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A B S T R A C T   

Attaining a dependable measurement of concrete slump is crucial as it is a valuable indication of 
concrete workability. On the other hand, complexities associated with costly traditional ap
proaches have driven engineers to use indirect efficient models such as metaheuristic-based 
machine learning for approximating the slump. While the literature shows promising applica
tion of some metaheuristic techniques for this purpose, the large variety of these algorithms calls 
for evaluating the most capable ones to keep the solution updated. Stochastic fractal search (SFS) 
is one of the most powerful optimization algorithms in the literature that has not received 
appropriate attention in analyzing concrete mechanical parameters. In the present research, a 
multi-layer perceptron neural network (NN-MLP), is enhanced using the SFS. The proposed SFS- 
NN-MLP model aims to predict the slump based on the amount of ingredients in the mixture, as 
well as the curing age of specimens. Accuracy assessment revealed that the proposed model can 
deal with the assigned task with excellent accuracy. It indicates that the SFS could properly tune 
the parameters required for training the NN-MLP, and consequently, the trained network could 
reliably calculate the slump of specimens that were not analyzed before. For comparative vali
dation, the SFS was replaced with two similar optimizers, namely elephant herding optimization 
algorithm (EHO) and slime mould algorithm (SMA). Based on the calculated mean square errors 
of 5.6526, 6.1129, and 7.3561 along with mean absolute errors of 4.6657, 5.0078, and 6.3066, as 
well as the percentage-Pearson correlation coefficients of 78.06 %, 73.95 %, and 58.11 %, 
respectively for the SFS-NN-MLP, EHO–NN–MLP, and SMA–NN–MLP, it was shown that the SFS- 
NN-MLP is the most accurate predictor. Hereupon, the SFS-NN-MLP model is recommended to be 
effectively used for obtaining a cost-efficient approximation of concrete slump in real-world 
projects.   

1. Introduction 

Concrete is known as a suitable construction material that has been used in various projects worldwide [1–5]. The prediction of 
concrete parameters such as compressive strength (CS) is very important and can lead to reducing the time and cost of a project [6]. 
Scholars stated that the amount of energy consumption and the degree of compatibility with the environment are among two 
important elements that have to be taken into consideration for designing a mixture in the case of constructing concrete factors [7,8]. 
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So far, many numerical/analytical attempts have been made to improve the quality of concrete-based elements. For instance, Bakhshi 
et al. [9] investigated the design of printable engineered cementitious composite by replacing the cement with different contents; and 
the specimens were evaluated in terms of setting time and strength. Shakouri Mahmoudabadi et al. [10] studied the response of 
concrete columns reinforced with glass fiber-reinforced polymer (GFRP) under eccentric loading. Supported by the results of finite 
element ABAQUS analysis, they observed that the load-carrying capacity falls with the increase of eccentricity. Mozafarjazia and 
Rabieeb [11]conducted experimental and numerical analyses to evaluate the ductility, load-bearing capacity, and energy absorption of 
reinforced concrete shear walls. They observed that having a balanced configuration of rebar besides the use of pozzolanic concrete in 
the wall results in enhancing these three parameters. 

