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Abstract Grid cells in the medial entorhinal cortex (MEC) encode position using a distributed

representation across multiple neural populations (modules), each possessing a distinct spatial

scale. The modular structure of the representation confers the grid cell neural code with large

capacity. Yet, the modularity poses significant challenges for the neural circuitry that maintains the

representation, and updates it based on self motion. Small incompatible drifts in different modules,

driven by noise, can rapidly lead to large, abrupt shifts in the represented position, resulting in

catastrophic readout errors. Here, we propose a theoretical model of coupled modules. The

coupling suppresses incompatible drifts, allowing for a stable embedding of a two-dimensional

variable (position) in a higher dimensional neural attractor, while preserving the large capacity. We

propose that coupling of this type may be implemented by recurrent synaptic connectivity within

the MEC with a relatively simple and biologically plausible structure.

DOI: https://doi.org/10.7554/eLife.48494.001

Introduction
Much of the research on neural coding in the brain is focused on sensory representations, which are

driven by external inputs that can be precisely controlled experimentally. In comparison, less is

known about neural coding in deep brain structures, in which the dynamics reflect the outcome of

internal computations. A notable exception is the hippocampal formation, where neural activity has

been linked to high level cognitive variables such as an animal’s estimate of its position within its

environment (O’Keefe and Nadel, 1978; Moser et al., 2008; Taube et al., 1990), or its estimate of

elapsed time within a trial of a trained behavioral task (Manns et al., 2007; Pastalkova et al., 2008;

Itskov et al., 2011; Eichenbaum, 2014).

Specifically, the representation of position by grid cells (Hafting et al., 2005) in the medial ento-

rhinal cortex (MEC) has led to new, unexpected insights on the neural coding of such quantities:

even though position is a low dimensional variable, it is jointly encoded by several distinct popula-

tions of cells (modules: Stensola et al., 2012), exhibiting periodic spatial responses with varying spa-

tial scales. The spatial responses of all grid cells within a module are characterized by the same grid

spacing and orientation, while differing from each other only by a rigid translation. The representa-

tion of position by each module is ambiguous, but taken together, the joint activity in several mod-

ules constitutes a highly efficient and unambiguous neural code (see Burak, 2014). Due to its

distributed organization, the grid cell code possesses a high dynamic range (ratio between the range

of unambiguous representation and resolution; Burak, 2014), greatly exceeding the performance of

unimodal coding schemes such as the representation of position by place cells in the hippocampus
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(Fiete et al., 2008; Sreenivasan and Fiete, 2011; Mathis et al., 2012b; Wei et al., 2015;

Mosheiff et al., 2017).

Alongside the potential benefits arising from the combinatorial nature of the grid cell code, the

distributed representation of position over several modules and spatial scales poses a mechanistic

challenge to the underlying neural circuitry. The difficulty lies in the hypothesized role of the hippo-

campal formation, and specifically the MEC, in maintenance of short-term memory and idiothetic

path integration, as opposed to pure representation. When grid cells update their activity,

for example based on self motion, they must do so in a coordinated manner, in order for them to

coherently represent a position in two-dimensional space, a variable of much lower dimensionality

than the joint activity of all cells.

Neurons within a module maintain strict relationships in their joint activity (Yoon et al., 2013).

These relationships are maintained across environments (Fyhn et al., 2007); under abrupt distortions

of the environment (Barry et al., 2007; Yoon et al., 2013); in novel environments (Barry et al.,

2012; Yoon et al., 2013), in which stable place fields are absent; during hippocampal inactivation

(Almog et al., 2019); under genetic perturbations that disrupt the spatial periodicity in the response

of individual cells (Allen et al., 2014); and in sleep (Trettel et al., 2019; Gardner et al., 2019). The

rigidity of the correlation structure strongly suggests that the neural activity within a module is

tightly coordinated by recurrent connectivity, consistent with attractor models of grid cell activity

(McNaughton et al., 2006; Fuhs and Touretzky, 2006; Guanella et al., 2007; Burak and Fiete,

2009), which propose that synaptic connectivity restricts the joint activity within a module to lie on a

two-dimensional manifold. Additional support for attractor models has been recently obtained by

imaging activity of multiple grid cells using calcium imaging in rats running on a virtual one-dimen-

sional track (Heys et al., 2014; Gu et al., 2018). These studies revealed a relationship between posi-

tion on the cortical sheet and the preferred firing locations of grid cells, as predicted by the variants

of attractor models that rely on distance-dependent connectivity.

In contrast to the strong correlation in the activity of neurons within a module, much less is known

about coupling of neurons that belong to different modules. A network of grid cells organized in m

modules, each independently structured as a two-dimensional continuous attractor, possesses a 2m

dimensional space of accessible steady states. Yet at any given time, continuous motion of the ani-

mal corresponds to a two-dimensional subspace of the possible local changes in the state of the m

modules. Considering that noise may corrupt the representation of position in each module sepa-

rately, the maintenance of a coherent representation of position across modules necessitates some

form of coupling between them (Welinder et al., 2008; Sreenivasan and Fiete, 2011; Burak, 2014).

