced apoptosis of
spermatogenic cells

• degeneration of Sertoli cells
• the high appearance of

swelling mitochondria
• extensive ROS generation

[47–50]

• the lower weight of
epididymis

• diminished luminal diameter
• high incidence of vacuoles in

the epithelium
• impaired spermatogenesis
• reduced sperm count
• elevated apoptosis
• enhanced intracellular ROS
• decreased level of zinc

[47,51–53]

• decreased motility
and viability

• reduced sperm count
• morphological

malformations
• elevated intracellular ROS
• down-regulated expression

of tubulin
• decreased content of ATP

[47,49–51]

2.2. Biological Contamination

The term biological contaminant covers all cases of contaminations induced by the
biological activity of organisms in the environment. This includes all invasive plant and
animal species, pollen, but concerning reproduction, the most frequent biological pollutants
are microorganisms. Either microbes themselves or their metabolites cause air, water, soil,
or food pollution [54–57]. The food chain contains numerous entries for contamination.
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The contamination of groceries is often associated with improper storage conditions while
fresh products are considered safe and healthy. This bias is frequently promoted along with
a healthy lifestyle. However, microbiological threats are present in every step of the farm-
to-fork chain, including the soil, water sources, cultivation, harvesting, and processing [58].
In respect to one of the highest sources of contamination, water, the US Environmental
Protection Agency identifies over 500 waterborne pathogens, including viruses, fungi,
bacteria, protozoa [59]. Epidemiologists also warn against the HVAC (heating, ventilation,
and air conditioning) technology and hand dryers in public restrooms when they are not
regularly maintained, inspected for microbial pollution, and disinfected [60].

Male reproductive organs are prone to microbial infection and subsequential in-
flammations. The male urogenital tract is occupied by numerous bacteria including Es-
cherichia coli, Proteus spp., Enterococcus spp., and other Gram-positive and Gram-negative
bacteria. The presence of bacteria in the semen is called bacteriospermia and does not
inevitably mean the pathological sign. On the contrary, the presence of Mycoplasma spp.,
Chlamydia spp. or other pathogenic bacteria are not appreciated. Sequela such as orchitis,
epididymitis may be caused by Brucella spp., Mycobacterium leproe, Mycobacterium leproe, or
uropathogenic Escherichia coli. In addition to epididymis and testis, Chlamydia trachomotis
targets and causes inflammation of the urethra, prostate, and seminal vesicles. In certain
cases, when the concentration of pathogenic bacteria is too excessive, the body responds
with leukocytospermia—abnormally high concentration of white blood cells in ejaculate.
The physiological regulation of this phenomenon is not sufficiently explained yet [60–63].
Some authors even did not find any or just weak associations between bacteriospermia
and leukocytospermia [64,65].

Semen may be considered the vector of viral infection; however, the male reproductive
system may also suffer from viral contamination. It has been documented that semen
may be a host to approximately 27 viruses. This includes Adenoviruses, Ebola virus,
Hepatitis virus (HPV) B and C, Zika virus, Epstein Barr virus, Human immunodeficiency
virus (HIV), Mumps virus, several herpes viruses, Human T-cell lymphoma virus, SARS-
CoV-2 virus, etc. [61,66,67]. Evidence on the direct effect of viruses on fertility has been
reported by several studies. Some viruses affect only the spermatozoa by alteration of
their motility and viability (Hepatitis B and C, SARS-CoV-2, HPV) [67–69]. On the other
hand, the CoxsacKie virus, Mumps virus, HIV, Zika virus, HPV, Influenza virus target male
reproductive organs—testis and epididymis [68–72]. In some cases of HPV infection, the
targeted site might be just Sertoli cells. This phenomenon is called the “Sertoli cell-only”
syndrome [71].

2.3. Chemical Contamination

Chemical contaminants turn into pollutants when accumulations are sufficient to
undesirably affect the natural environment or to present a risk to living organisms. There
are thousands of industrial chemicals identified as a hazard to humans, animals, and the
environment. Therefore, governmental agencies regulate their production, storage, trans-
portation, and disposal. Sources of chemical contamination contain agricultural activities,
industrial and manufacturing activities, municipal waste, service-related activities, and
resource extraction [73].