In a more general sense, technological advances have facilitated evaluations/measurements in the world of engineering such as 
sustainable construction projects [12–16]. A more particular example can be structural engineering in which sensitive analyses are 
performed using computer software to secure a proper design of buildings [17–19]. Likewise, the advent of laboratory utensils and 
novel modeling approaches have enabled engineers to assess the quality of construction materials [20–24]. However, above these 
advances, computational intelligence and machine learning (ML) algorithms have facilitated and enhanced the prediction of different 
engineering variables [25–28]. For instance, Ghasemi and Naser [29] tried to utilize the capability of artificial intelligence for pre
dicting the mechanical properties (i.e., compressive strength) of 3D-printed concrete. There are various machine learning models that 
have served for modeling the CS of diverse concrete types [30–33]. Previous studies demonstrated the reliable performances of 
artificial neural networks (ANNs) in dealing with durability, corrosion, and elastic modulus simulation of many different concretes 
[34–36]. Nguyen et al. [37] utilized the ANN model for prediction tasks and were concerned with the workability parameters of 
self-compacting concrete and provided appropriate results. Hammoudi et al. [38] proved the applicability of the ANN model for 
forecasting tasks in compressive strength modeling. In order to evaluate the slump, the CS, and elastic modulus of bentonite plastic 
concrete, Amlashi et al. [39] also utilized the ANN model together with multivariate adaptive regression splines, and M5 model tree 
and determined that ANN provided outstanding results compared to other mentioned models. In addition, they have also specified 
many involved variables that had the largest effect or the least influence on the slump of BPC. Onikeku et al. [40] also evaluated the 
ANN efficiency as well as multiple linear regression to simulate the compressive strength and slump of different waste materials 
concrete. Hoang and Pham [41] utilized a traditional ML model called least squares to support vector regression (LS-SVR) and showed 
that this model can be used in the case of modeling concrete workability. 

There are many limitations in the case of experimental-based methods as well as computational optimization by traditional ML 
algorithms for optimizing concrete mixture proportions [42,43]. Due to the low or average efficiency of traditional methods to deal 
with highly non-linear and complicated engineering problems, many researchers have focused on the use of metaheuristic methods to 
optimize previous ML methods. In this optimization, firstly, objective functions are developed and then metaheuristic optimization 
algorithms are applied in order to perform optimization tasks [44–46]. For instance, Wahab et al. [47] showed the applicability of 
ANNs trained by particle swarm optimization (PSO), bat algorithm (BA), and grey wolf optimizer (GWO) to model how concrete 
cylinder strength is influenced by the confinement effect of carbon fiber reinforced polymers. Moayedi et al. [48] utilized ant lion 
optimization (ALO) to optimize the ANN model for forecasting the concrete slump, and RMSE and mean absolute error (MAE) equal to 
3.0286 and 3.7788 were obtained that introduced the ALO as an outstanding optimizer for forecasting aims. Chandwani et al. [49] 
enhanced the prediction capability of the ANN by using a genetic algorithm. Foong et al. [50] have evaluated the efficiency of three 
promising approaches teaching-learning-based optimization (TLBO), electromagnetic field optimization (EFO), water cycle algorithm 
(WCA), and multi-tracker optimization algorithm (MTOA); and found that EFO provided the highest performance. Zhang et al. [51] 
stated that the traditional single-objective optimization models cannot be perfectly used for multi-objective optimization (MOO) 
purposes so they suggested an MOO approach considering different ML methods enhanced by metaheuristic algorithms for optimizing 
concrete mixture proportions. They have demonstrated that the training time for the RF method enhanced by metaheuristic algorithms 
was about 0.98. Zhang et al. [52] stated that the Pareto front for MOO algorithm is expensive computationally and a MOO model was 
developed by different ML models optimized by a novel metaheuristic algorithm. They obtained the relationships among different 
parts and modeled SFC properties on a dataset by utilizing a back propagation neural network (BPNN) model and found that this model 
provided reliable predictions for UCS with a high correlation coefficient of 0.9663 according to the test set. 

Ly et al. [53] optimized Levenberg–Marquardt-based ANN (LMA-ANN) by particle swarm optimization in order to forecast foamed 
concrete CS (FCCS). LMA-ANN was determined as an accurate and fast predictor. The suggested algorithm was demonstrated as an 
effective predictor approach in the case of the FCCS with the highest value of R near 0.959. A similar study conducted by Safayenikoo 
et al. [54] utilized four different wise metaheuristic algorithms including biogeography-based optimization (BBO), moth-flame 
optimization (MFO), wind-driven optimization (WDO), and salp swarm algorithm (SSA) for optimizing a neural model, called 
multilayer perceptron (MLP). They stated that the BBO-MLP with RS of 21 showed to have the most accurate model compared to other 
stated models. Safayenikoo et al. [55] used three different metaheuristic algorithms namely shuffled complex evolution (SCE), the 
vortex search algorithm (VSA), and multi-verse optimizer (MVO) for enhancing the configuration of multi-layer perceptron (MLP) 
neural network. Based on the obtained results, they have shown that the prediction error in the case of MLP was considerably reduced 
around 33 % after using the SCE algorithm. 