Figure 1A demonstrates the need for this coupling: incoherent drifts in the positions represented by

different modules, accrued due to noise, can rapidly produce a joint representation of position that

is incompatible with any position in the close vicinity of the animal (Fiete et al., 2008;

Welinder et al., 2008; Burak, 2014; Vágó and Ujfalussy, 2018). The desired coupling across mod-

ules is more subtle than the one observed within a module: the coupling should restrict changes in

the states of different modules to lie within the two-dimensional sub-space that corresponds to

smooth movement of the animal within its local environment. However, to preserve the high dynamic

range of the code, the coupling should not restrict the dimensionality of the accessible steady

states.

To further illustrate this point, it is instructive to consider an analogy of grid cell coding to the

representation of a one-dimensional position by the rotation angles �1 and �2 of two meshing gears

(Figure 1B). We imagine that motion along the one-dimensional axis corresponds to coordinated

rotation of the two gears (Figure 1B, bottom). If the radii R1 and R2 of the two gears are incommen-

surate, a large distance is traversed before the two meshing gears come close to a previously visited

state, thus allowing for a large range of positions to be unambiguously represented. However, it is

crucial in this scheme that during continuous motion, the gears rotate in a coordinated manner:

_�1R1 ¼ _�2R2. This relationship between the phase velocities _�1 and _�2 is enforced by the meshing

cogs along the circumference of the two gears. In the absence of this mechanical constraint, small

movement of one gear relative to the other can abruptly transport the represented position to a dis-

tant location, unrelated to the original position. Note that the absolute angles of the two meshing

gears are not constrained: in fact, the large capacity of the representation relies on the fact that any

combination of the two angles is accessible (compare panels B-C in Figure 1).
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Motivated by this analogy, we ask whether synaptic connectivity between grid cell modules can

enforce a similar dynamic relationship between their states. Below, we identify a simple form of syn-

aptic connectivity between grid cells that can implement this desired form of coupling. Next, we

show that the recurrent connectivity confers the joint representation of position with resilience to

two types of noise: First, noise in the velocity inputs projecting to different modules. These may dif-

fer in different modules, for example, due to synaptic noise. Second, noise arising from the stochas-

tic dynamics of spiking neural activity within each module. The outcome is a continuous-attractor

representation of position that achieves two goals: First, the representation is distributed across sev-

eral modules with different spatial scales, allowing for combinatorial capacity by preserving the high

dimensionality of the accessible steady states. Second, the neural circuitry that supports this repre-

sentation is highly robust to noise when updating the representation based on self-motion, or while

maintaining a persistent representation in short-term memory.

Alongside the recurrent connectivity, it is plausible that feedforward synaptic projections from

the hippocampus to the entorhinal cortex play a role in shaping the grid cell response (Kropff and

Treves, 2008; Dordek et al., 2016; D’Albis and Kempter, 2017; Weber and Sprekeler, 2018).

Thus, hippocampal inputs may aid in coupling the states of different grid cell modules

(Welinder et al., 2008; Sreenivasan and Fiete, 2011). In addition, sensory inputs that carry informa-

tion about the animal’s position may contribute as well, through synaptic projections to the MEC

from other cortical areas. However, there are situations in which these types of inputs to the MEC

cannot ensure appropriate coordination between grid cells modules. First, under conditions in which

sensory inputs are absent or weak, the brain must rely on idiothetic path integration in order to

update its estimate of position. Second, in novel environments, and following global remapping in

the hippocampus (Muller and Kubie, 1987), it is highly unlikely that specific connections between

place cells and grid cells, that couple the two spatial representations, are immediately established.

Figure 1. Velocity coupling: illu. (A) Illustration of the detrimental consequences arising from uncoupled module

drifts. Black dot: location of a static animal. Top panels: schematic representation of the decoded position from

the neural activity in module 1 (left panel) and module 2 (middle panel) at time t ¼ t0. The shaded areas (cyan,

purple) represent locations whose likelihood, given the neural activity, is high. Top right panel: overlay of the

likelihood read out from module 1 and module 2. The maximal likelihood location, based on activity in both

modules, coincides with the animal’s position. Bottom panels: decoded position based on the neural activity at

time t1. Due to independent, noise-driven drifts in each module, activity in module 1 represents positions that are

slightly shifted to the left (bottom left), and activity in module 2 represents position that are slightly shifted upward

(middle). Even though the shifts are small, the joint activity in both modules (bottom right) now represents a new

maximum likelihood location (yellow), far away from the true location (black). We refer to such events as

catastrophic readout errors. (B) Representation of position along a one-dimensional axis (black line) by the rotation

angles �1 and �2 of two meshing gears that rotate in a coordinated manner in response to motion. The angles �1
and �2, corresponding to each position, are shown along the blue and red lines. If the radii R1 and R2 are

incommensurate, a large range of positions can be unambiguously read out from the combination of the two

angles. (C) An example of two phase coupled meshing gears that are fixed to each other, such that their angles �1
and �2 are always identical. Since �1 ¼ �2, there is effectively only one encoded angle, and the range of

unambiguous representation corresponds to a single rotation of the gears.