2.3.1. Heavy Metals

The term “heavy metals” defines a wide group of contaminating elements that are
distinctive of their miscellaneous features, associated effects, and origin. Heavy metals
of-ten appear as positively charged molecules that bind to negatively charged molecules
of other elements to become a part of a compound. Ecotoxicological studies include the
group of heavy metal elements like Cu, Zn, Cd, Hg, Pb, Cr, Ni, Mn, Fe, and semimetals
As and Se. These metals are sometimes incorrectly indexed as toxic metals which is
inaccurate since many metals are essential nutrients and at certain levels are not toxic at
all [74,75]. Heavy metals fall into a group of trace elements. Their impact on the body
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may be diverse—metabolic, carcinogenic, or even mutagenic. The mode of action depends
on several factors: the features of the element, a form of contact with the organism, the
dose of the element, exposure time, type of absorption of the element, or bioaccumulation.
The current research is aimed mainly at heavy metals present in industrial or former
mining areas [76]. According to Arvay et al. [77], toxicity varies in dependence on mobility,
solubility, pH, etc. Numerous studies proved that heavy metals accumulate in adipose
tissues and consequently disrupt the functioning of internal organs and impair the nervous
or endocrine system [78–80]. In general, compounds containing heavy metals are toxic,
mutagenic, teratogenic, and carcinogenic for animals [81]. There are several ways of the
entrance to the animal organism (e.g., consumption, inhalation, through the skin) that
can cause severe intoxications [82]. Therefore, thorough, and periodic monitoring of
health conditions is required in polluted areas [9,16,83]. The detrimental effects of heavy
metals have been reported by numerous studies. Table 2 displays the most serious heavy
metals-induced deteriorations reported in association with the male reproductive system.

2.3.2. Endocrine Disruptors (EDs)

Endocrine disruptors represent a large group of environmental xenobiotic com-pounds
that can interfere with the biosynthesis, secretion, action, or metabolism of endogenous
hormones, which ultimately leads to changes in the efficacy of these hormones [120,121].
EDs can be of natural origin (phytoestrogens, hormones, etc.) or are the result of anthro-
pogenic activities (pharmaceuticals, dioxins, pesticides, etc.) [35]. Because most of them
can interact with cell surfaces or nuclear receptors, they can cause alterations in cellular
homeostasis even at extremely low concentrations, which places them in a special cate-
gory of toxic substances in terms of health risks [122]. These substances are characterized
by persistence and bioaccumulation properties, which are associated with the inhibition
and disruption of physiological processes at the level of cells and molecular signaling
pathways. The results are irreversible changes in the endocrine, cardiovascular, nervous,
reproductive, and immune systems [123]. Due to their ability to interfere with estrogen,
progesterone, and androgen receptors, endocrine disruptors pose extremely serious health
risks in association with impairment of male reproductive functions [124]; at the forefront of
discussions is infertility due to reduced sperm count, reduced sperm quality, and inhibition
of steroidogenesis [7,125,126]. Many xenobiotics have endocrine disrupting properties,
including industrial chemicals, solvents, polycyclic aromatic hydrocarbons, plasticizers,
and compounds found in detergents, cosmetics, agricultural chemicals, and pesticides, as
well as natural and synthetic hormones and drugs. These chemicals are widely distributed
in the environment, especially through the trophic chain and wastewater [127,128]. At
present, the attention of science in the field of EDs is focused mainly on synthetic industrial
chemicals because of the absence of evolutionary adaptation to these xenobiotics [129].
These are plasticizers and other chemicals present in plastic as well as paper food packag-
ing, which expose the human population to endocrine disruptors through food practically
continuously [130]. This phenomenon has been confirmed by numerous studies, the results
of which indicate increased concentrations of bisphenols, alkylphenols, phthalates, and
perfluoroalkyl compounds in the saliva, urine, and milk of exposed individuals, but also
in the food of daily consumption [131]. EDs also include many agrochemicals and pesti-
cides, which have been shown endocrine disruptive activities in the living organism [132].
In particular, first-generation pesticides are a dangerous heritage for today’s population
because they persist in soils, aquatic sediments, bioaccumulate in invertebrate and ver-
tebrate tissues, and move up in trophic chains [133,134]. Numerous studies confirm that
the increasing number of compounds released uncontrollably into the environment every
year, which we classify as endocrine disruptors, harm animal and human health, and it is
necessary to monitor their effects and consequences in organisms [7,135–137].
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Table 2. The effect of selected (the most harmful) heavy metals on the most targeted sites in male reproduction.