This study is a continuation of the previous literature for developing novel metaheuristic-based models in slump modeling. For this 
purpose, an MLP neural network (NN-MLP) is incorporated with stochastic fractal search (SFS) algorithm [56] to create the 
SFS-NN-MLP hybrid. The literature shows very promising applications of the SFS in optimizing machine learning models with different 
mechanisms for prediction purposes. For instance, Ye et al. [57] used the SFS to optimize adaptive neuro-fuzzy inference system 
(ANFIS) applied to the prediction of blast-induced air overpressure. As for ANNs, Moayedi et al. [58] and Nejati et al. [59] proved the 
competency of this algorithm in tunning weights and biases of ANN for predicting landslide susceptibility and buildings’ energy 
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performance, respectively. From these studies, it can be derived that the SFS has a reliable performance in dealing with intricate and 
high-dimensional problems. The SFS-NN-MLP in this work analyzes the concrete mixture characteristics and establishes an optimal 
relationship between them and slump to predict the slump of new specimens. The performance of the suggested model is compared to 
EHO–NN–MLP (combination of NN-MLP with elephant herding optimization [60]) and SMA–NN–MLP (combination of NN-MLP with 
slime mould algorithm [61]) which are among the newest similar techniques. Apart from the accuracy comparison of the models, a 
principal component analysis (PCA) is carried out on the dataset to highlight the importance of concrete mixture ingredients on the 
slump estimation. 

2. Data and modeling methodology 

2.1. Data provision 

For such studies, the used dataset must provide sufficient information of concrete specimens. Table 1 introduces the characteristics 
of the used dataset wherein the slump (cm) of 103 specimens is measured, along with seven mixture properties including the amount of 
the used fly ash, superplasticizer, coarse aggregate, water, fine aggregate, and cement (all in kg/m3). In this work, the mentioned 
properties are input factors (IFi, i = 1, 2, …, 7), while slump is the target factor (TF). 

As a common process in machine learning works, two sub-datasets are created out of the existing dataset. The information from the 
bigger dataset is consumed to train the machine learning models, and the information from the smaller dataset is dedicated to testing 
the prediction reliability. Considering the number of existing data (i.e., 103), the training dataset is composed of information from 82 
specimens, and the test dataset is composed of information from the remaining 21 specimens. It can be inferred that 80 % and 20 % of 
specimens are considered for these datasets, respectively. 

Note that, this study uses the dataset in its original format (i.e., without normalization). The reason for this decision is to keep all 
problem variables fixed to solely focus on the models’ performance. 

2.2. Methodology 

2.2.1. Stochastic fractal search 
As one of the most recent search methods, the stochastic fractal search was designed by Salimi [56] in 2015. It is an efficient 

optimizer that has been successfully used in various fields [63–65]. The optimization using the SFS comprises diffusing and updating 
major steps. In the first stage, the particles do the exploitation by diffusing around their current position. It can help avoid stuck in local 
minima. In the second stage, the members’ positions are updated regarding the difference between the points in a group [66]. It is also 
worth noting that, in the diffusion process, the best-fitted agents are involved and consequently, other agents’ products are discarded 
[67]. 

Based on Markovian stochastic form [56], two well-known statistical methods for generating particles from diffusing task are Levy 
flight walk and Gaussian walk. The Gaussian walk enables the algorithm to have faster convergence, as well as the ability to detect the 
global minima [68]. Mathematically, let q1 and q2 be random numbers that can vary from 0 to 1, then the Gaussian walk in the 
diffusion can be written as in Equations (1)–(3). 