DOI: https://doi.org/10.7554/eLife.48494.002
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Hence, coupling modules via hippocampal inputs would be ineffective in a novel environment. Thus,

in this study, we focus on the ability of recurrent connectivity within the entorhinal cortex to maintain

a coherent representation of position across grid-cell modules.

Results

Theoretical framework
In laying out the principles underlying our proposed synaptic connectivity, we consider first a one

dimensional analogue of the grid cell representation, inspired by the analogy to meshing gears dis-

cussed above: we imagine that an animal moves in one dimension, and neurons in each grid cell

module � jointly represent the modulus of position relative to the grid spacing l� (for simplicity,

from here on, we define the phases �� such that they are in the range ½0; 1�):

�� ¼
xmod l�

l�
: (1)

We hypothesize that the joint dynamics of all grid cells within a module are restricted to lie in a

one dimensional attractor, which we model as a ring attractor (Ben-Yishai et al., 1995; Zhang, 1996).

More specifically, we consider the double-ring architecture (Xie et al., 2002), which includes a mech-

anism for updates based on velocity inputs, and was proposed as a model for integration of angular

velocity inputs by head direction cells in rodents. Recent discoveries in the Drosophila melanogaster

central complex point to a representation of heading that is maintained by neural circuitry with close

similarity to this architecture (Seelig and Jayaraman, 2015; Turner-Evans et al., 2017; Kim et al.,

2017; Green et al., 2017). Attractor models of grid cells in the entorhinal cortex (Fuhs and Tour-

etzky, 2006; Burak and Fiete, 2009) generalize the double-ring attractor model to motion in two

dimensions.

Within the double-ring attractor model (Xie et al., 2002), a module consists of two recurrently

connected neural sub-populations, each comprising N neurons organized on a ring (left ring and

right ring, Figure 2A). We denote by

~s¼
~sR

~sL

� �

(2)

the vector of synaptic activations, where~sR and~sL represent the synaptic activation of the right and

left sub-populations respectively. The synaptic activation si of neuron i follows the dynamics:

_si þ
si

t
¼ ri ¼f

X

2N

j¼1

Wijsj þ I0 � dI

 !

; (3)

where t is the synaptic time constant, ri is the firing rate of neuron i, f is a nonlinear transfer func-

tion, W is the connectivity matrix (Equation 8; Equation 9), I0 is a constant input, and þdI (�dI) is

the velocity input to a neuron in the right (left) sub-population. Synaptic weights projecting from

neurons in each ring are shifted clockwise (right) or anti-clockwise (left). When both sub-populations

receive identical feed-forward inputs, activity in the network settles on a stationary bump of activity.

However, selective activation of the right (left) sub-population via the feed-forward inputs, induces

clockwise (anti-clockwise) motion of the activity bump at a phase velocity proportional to the velocity

input dI (Figure 2B). Hence, in a noise-free network, the position of the activity bump is an integral

of the velocity input.

Our goal is to couple several such modules such that they will update their states in a coordinated

manner in the presence of noisy inputs. It is essential to couple the modules based on their phase

velocities _�� and not directly by their phases ��, as we want to allow all phase combinations of the

different modules to be possible steady states of the population neural dynamics. Our proposed

coupling requires two ingredients: reading out the phase velocity of each module, and inducing cor-

responding phase velocities in the other modules. The double ring model already contains a mecha-

nism for integration of velocity inputs, and therefore, our main challenge is in reading out the phases

velocities.
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Simple neural readout of velocity
Our first goal is to read out the phase velocity of a single module in our system. It is possible to com-

pute the phase velocity by projecting Equation 3 on the eigenvector with zero eigenvalue of the

dynamics (see Appendix 1 and Burak and Fiete, 2012). However, this projection cannot be evalu-

ated linearly from the neural activity, since the projection coefficients depend on the location of the

activity bump. Instead, we seek a simple estimate of the phase velocity that can be implemented in

a neural circuit with relatively simple architecture in a biologically plausible manner.

Intuitively, in the described framework, most of the motion arises from the differences in activity

between the right and left sub-populations Figure 2B. Therefore, this difference might be close to

the phase velocity _�. We find, indeed, that the difference between the synaptic activities of the right

and left sub-populations,

!� b

t

X

i2R
si �

X

i2L
si

 !

(4)

provides a good approximation for the phase velocity (Figure 2C), where b is a proportionality

factor. In Appendix 1 we show mathematically that !» _�.