Heavy Metal The Site of the Effect

Testis Epididymis Spermatozoa

Cadmium

• alterations in the number and
structure of
seminiferous tubules

• the increased volume of stroma
• the thinned layer of Sertoli and

germ cells
• altered spermatogenesis

[84–86]

• enhanced weight of
epididymis

• thickened epithelia
• widened interstitium
• vacuolized Sertoli cells
• impaired spermatogenesis
• dilatated blood vessels
• induced apoptosis and

inflammation
• interfered androgen

production
• increased ROS production

[87–90]

• reduction in sperm count
• decreased viability

and motility
• altered morphology
• altered acrosome and

mitochondrial segment
• changed DNA methylation

[91–96]

Lead

• reduced testis weight
• disrupted testosterone

production
• elevated ROS
• disorganization of

seminiferous tubules
• interfered or even absent

spermatogenesis
• enlarged spermatocytes
• inflamed tunica albuginea
• down-regulation of Catsper 1

and 2

[97–102]

• decreased weight of
epididymis

• increased oxidative stress and
lipid peroxidation

• diminished epididymal
spermatozoa

• modulated enzymatic activity
• reduced quantity of stereocilia

of epithelial cells
• lowered number of

spermatozoa

[103–105]

• decreased sperm count and
motility

• excessive generation of ROS
• enhanced DNA damage
• morphological

malformations
• decreased intracellular

cAMP
• inhibition of sperm creatine

kinase
• displacing zinc from its

binding sites

[101,102,104,106,107]

Mercury

• hypertrophy of seminiferous
tubules with occlusions in
the lumen

• vacuolated areas contained in
the seminiferous tubules

• thinned tubules
• dilatated blood vessels
• the increased volume of

the interstitium
• degeneration and

disorganization of
spermatogenic cells

• reduced number of
spermatocytes

• down-regulation of Catsper 1
and 2

• disruption of estrogen receptor

[108–114]

• reduced weight of epididymis
• decreased sperm count
• morphological aberrations
• elevated levels of ROS and

lipid peroxidation
• disruption of estrogen

receptor

[110,114,115]

• reduced sperm count
• higher incidence of immotile

spermatozoa
• the damaged plasma

membrane, axoneme
• elevated generation of ROS
• increased lipid peroxidation
• impaired fertilization ability
• altered DNA methylation
• decreased adenosine

triphosphate
• inhibition of sperm

creatine kinase

[102,109,115–119]

3. Mode of Action (MoA)

As listed earlier, there are three types of contaminants (physical, biological, and
chemical) based on their characteristics, origin, and MoA. This implies their various
effects on the functionality of organs and gametes. The biological system has its own
mechanisms to prevent the toxicity of the reproductive system. The hematotesticular
barrier (HTB) regulates the migration of some toxicants from blood to the testis, mature
sperm chromatin is inactive and firmly coiled, defective spermatocytes are degraded and
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replaced. The imperfection of the HTB consists in the influx of lipophilic compounds
allowing the exposure of vulnerable spermatogonia to toxicants and compromises male
fertility [74]. HTB is one of the tightest barriers between blood and tissue, dividing
seminiferous epithelium into the basal and apical parts. Also known as the blood–testis
barrier, HTB differs from other tissue barriers by its structure, composed of tight junctions,
ectoplasmic specializations, desmosomes, and gap junctions. This highly specific and
unique structure provides a favorable microenvironment for meiosis and following the
development of spermatids into spermatozoa [138]. Spermatogonia are localized in the
basal compartment while primary and secondary spermatocytes along with round and
elongating and already elongated spermatids are situated in the apical compartment [139].