GS1 =G
(
mnBp, δ

)
+ (q1 rb – q2 ri) (1)  

GS2 =G
(
mnp, δ

)
(2)  

δ=
⃒
⃒
⃒
⃒
log(z)

z
( ri − rb)

⃒
⃒
⃒
⃒ (3) 

where z symbolizes the iteration, and rb and ri denote the elite and typical agent, respectively. Also, G (mn, δ) gives the Gaussian 
distribution function with standard deviations and δ mean mn. 

Table 1 
Characteristics of the used dataset.  

Provider Source page Size No. of inputs Inputs No. of targets Target 

Yeh [62] http://archive.ics.uci.edu/ml/datasets/ 
Concrete+Slump+Test 

103 × 8 7 Slag (IF1) 
Fly ash (IF2) 
Superplasticizer (IF3) 
Coarse aggregate (IF4) 
Water (IF5) 
Fine aggregate (IF6) 
Cement (IF7) 

1 Slump (TF) 

Fig. 1(a - h) present the boxplot of the TF and IFs. The values of IF1, IF2, IF3, IF4, IF5, IF6, and IF7 range in [0.0, 260.0], [0.0, 193.0], [4.4, 19.0], [708.0, 
1049.9], [160.0, 240.0], [640.6, 902.0], and [137.0, 374.0] with averages of 149.0, 78.0, 8.5, 884.0, 197.2, 739.6, and 229.9, respectively. 
Moreover, respective standard deviations are 85.4, 60.5, 2.8, 88.4, 20.2, 63.3, and 78.9. As for the TF, the minimum, average, maximum, and 
standard deviation value is 0.0, 18.0, 29.0, and 8.7, respectively. 
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2.2.2. Elephant herding optimization 
The EHO is a recently developed hybrid technique used for various optimization aims [60]. As the name denotes, it mimics the 

complex social behavior of the biggest mammals in the world [69]. Three major assumptions for expressing this behavior are (i) the 
presence of several groups with a constant number of individuals, (ii) a number of male members of every generation leaving the 
family to keep living lonely far from the herd, (iii) a matriarch leads whole elephants [60]. 

The EHO algorithm is based on two major steps, which are described in the following.  

a) Clan updating 

Let X m,i be the current position of the elephant clan m, then influenced by the corresponding matriarch, this position is updated as 
in Equation (4). 

Xnew,m,i =X m,i + β×
(

X best,m − X m,i
)
× r (4)  

where β denotes the scale factor used for setting the impact of the head m on the position. Notably, the assessment of this parameter lies 
within [0, 1]. Also, X best,m is the fittest member (i.e., the matriarch m) in the clan, and r symbolizes a parameter that could range from 
0 to 1. Considering X centre,m as the center of the proposed clan, Equation (5) expresses the update of the fittest individual as it cannot be 
updated by the mentioned relationship. 

Xnew,m,i = δ × X centre,m (5)  

in which δ is the influence of the center on Xnew,m,i and might range in [0, 1]. Remarkably, the parameter X centre,m for the kth dimension 
(1≤ k < K) is obtained from Equation (6). 

X centre,m,k =
1
/nm

×
∑nm

i=1
Xm,i,k (6)  

where nm defines the number of elephants.  

b) 2. Separation 

Fig. 1. Boxplot of the TF and IFs.  
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As mentioned previously, it is common in elephant herds that adult male individuals select solitary life instead of being with their 
family. The separation stage expresses this process as one of the most important steps of the EHO algorithm. To maintain the method in 
the highest level of robustness, it is supposed that the leaving elephant is the weakest one in each generation. This process is expressed 
in Equation (7). 

X worst− fitted,m =Xmin +( Xmax − Xmin +1 ) × rand (7)  

in which the lower bound and upper bound of the elephant position are respectively denoted by Xmin and Xmax . Besides, the term rand 
represents uniform distribution within [0, 1] [60,70]. 