Coupling modules by synaptic connectivity
In order to couple the motion of different modules, we use the readout signal !� of each module �

(Equation 4) as a velocity input to all other modules (Figure 2D–E, green arrows). In addition, we

include negative self coupling within each module using the same readout signal !� (necessary, as

shown below, in order to prevent instabilities that otherwise arise from the positive feedback gener-

ated by the inter-module couplings), Figure 2E (orange arrows).

velocity Inputt
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Figure 2. Model architecture. (A) Structure of a single module, consisting of a left ring (red) and a right ring (blue), in accordance with the double ring

model (Xie et al., 2002). The two rings receive external inputs proportional to velocity, with opposite polarities (purple). Synaptic weights project

slightly anti-clockwise (red) and slightly clockwise (blue) from neurons in the left and right sub-populations. (B) Illustration of the firing rates of the right

(blue) and left (red) sub-population during velocity integration. Both activity bumps are centered around the same phase. The right population is

receiving stronger feed-forward input than the the left population, due to a positive velocity signal (dI in (A) and Equation 3). Since the outgoing

synaptic weights of the right sub-population project clockwise, the activity bump of both populations moves to the right. (C) True phase � as a function

of time (black) in response to an external velocity input, representing a simulated trajectory, and an estimation of this phase from the velocity

approximation !1 (magenta). Note that � is periodic with period 1, but for presentation clarity we unwrap � to depict a continuous path along the real

axis. (D) The coupling of drifts in two modules is achieved by providing the velocity approximation !1 as a velocity input to module 2 (and vice versa,

not shown). Each module is modelled as a double ring attractor, as in (A). (E) Two coupled modules. The velocity input of each module has three

contributions: The external velocity input (purple), the coupling of velocity from the other module (green), and the self coupling (orange).

DOI: https://doi.org/10.7554/eLife.48494.003
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Note that !� is a linear function of synaptic activities within the ring network, with coefficients

that do not depend on the position of the activity bump. Thus, the coupling can be implemented by

recurrent connectivity within the MEC, between modules and within a single module. The resulting

synaptic connectivity between any two coupled modules is all-to-all in the sense that every neuron in

one module is connected to every neuron in the other module, with synaptic weights whose magni-

tudes are uniform (see Materials and methods, Equation 12). The sign of each synaptic weight

depends only on the sub-population (left or right) of the pre- and post-synaptic neurons. This con-

nectivity is completely symmetric to rotation in the two modules, thus preserving the ability to obtain

a combinatorially large manifold of steady states in which activity bumps can be placed in any combi-

nation of positions.

To understand how the couplings influence the joint dynamics of the coupled modules, we ana-

lyze the response of a network, consisting of m coupled modules, to external velocity inputs, ~bðtÞ.
The position of the bump in each module can be represented by a phase ��. We find that the

dynamics of these phases are governed by the following set of coupled differential equations

_~�¼ a~bðtÞþC f � _~�
� �

; (5)

where C is an m�m matrix whose element C�� represents the coupling strength from module �

to module �, f � _~� is the convolution of
_~� with an exponential filter f with the synaptic time scale t

(Equation 36), and a is a constant factor (see full derivation of Equation 5 in Appendix 2). Thus, the

phase of each module is updated in response to two signals: the external velocity input projecting

into the module (first term in Equation 5), and the recent history of changes in the phases of the

other modules, conveyed by the coupling signal (second term in Equation 5).

Much of the system’s response to external velocity inputs can be understood by considering its

dynamics under the assumption that the motion of the animal is sufficiently slow, such that the com-

ponents of
_~� vary slowly compared to the synaptic time constant. Under this assumption, we obtain

from Equation 5

_~�¼ X �~bðtÞ ; (6)

where

X � aðI�CÞ�1 (7)

is the linear response tensor.

For simplicity, let us consider first only two coupled modules (each of them one dimensional),

with identical self coupling strength Cs for both modules. The eigenvalues of X, denoted by Xþ and

X� (Figure 3A–C and Appendix 2), indicate how strongly the coupled modules respond to velocity

inputs that drive coordinated and relative motion, respectively. If X� is small, the modules respond

weakly to velocity inputs that attempt to update the phases in an uncoordinated manner. Thus, if X�
is much smaller than Xþ, we expect the motion of the two modules to remain coordinated, even if

the velocity inputs to the two modules differ.

We choose coupling parameters C1, C2 and Cs such that three requirements are fulfilled (see

Appendix 2): First, the modules should respond significantly to inputs that drive coordinated motion

(large Xþ, Figure 3A,C). The response to such inputs should not be suppressed since the system

must be able to update its state based on velocity inputs, to correctly represent the animal’s position

in its environment. Second, the modules should respond very weakly to inputs that drive anti-corre-

lated motion (small relative motion X�, Figure 3B,C). The self negative coupling Cs enables us to

achieve these two requirements while preserving stability (Figure 3A–C and Appendices 2-3). Our

last requirement is the maintenance of a specific ratio between the module phase velocities, l, that

corresponds to the grid spacing ratio between successive modules (we set l ¼
ffiffiffi

2
p

for all modules;

Stensola et al., 2012).