3.1. Physical Pollutants

The MoA of radiation on male reproductive physiology is not clearly stated across
the scientific literature. While ionizing radiation is considered dangerous due to the ability
of electron liberation, non-ionizing radiation is supposedly safe as it lacks photon energy.
However, non-ionizing radiation excites electrons which generates heat. It is assumed
that heat generation stimulates OS production [33,44,140]. The spermatozoa of radiated
individuals may contain microtubules with the modified arrangement, furthermore, dis-
rupted mitochondria with up-regulated ROS generation may appear in radiation-exposed
spermatozoa [141]. Excessive OS initiates adverse actions towards testicular tissue, mainly
Sertoli cells, Leydig cells, and germ cells. The modulated integrity of testis indicates im-
paired spermatogenesis, apoptosis, and production of spermatozoa with functional and
morphological damage. Moreover, male gametes may possess defected DNA [36,37,48,52].
A decreased number of viable Leydig cells causes alteration of testosterone production.
This variation in androgen production impairs the whole hypothalamic-pituitary-adrenal
axis [142]. The significant limitation of the topic of radiation and male reproduction arises
in the scientific community. Biologists evaluate the risk of radiation based solely on the
biological data (mainly OS production) while physicists look at the same problematics on
the level of electrons with no biological relevance.

3.2. Biological Pollutants

Biological pollutants affect reproduction primarily from the microbial perspective.
Bacterial contamination of the urogenital tract is associated with an enhanced level of
leukocytes in the semen. Leukocytes generate ROS in their combat with an infection which
may cause deleterious changes of spermatozoa and the integrity of their DNA [64]. The
effect of mycotoxins on male reproduction needs to be remembered as well. As shown
by Zheng et al. [143], zearalenone impairs reproductive functions. The results of in vitro
administration of zearalenone were demonstrated on the Sertoli cells. Irreversible damage
was detected damage to the cytoskeletal structure, namely the absence of both mitochon-
dria and Golgi apparatus, and relocalization of vacuoles into the cytoplasm. Moreover,
mycotoxins can interfere with the secretory functions of Sertoli cells. Most viruses affect
only spermatozoa if at all. However, few other types target testicular and epididymal
tis-sue and induce severe inflammation [68,69]. This process includes HTB, which forms an
interface between the immune system and germ cells. Strong inflammation in combination
with responding cytokines modulates the functionality of HTB. Comprised barrier enables
the entrance of inflammation and may result in the formation of granulomas as a response
to chronic inflammation. Moreover, inflammation induces excessive ROS pro-duction
causing even superior damage to the testis, germ cells, and developing spermatozoa [144].

3.3. Chemical Pollutants

Chemical pollutants are probably the most recognized of all pollutants. Toxic heavy
metals, due to their capability to accumulate in tissues, represent a threat as chronic
toxicants. The toxic mechanisms of heavy metals are defined as ion imitation, interruption
of cell signaling pathways, oxidative stress, altered gene expression, apoptosis, disruption
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of the testis–blood barrier, and inflammation. It has been previously revealed that toxic
heavy metals alter Leydig cell development and induce Leydig cell tumors. Even low
doses of these toxic agents alter the walls of seminiferous tubules, thinness the germinal
epithelium, thus impairing the process of spermatogenesis. Heavy metal exposure also
results in the altered weight of testes, cellular degeneration, interfered androgen hormones
pro-duction, dilatated and congested blood vessels, and necrosis [9,89,101,145]. Elevated
environmental concentrations of heavy metals are markedly displayed in the enhanced
level of OS in seminal plasma [146].

Endocrine disruptors are associated mainly with imperceptible regulation of endocrine
systems. The chemical structure of these pollutants mimics the natural hormones or inter-
fere with the synthesis and secretion of the natural hormones. These agents are responsible
not only for the improper development of sexual organs of the affected individual, but
their effect may be also displayed on the health and sexual status of its progeny [7,137,147].
In addition to chemicals as polychlorinated bisphenols, organochlorine pesticides, and
plasticizers and nonylphenols, it has been proposed, that heavy metals mercury, cadmium,
and arsenic may also possess endocrine system modulating functions [148,149]. Several
studies report the direct disrupting effect of EDs on the germ cells and Leydig cells via
excessive generation of OS [150].