2.2.3. Slime mould algorithm 
The SMA is inspired by the dynamic behavior of slime mould. This algorithm was suggested by Li, Chen, Wang, Heidari and Mirjalili 

[61]. During the foraging behavior of an organic matter, the food is sought, surrounded, and digested. The food blocks lie in an 
interconnected venous network where the SM aims to find the optimal path toward the best one [71]. The algorithm uses an adaptive 
search strategy for this. 

In the first step of the algorithm, the SM uses Equation (8) to approach the food. 

X(t + 1)
̅̅̅̅̅→

=

{
Xb(t)
̅̅̅→

+ vb
→

⋅
(

W→ ⋅ XA(t)
̅̅̅→

− XB(t)
̅̅̅→)

, r < p

vc→ ⋅ X(t)
̅̅→

, r ≥ p
(8)  

where X→ is the SM’s location, XA
̅→ and XB

̅→ are the location of two randomly selected agents, and Xb
̅→ is the location of the agent with the 

best odor concentration discovered so far, W→ represents the SM weight, vc→ decreases linearly from 1 to 0, t stands for the current 

iteration, and vb
̅→

ranges in [− a, a] where a is calculated by Equation (9). 

a= arctanh
(

−

(
t

max t

)

+1
)

(9) 

Also, p is calculated by Equation (10): 

p= tanh|S(i) − DF| i ∈ 1,2,…, n. (10)  

where DF stands for the best obtained fitness and S(i) represents the fitness of X→. Moreover, SM’s weight is calculated by Equations 
(11) and (12). 

W(SmellIndex(i))
̅̅̅̅̅̅̅̅̅̅̅̅→

=

⎧
⎪⎪⎨

⎪⎪⎩

1 + r ⋅ log
(

bF − S(i)
bF − wF

+ 1
)

, condition

1 − r ⋅ log
(

bF − S(i)
bF − wF

+ 1
)

, others
(11)  

SmellIndex= sort(S) (12)  

where r signifies a value randomly selected from 0 to 1, wF and bF stand for the worst and best fitnesses resulted in the present effort, 
condition symbolizes ranking the first half of the swarm based on S(i), and SmellIndex shows the ascending order of sorted S(i) s. 

The second step simulates wrapping the food. The concentration of the food is affected by three parameters, namely the vein 
thickness, the flow speed of the cytoplasm, and the potential of the waves released by the bio-oscillator. The SM is tended to the regions 
with larger food concentrations. Assuming BU and BL as the upper and lower bounds, the position is updated as in Equation (13). 

X∗̅→
=

⎧
⎨

⎩

rand ⋅ (BU − BL) + BL, rand < z
Xb(t)
̅̅̅→

+ vb
→

⋅
(

W ⋅ XA(t)
̅̅̅→

− XB(t)
̅̅̅→)

, r < p

vc→ ⋅ X(t)
̅̅→

, r ≥ p

(13)  

where rand and r represent a random value in [0, 1]. 
The next stage is dedicated to capturing the food. As explained, W→ is the weight which addresses the oscillation frequency of the SM 

at various food concentrations. It increases the speed of the SM when moving toward potent food sources. Even if the SM reaches a 
promising food source, some organic members evaluate the remaining regions to determine the best food block. 

In the last step, the computational complexity of the algorithm is calculated. Given T as the maximum number of iterations and N as 
the number of the SM’s units in a D-dimensional space, the computational complexity of initialization, fitness evaluation and sorting, 
weight update, and location update steps can be expressed as Ο(N), Ο(N + N log N), Ο(N × D), and Ο(N × D), respectively. The general 
complexity of the algorithm, therefore, is given as Ο(N * (1 + T * N * (1 + log N + 2 * D))) [61]. 