Figure 3E–F demonstrates the response of two modules to an external velocity input, represent-

ing an animal’s trajectory (shown in Figure 3D). The input is given only to module 1. In the the case

of uncoupled modules (C1 ¼ C2 ¼ Cs ¼ 0), only module 1 follows the trajectory, as expected

(Figure 3E). In the case of coupled modules, both of the modules follow the trajectory quite
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accurately, with the desired phase velocity ratio l. Hence, under these conditions, the two coupled

modules shift in a coordinated manner, even if they receive incompatible velocity inputs. Next, we

generalize these results to multiple modules, and to grid cells in two dimensions.

Generalization to two dimensions and several modules
The coupling of modules, described so far, can be easily extended to grid cell responses in two

dimensions. In accordance with grid cell responses in two-dimensional arenas, each module is struc-

tured as a two-dimensional attractor, whose state is determined by two periodic phases. Thus, the

steady states of the attractor are arranged on a torus instead of a ring. To obtain this topology, we

use a network architecture in which neurons are arranged on a parallelogram, corresponding to a

unit cell of the hexagonal grid (in similarity to Guanella et al., 2007). The synaptic connection

between any two neurons depends on their distance on the parallelogram, defined using periodic

boundary conditions (Figure 4A and Materials and methods). The position of the activity bump must

be able to shift in response to a two-dimensional velocity input, in any direction in the plane. To

implement this velocity response, each module contains four sub-populations (right, left, up, and

down). The synaptic weights projecting from neurons in each sub-population are shifted in a corre-

sponding direction within the neural population (Burak and Fiete, 2009).

In addition, we generalize our network to m grid cell modules. The coupling strengths C�� thus

comprise m2 parameters that we are free to adjust to fulfill a set of requirements, similar to those

applied in the case m ¼ 2. Our most important goal is that the motion of all modules should be coor-

dinated, even if the velocity inputs are not identical. To achieve this goal, we define a joint motion

vector~u, such that u�=u� is the ratio of grid spacings of modules � and �. We require that this vector

is an eigenvector of the linear response tensor, and minimize the eigenvalues corresponding to all

Figure 3. Two coupled modules. (A-B) Velocity response of the coupled system to velocity inputs that drive joint

motion Xþ. (A) or relative motion X�(B) in two coupled modules, as a function of the coupling strengths. (C) X� is a

function of one parameter that depends on the coupling strengths (Cs �
ffiffiffiffiffiffiffiffiffiffiffi

C1C2

p
). The magenta and black circles

represent the parameters used in (F), and the corresponding value of Xþ and X�. (D) Simulated trajectory, whose

derivative is injected as a velocity input only to module one in panels (E–F). (E) Response of two uncoupled

modules (C1 ¼ C2 ¼ Cs ¼ 0): the position represented by module 1 tracks the velocity inputs, module 2 is

unresponsive, and the updates in the two modules are not coordinated, as expected. (F) Same as (E) but the

modules are coupled with coupling strengths: Cs ¼ �20, C1 ¼ �Cs=l ’ 14:1, and C2 ¼ �Cs � l ’ 28:3. The phases

of both modules track the velocity inputs in a coordinated manner, with the desirable velocity ratio l. The phase of

module one is scaled by l (l�1 is shown) in order to simplify the comparison between modules.

DOI: https://doi.org/10.7554/eLife.48494.004
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Figure 4. Coupling of several modules in two dimensions. (A) The neurons of each sub-population in the two

dimensional case (right, left, up and down) are organized on a neuronal sheet in the shape of a parallelogram with

periodic boundary conditions. (B) Simulated firing rate of a single grid cell from each module, as a function of

position, evaluated during response of the network to a rat trajectory lasting 800 s (taken from Stensola et al.,

2012). (C) Measured rat trajectory over an interval of 20 s (Stensola et al., 2012), whose derivative is injected as a

velocity input to all modules in panels (D–E), with addition of uncorrelated noise in each module. (D) Response of

three uncoupled modules. (E) Response of three coupled modules. The phases of the three modules

approximately track the velocity inputs in both cases, but the coordination between phases of the three modules

is more tight in (E). The phases of modules 1 and 2 are scaled by l2 and l, respectively, in order to simplify the

comparison between modules (similar to Figure 3F). (F) Mean square displacement (MSD) between the scaled

phases of any two modules over time. Responses of the three modules, as in (D–E), were simulated over a

hundred realizations of noise. The mismatch between module trajectories in the coupled case (blue lines) is very

small compare to the uncoupled case (red lines). The units of scaled phases are the same as in (D–E). The legend

indicates which two module trajectories are compared. (G) Mean square error (MSE) of each module’s trajectory

relative to the animal’s trajectory, computed from the same simulations presented in (F). To obtain each module’s

trajectory in units of spatial location, the module’s phase was multiplied by its spacing. In the coupled case (blue),

the slope of MSE is reduced by a factor of m ¼ 3 (the number of modules) compared to the uncoupled case (red),

as the noise is averaged due to the coupling.