3.4. Oxidative Stress—A Common Feature

Oxygen is a biogenic element for all aerobic cells. It is necessary for the maintenance
of normal cell functions, however, reactive oxygen species (ROS) which are formed as a
by-product of the natural metabolism of oxygen may be harmful to the cell. The deciding
factor is whether there is a balance between ROS generation and antioxidants which can
scavenge free radicals [151]. Free radicals may be defined as an independently existing
atom or molecule with an unpaired electron. By accepting or donating the electron molecule
becomes a free radical. Reactive oxygen species and reactive nitrogen species (RNS) belong
among the best known and most frequent free radicals [152]. ROS represent a wide category
of molecules including radicals and non-radicals. Oxygen-derived radicals comprise
hydroxyl ion (•OH), superoxide (O2

•−), peroxyl (LOO•), hypochlorous acid (HOCl), etc.
Non-radicals include ozone (O3), singlet oxygen (1O2), peroxide substances (H2O2), and
others [152,153]. Nitrogen-derived radicals are nitric oxide (•NO), nitrous oxide (N2O),
peroxynitrite (ONOO-), nitroxyl anion (NO−), and peroxynitrous acid (ONOOH).

Metabolism and the utilization of oxygen is an essential requirement of male gametes.
Free radicals play an important role in several physiological processes of the reproductive
tract [154]. Spermatozoa themselves generate ROS which is necessary for capacitation,
hyperactivation, acrosome reaction, and sperm-oocyte fusion [14]. Each ejaculate contains
potential sources of ROS. Often, these sources are leukocytes and neutrophils, which
apply their cytotoxic mechanism against cells and pathogens and produce high levels of
ROS [155].

The endogenous production of O2
•− is caused by cell respiration. This radical is by

itself relatively non-reactive, but the presence of H+ leads to the formation of H2O2, which
is largely involved in the lipid peroxidation of the plasma membrane [156,157] abundant
in PUFA [158,159]. Gosalvez et al. [14] report that by the action of enzymatic antioxidants
H2O2 is catalyzed to water and oxygen. The external sources of ROS are associated
with an individual’s diet and the environment in which the individual lives. Indirect
and direct effects on male infertility are induced by industrial intermediate products and
wastes [160], smoking and alcohol consumption [161–163], obesity [164], diabetes [165],
physical exercise [166], psychological stress [167], aging [168], or the presence of increased
levels of toxic heavy metals in the environment [169,170].

NO, the major RNS, is formed of L-arginine by redox-reaction via nitric oxide synthase
(NOS). This reaction necessitates oxygen and several cofactors. RNS are invaluable for
numerous physiological processes in male reproduction, demonstrating their importance in
intracellular signaling pathways [142]. Moreover, NO regulates the timing of the opening
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and closing of tight junctions of HTB thus prevents xenobiotics from entering the seminifer-
ous tubules. Further, RNS are similarly as ROS involved in capacitation, acrosome reaction,
hyperactivation, and oocyte-spermatozoa fusion. An excessive amount of RNS results in
stimulation of apoptosis, inhibition of Leydig cell steroidogenesis. Clinically, RNS is often
associated with leukocytospermia, varicocele, and erectile dysfunction [171].

The exposure to oxidative stress may result in adaptation (increased activity of defense
mechanisms), damage to macromolecules (DNA fragmentation, protein modifications, lipid
peroxidation) [172,173], or cell death (apoptosis, or even necrosis with a wider impact on
surrounding cells and tissue) [174]. The effect of OS may be also mitigated by antioxidants
by oral administration [175–178] or direct supplementation of reproduction-associated
cells [179–183].

4. Conclusions

Environmental pollutants have been determined as a risk factor to the overall health
status of both humans and animals. The synergism of several contaminants and their bioac-
cumulation may lead to the induction of oxidative stress, resulting in cellular disruption,
histological damage, endocrine disruption, and possible transgenerational effects. It is
necessary to also consider antagonistic effects. The reproductive system, due to its high
sensitivity, is considered the plausible marker of environmental quality that is applicable
for humans as well as for various domestic and wild animals. Plenty of xenobiotics target
the testis and impair their function. The male reproductive system possesses molecular
repairing mechanisms that enable the limited but continuous production of viable gametes.
Nevertheless, it is important to monitor and protect the environment by all means in order
to maintain the fertility of humans and animals.
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