2.2.4. Evaluation criteria 
Root mean square error (RMSE) and mean absolute error (MAE), along with percentage-Pearson correlation coefficient (PPCC) are 
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three criteria that are used for the purpose of accuracy evaluation. These criteria are expressed in Equations (14)–(16). 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
G
∑G

i=1

[(
Siobs − Sipred

)]2

√
√
√
√ (14)  

MAE=
1
G

∑G

I=1

⃒
⃒
⃒Siobs − Sipred

⃒
⃒
⃒ (15)  

PPCC=

∑G

i=1

(
Sipred − Sipred

)(
Siobs − Siobs

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑G

i=1

(
Sipred − Sipred

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑G

i=1

(
Siobs − Siobs

)2

√ × 100 (16)  

in which Si pred and Si obs stand for the forecasted and expected slumps, respectively, for G specimens. Hence, G equals 82 and 21 in the 
training and testing phases, respectively. 

Moreover, a newer index called a20 [72,73] is used for further accuracy comparison. Having g20 as the number of samples for 
which 0.8 < Si obs/Si pred < 1.20, a20 is expressed in Equation (17) [74]. Note that, it can be calculated only for non-zero Si obs. 

a20=
g20
G

(17)  

3. Results and discussion 

3.1. Hybrid creation and optimized training 

In order to meet the goal of the study, first, the SFS-NN-MLP hybrid must be created. Fig. 2 illustrates the flowchart of creating the 
model. In this way.  

(i) The training data is exposed to the mathematical form of an NN-MLP (7, 7, 1) whose architecture is determined based on the 
authors’ experience and fitness of the data. As shown in Fig. 2, the NN-MLP has 7 input neurons, 7 hidden neurons, and 1 output 
neuron.  

(ii) The equation of the NN-MLP is given to the SFS algorithm for optimizing its weights and biases of NN-MLP [75,76]. In this part, 
in each iteration of the SFS, the search agents achieve a candidate solution (as per Section 2.2.1) and its quality is quantified 
using a cost function.  

(iii) The SFS iterates 1000 times to present a steady solution. A stopping criterion (i.e., the number of iterations) is checked to 
continue/eliminate the loop.  

(iv) The final solution is saved to create the optimized NN-MLP. 

Note that the same process is carried out to develop the EHO–NN–MLP and SMA–NN–MLP hybrids (as per Sections 2.2.2 and 2.2.3). 

Fig. 2. Flowchart of optimizing NN-MLP using the SFS algorithm.  
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Further details can be sought in similar previous studies [77–79]. 
Focusing on the fourth step of this flowchart, Fig. 3 shows how the cost function (i.e., RMSE) converges with the increase of it

erations. The cost functions of the SFS-NN-MLP, EHO–NN–MLP, and SMA–NN–MLP start from 8.7090, 11.7443, and 9.2430, and at the 
end of the 1000th iteration, end up with 3.9336, 4.7621, and 7.1469, respectively. These reductions show the potential of the opti
mization algorithms in minimizing the error of the NN-MLP model. 

3.2. Training quality 

When the training of the models is finished, three accuracy criteria are applied to assess the quality. In terms of the RMSE, 3.9336, 
4.7621, and 7.1469 are obtained for the SFS-NN-MLP, EHO–NN–MLP, and SMA–NN–MLP, respectively. These error values are 
associated with the MAEs of 3.1141, 3.6994, and 5.9192. As far as the correlation assessment is concerned, the PPCCs are 89.50 %, 
83.92 %, and 58.02 %. 

Fig. 4(a–c) show the training results. As is seen, each figure is composed of four sub-figures illustrating (i) a comparison between the 
forecasted and expected slumps, (ii) the correlation between the forecasted and expected slumps, (iii) the error trend showing the pure 
difference between the forecasted and expected slumps, and (iv) histogram of these pure error values. According to Fig. 4, while all 
three techniques have achieved satisfying results, it can be seen that the results of SFS-NN-MLP and EHO–NN–MLP are more promising 
than SMA–NN–MLP. This inference can be obtained from closer predictions of slump values, higher correlation, lower range of error, 
and more reasonable histogram of errors. 