DOI: https://doi.org/10.7554/eLife.48494.005

The following figure supplement is available for figure 4:

Figure supplement 1. Disconnected module.

DOI: https://doi.org/10.7554/eLife.48494.006
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other eigenvectors. If we were able to obtain eigenvalues that precisely vanish, the response tensor

would be a rank one matrix whose columns are all proportional to ~u. Under this idealized outcome,

any velocity input, regardless of its direction in the 2m dimensional input space would result in coor-

dinated motion of the modules. However, the couplings C�� that precisely achieve this goal diverge,

in similarity to the two-module case (Appendix 2). Thus, we impose a constraint on the strength of

the synaptic connections. Another constraint is that all eigenvalues of C must be smaller than unity.

Otherwise, the system exhibits dynamic instability (Appendix 3). We optimize an appropriate target

function under these constraints (Appendix 3).

For m ¼ 2 the optimization results in the same solution of coupling parameters C�� that we found

previously. For m>2, we find that there is considerable freedom in choosing combinations of C�� that

achieve satisfactory coupling (See Appendix 3). One principled way to reduce this freedom, is to

require that there is connectivity only between successive modules. This choice is compatible with

recent observations (Fu et al., 2018) that excitatory synaptic connectivity within the MEC is relatively

short ranged. In our numerical results, we use this assumption to constrain the structure of the con-

nectivity matrix C��, but other choices that include broader connectivity between modules lead to

similar coupling between the modules.

To demonstrate how our proposed coupling affects the response of the modules to velocity

inputs, we simulate the described network in two dimensions, with and without coupling, and with

three modules. The velocity input is a measured rat trajectory from Stensola et al. (2012), with the

addition of white Gaussian noise, drawn independently in the three modules. In each module, we set

the proportionality coefficient that tunes the modulation of activity by the velocity input (g� in Equa-

tion 21) to achieve the desired grid spacing, even in the absence of inter-module coupling. In the

simulation, we assume that only velocity inputs are responsible for the update of the neural repre-

sentation of position, thus mimicking a situation in which sensory cues, such as those arising from

visual inputs and encounters with the walls (Hardcastle et al., 2015; Keinath et al., 2018), are

absent. In a noise-free simulation, the single cell firing rates form a hexagonal grid pattern as a func-

tion of the animal’s location (Figure 4B), as expected from the network structure, while the spacing

ratio between modules is close to l.

The trajectories of the 2d phases, in response to noisy velocity inputs, are shown, for each of the

three modules, in Figure 4D (uncoupled modules) and Figure 4E (coupled modules). In both cases,

the phases follow the animal’s trajectory (Figure 4C) quite closely, but the phases are much more

similar to each other, and to the original trajectory, in the coupled case. Since panels D-E show

results only from a single simulation, we repeat the analysis for 100 realizations of the noise in the

velocity inputs, to obtain statistical measures on the coupled vs. uncoupled dynamics. The coupling

substantially reduces the mismatch accrued between the trajectories of the different modules, com-

pared to the uncoupled case, Figure 4F. For comparison, Figure 4G shows the mismatch between

module trajectories and the true trajectory. In the uncoupled case, all modules exhibit similar accu-

mulation of error, which arises from their independent responses to the noise in the velocity inputs.

In the coupled case, only the projection of the noise on the direction of joint motion contributes to

the accumulation of errors, leading to a reduction by a factor of m (in our case 3) in the slope of the

MSE curve.

The lack of deviations between the phase trajectories, seen in the coupled case (Figure 4E–F), is

an essential difference between the dynamics of the coupled and uncoupled modules. As discussed

in the Introduction, we expect this difference to strongly impact the stability of the grid cell code. In

the following section, we substantiate this point.

Consequences for spatial representation and readout
We next aim to validate our hypothesis that the coupling of modules stabilizes the grid cell code,

and more specifically, prevents catastrophic errors that can be caused by uncoupled drift in the

phases of different modules (Figure 1A). We simulate the dynamics of our three module network

with noisy velocity inputs based on a measured rat trajectory from Stensola et al. (2012), as in Fig-

ure 4. We then generate Poisson spikes from the instantaneous firing rates of the neurons, and read

out the animal’s trajectory from the simulated spikes: we do so both for coupled modules

(Figure 5A) and for uncoupled modules (Figure 5B). The readout is accomplished using a decoder

that sums spikes from the recent history, with an exponentially decaying temporal kernel (see
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Materials and methods and Mosheiff et al., 2017). In Figure 5 the spikes are involved only in the

readout process and not in the intrinsic dynamics of the neural network.