3.3. Testing quality 

While the quality of training reveals learning ability, testing quality shows to what extent the learned knowledge is extrapolatable 
to external datasets. That’s the reason test data is quite different from the train one. 

Once the training process ends, the models are applied to test data i.e., 21 specimens. The same accuracy criteria are used for 
assessing the quality of the test process. Based on the calculated RMSEs of 5.6526, 6.1129, and 7.3561, as well as the MAEs of 4.6657, 
5.0078, and 6.3066, respectively for the SFS-NN-MLP, EHO–NN–MLP, and SMA–NN–MLP, all models achieved a satisfactory pre
diction. This statement can be supported by the PPCCs of 78.06 %, 73.95 %, and 58.11 %. 

Fig. 5(a–c) demonstrate the testing results. Similar to the training phase, these figures indicate a suitable testing performance for all 
three models, whereas the SFS-NN-MLP and EHO–NN–MLP performed more promisingly than SMA–NN–MLP. 

3.4. Importance analysis 

Feature analysis is a popular type of statistical analysis in machine learning models [80]. A statistical technique, namely principal 
component analysis (PCA) [81] is employed in this section to investigate the applied dataset in terms of factor importance. As is 
known, the PCA is based on creating a set of independent components and evaluating their eigenvalues (with 1 as the threshold). 
Referring to the results in Fig. 6, four components are characterized with eigenvalues greater than 1 which according to statistical 
reports, they are responsible for 83.61 % variation in the dataset. Therefore, these four components are selected for further analysis. 

The selected components are then subjected to a well-known rotation method, namely Varimax with Kaiser Normalization, to 
achieve Table 2. In this table, the loading factor (LF) attributing to the input factors of each component are presented. Based on the 
defined thresholds |LF| > 0.75, the most important inputs can be detected. The importance of IF4 and IF6 can be seen from Component 
1, IF2 can be seen from Component 2, IF1 and IF3 can be seen from Component 3, and IF7 can be seen from Component 4. Hence, IF5 is 
the only IF without significant importance. 

These results suggest the idea of eliminating the effect of water content from the used dataset and investigating the changes caused. 
Although possible accuracy improvement needs running the models with the reduced dataset and checking the evaluation criteria, the 

Fig. 3. Radar diagram of the convergence of the SFS, EHO, and SMA optimization.  
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new dataset certainly has a lower dimension that results in more efficient calculations. 

3.5. Discussion 

The world of science has witnessed many developments and evaluative advances in various domains [82]. One of these advances is 
ML which has shown great promise in predicting engineering parameters [83,84]. Concrete is one of the most popular materials that 
has been used for producing structural elements [85–88]. Many studies have proven the applicability of ML in analyzing the me
chanical parameters of this material. In this work, three metaheuristic-based NN-MLPs were applied to the prediction of slump, as a 
crucial concrete parameter. 

Fig. 4. Correlation and error diagrams of the training operation corresponding to (a) SFS, (b) SMA, and (c) EHO algorithms.  
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According to the results, the models achieved satisfying accuracy in both training and testing stages. Employing metaheuristic 
algorithms provides a secured training for the predictive helping its solution to avoid issues such as overfitting. The range of the 
predicted and observed slump values in Figs. 4 and 5 supports this claim for the case of this study. Furthermore, Fig. 3 showed that the 
used metaheuristic algorithms had desirable convergence; providing desirable weights and biases for slump modeling by NN-MLP. 

The models showed different levels of accuracy which call for a thorough comparison among them. Supplementary Material (S1) 
provides the detailed values of Si pred and Si obs. A comparison showed that SMA–NN–MLP could not compete with SFS-NN-MLP and 
EHO–NN–MLP closely. Also, between the two superior models, the SFS-NN-MLP achieved higher correlation and lower errors at the 
same time. These claims can be supported by the calculated a20-indices of 0.6712, 0.6575, and 0.3973 for the training results and 
0.4737, 0.3684, and 0.3158 for the training results of the SFS-NN-MLP, EHO–NN–MLP, and SMA–NN–MLP, respectively. Therefore, it 
can be concluded that the SFS-NN-MLP is the most accurate predictive model of this study for slump prediction, followed by the 
EHO–NN–MLP and SMA–NN–MLP. Besides, from a computational point of view, although the skeleton of all models was an NN-MLP 
with 7 × 7 × 1 configuration (i.e., seven input neurons, seven hidden neurons, and one output neuron), there were some distinctions 

Fig. 5. Correlation and error diagrams of the testing operation corresponding to (a) SFS, (b) SMA, and (c) EHO algorithms.  
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between the population of optimization algorithms. In this sense, the SFS and SMA algorithms were implemented with the population 
size = 400, while this parameter was 200 for the EHO. 

As with any scientific effort, there were some challenges/limitations in conducting this research. For example, when it comes to 
hybrid MLs, proper selection of hyperparameters (e.g., the number of hidden neurons, population size, etc.) is important and chal
lenging [54,55]. In this work, this task was tackled by referring to (i) the previous applications of the models to see what are key 
hyperparameters, (ii) the experts’ and authors’ experience, and (iii) conducting extensive sensitivity analysis. A notable limitation of 
this study was the lack of public sources to expand the used dataset [62] (see Section 2.1). Knowing that using a more comprehensive 
dataset results in a richer training of the models, a potential research avenue for future studies is enriching the data to deal with 
different concrete mixtures, environmental conditions, and testing scenarios. Apart from data enrichment, feature selection methods 
(e.g., the used PCA) can be applied toward dimension reduction. Last but not least, the outstanding model of this research (i.e., the 
SFS-NN-MLP) can be compared to other hybrid tools with two perspectives (i) replacing the SFS with newest optimizers (e.g., walrus 
optimization algorithm [89], one-to-one-based optimizer [90], gold rush optimizer [91], etc.): and (ii) replacing the NN-MLP with 
other predictors (e.g., ANFIS [92] and random forest [93]). 

4. Conclusions 

Slump is a pivotal factor that reflects the quality of the concrete mixture. This research was a structural-computational effort to 
provide reliable solutions to the early analysis of concrete slump. The suggested solutions were acquired by hybrid machine learning 
models that comprised a multi-layer perceptron neural network (NN-MLP) coupled with stochastic fractal search (SFS), elephant 
herding optimization algorithm (EHO), and slime mould algorithm (SMA). These three models analyzed the dependency of the slump 
on seven concrete ingredients and achieved a reliable understanding. In the subsequent phase, their knowledge was assessed by 
predicting the slump of 21 unseen specimens. Based on the accuracy assessment, all three models performed satisfactorily, however, 
the higher accuracy of the SFS-NN-MLP was evident. Therefore, this model was introduced as an outcome of this study. Additionally, a 
statistical importance assessment was performed on the dataset which revealed the critical importance of almost all input factors in the 
slump prediction. In future research attempts, experts are recommended to focus on improving the solutions in hand by focusing on the 
use of external datasets, as well as double-metaheuristic algorithms for training the NN-MLP. 

Fig. 6. Results of PCA in terms of eigenvalues.  

Table 2 
Acquired loading factors of each component (Bold indicates significant values).   

Component 

1 2 3 4 

Slag (IF1) 0.146 − 0.284 0.863 0.034 
Fly ash (IF2) 0.207 0.864 0.000 − 0.300 
Superplasticizer (IF3) − 0.113 − 0.349 ¡0.835 − 0.106 
Coarse aggregate (IF4) 0.892 − 0.123 0.150 − 0.030 
Water (IF5) − 0.214 0.726 0.013 0.296 
Fine aggregate (IF6) ¡0.813 − 0.176 − 0.117 − 0.415 
Cement (IF7) 0.175 − 0.022 0.093 0.932  
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