In the case of coupled modules the decoded trajectory is similar to the input (Figure 5A), but

due to the noise in the inputs, it gradually accrues an error relative to the true trajectory. Without

coupling, the position read out from the network activity diverges sharply from the true trajectory

(Figure 5B). Moreover, the readout trajectory is often discontinuous in time, and thus cannot be a

good approximation to any reasonable path of the animal. The discontinuity arises from uncorre-

lated drifts of the modules which, combined with the periodic nature of the grid pattern, cause cata-

strophic readout errors, much larger than the errors accrued in the phases of each module

separately (Figure 1A).

In order to quantitatively substantiate the relationship between the large deviation of the

decoded trajectory from the true trajectory and the occurrence of catastrophic readout errors, we

Figure 5. Reilience of the spatial representation to noise in velocity inputs. (A) Blue trace: measured rat trajectory over a 20 s interval (taken from

Stensola et al., 2012), used as a velocity input to three coupled modules. Red trace: readout of position, decoded from simulated Poisson spikes of

the coupled system. The spikes are generated by a Poisson process from the instantaneous firing rates of all cells in the three modules (see

Materials and methods). Top panel: the trajectory in the two-dimensional arena. Lower panels: x and y components of the trajectory as a function of

time. The decoded position is continuous and similar to the input trajectory. (B) Same as (A), but in a network consisting of three uncoupled modules:

all coupling strengths are set to zero. The decoded position is discontinuous in time, and often sharply deviates from the input trajectory. (C)

Percentage of decoding success over time. We repeated the decoding of the animal’s trajectory, as in (A–B), over a hundred simulations with different

realizations of the noise. A success at time t is defined as a trial that did not contain any discontinuity in the readout up to that time. The success

percentage was computed by counting the number of trials without discontinuities at each time point. The coupled network maintains 100% success

over time (blue), whereas the success percentage of the uncoupled network decreases significantly over time: many trials contain discontinuities after a

few seconds, and almost all of them contain discontinuities after 20 s (red). (D) Mean square error (MSE) of the decoded trajectory, computed from the

same simulations presented in (C), in the coupled (blue) and uncoupled (red) cases. Gray trace: MSE computed by random guessing of location. The

vertical black dashed line in (C–D) represents the first time in which a discontinuity was observed in any of the trials of the uncoupled network. From this

time point onward, the percentage of success of the uncoupled network descends, and the MSE sharply increases (note the logarithmic vertical scale).

DOI: https://doi.org/10.7554/eLife.48494.007

The following figure supplements are available for figure 5:

Figure supplement 1. Effect of the readout integration time scale.

DOI: https://doi.org/10.7554/eLife.48494.008

Figure supplement 2. Effect of the number of modules and environment size.

DOI: https://doi.org/10.7554/eLife.48494.009
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repeat the decoding process a hundred times with and without coupling, for a 20s input trajectory.

In all realizations with coupling, the readout is coordinated with the input trajectory (Figure 5C,

blue). In contrast, without coupling almost all realizations exhibit discontinuities within a time interval

of 20s (Figure 5C, red). The mean square error (MSE) of the decoder increases as a function of time

in the coupled as well as the uncoupled systems (Figure 5D), as expected due to noise in the input

(as the coupling and inputs are of velocity and not location, there is no correcting mechanism that

can correct coordinated shifts in the phases of all the modules). However, a few seconds after the

start of the simulation, the MSE grows sharply in the uncoupled system (dashed line in Figure 5D).

The time at which this starts to happen coincides with the first appearance of discontinuities in the

decoded position (compare Figure 5 panels C and D). (Note that below this time the probability for

occurrence of a readout discontinuity does not vanish, but can be inferred roughly to be small com-

pared to 0.01 since we performed 100 simulations.) Thus, the dramatic reduction achieved by the

coupling between modules arises primarily from the elimination of catastrophic readout errors. This

conclusion is insensitive to the choice of the time scale of temporal integration used in the decoding

process (Figure 5—figure supplement 1).

Qualitatively similar conclusions, as demonstrated above, are obtained also when the number of

modules m is increased (Figure 5—figure supplement 2). With larger m, the rate at which readout

discontinuities occur in a given environment diminishes. Note, however, that additional modules

enable unambiguous representation of larger environments (Fiete et al., 2008; Mathis et al.,

2012a; Wei et al., 2015; Vágó and Ujfalussy, 2018), and that the rate of readout discontinuities

increases with the size of the environment (red traces in Figure 5—figure supplement 2E–J).

Intrinsic neural noise
Up to this point we presented a theory of several grid cell modules, coupled to each other by synap-

tic connectivity within the MEC, such that the coupling significantly suppresses incompatible drifts

caused by noisy inputs to the system. Next, we wish to address another important source of noise,

arising from the variability in the spiking of individual neurons within the grid cell network

(Softky and Koch, 1993; Shadlen and Newsome, 1994; Burak and Fiete, 2009). In similarity to

noise in the inputs, stochasticity of the neurons participating in the attractor network drives errors

that accumulate over time with diffusive dynamics (Burak and Fiete, 2009; Burak and Fiete, 2012).

To model this process, we replace the firing rate of each neuron in Equation 3 by a Poisson spike

train (see Equation 22).

Since we designed our network to be resilient to noisy inputs, it is not obvious that the same

architecture can also provide resilience to intrinsic noise. To address this question, we revisit first the

simple case of two coupled modules in one dimension. In Appendix A.2 we show that the simple

readout of velocity used to couple the modules (Equation 4), is a good approximation for the phase

velocity driven by intrinsic neural noise, suggesting that the coupling introduced previously can help

suppress uncoordinated drifts. To quantify the impact of coupling on coordination of the modules,

we compute the diffusion tensor of their phases, using Equation 25 (the calculation is based on the

theoretical framework laid out in Burak and Fiete, 2012; see specifically Eq. S24). In the uncoupled

case, the diffusion tensor is isotropic as expected (Figure 6A, blue line). When the modules are cou-

pled, with the same coupling strengths as in Figure 3, the diffusion of the two modules is highly ani-

sotropic (Figure 6A). The first principal axis of the diffusion tensor (red ellipse in Figure 6A) closely

matches the direction of coordinated motion (dashed line in Figure 6A). The diffusion coefficient

D�, associated with motion in the orthogonal direction, is much smaller than the diffusion coefficient

Dþ, associated with coordinated motion: Dþ=D� ~Xþ=X� ~ 40 (compare Figures Figure 3C and

Figure 6A). Thus, the coupling strongly suppresses incompatible diffusion of the two modules.

Next, we evaluate the consequences for representation and readout, arising from the suppression

of incompatible diffusion arising from intrinsic neural noise. We repeat the simulation of three cou-

pled modules in two dimensions, this time with stochastic (Poisson) neurons. Discontinuities in the

decoded trajectory occur both in the uncoupled and coupled networks, but they are much more

rare in the coupled network (Figure 6B). Accordingly, the readout MSE is reduced dramatically in

the coupled network (Figure 6C, note the logarithmic scale). Thus, the coupling is effective not only

in stabilizing the neural representation in response to noisy inputs, but also with respect to internal

stochasticity within the grid cell network.
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In principle, one could seek coupling parameters such that diffusion would be suppressed in all

directions. However, recall our first requirement from the section Coupling modules by synaptic con-

nectivity, that the network must respond with sufficient gain to external inputs, to follow an animal’s

trajectory. As we keep the joint response strong, we cannot reduce the joint diffusion simulta-

neously, and we are satisfied with coupling of the diffusive drift, without eliminating coordinated

diffusion.

Discussion
Previous works (Fiete et al., 2008; Mathis et al., 2012b; Wei et al., 2015; Mosheiff et al., 2017)

have shown that grid cell activity, viewed as a neural code for position, achieves a high dynamic

range due to the splitting of the representation across multiple modules. In this work, we addressed

a key difficulty with this idea: the combinatorial nature of the representation, arising from the exis-

tence of multiple modules, leads to high vulnerability to noise. Small uncoordinated errors in the

phases of the different modules can shift the represented position to a far away location. As a possi-

ble solution to this difficulty, we proposed a simple architecture of synaptic connectivity between

grid cell modules, that can suppress incompatible drifts. The functional coupling between modules,

arising from our proposed synaptic connectivity involves velocities, but is completely insensitive to

their phases. Consequently, the coupling does not limit the combinations of possible phases of the

different modules, and thus does not affect the capacity of the code.

Similar principles may apply to storage in working memory and coding of other continuous, low

dimensional variables in the brain. Thus, the main contribution of our work from the theoretical per-

spective, is that it identifies a way to couple several low dimensional continuous attractors of dimen-

sion d (in the case of grid cells, d ¼ 2), to produce a persistent neural representation of a single, d

dimensional variable with high dynamic range. The dynamics of the network are characterized by

two seemingly contradictory features: first, the steady states of the system span a space of dimen-

sion md, where m is the number of modules. Second, during maintenance and continuous update of

the stored memory, the joint state of the modules is dynamically restricted to lie in a much smaller,

d-dimensional subspace. This enables the continuous embedding of a d dimensional variable in the

larger, md dimensional space, without allowing for noise to shift the state of the system outside the

appropriate, d dimensional local subspace.

In the simulations of the coupled and uncoupled grid cell networks (Figure 5; Figure 6), our main

goal was to demonstrate that with a reasonable choice of parameters, catastrophic readout errors

are highly detrimental, and that the coupling mechanism greatly reduces the rate at which they

Figure 6. Reilience of the spatial representation to intrinsic neural stochasticity. (A) Diffusion tensor of a Poisson spiking neural network, consisting of

two modules in one dimension, computed using Equation 25, and illustrated as an ellipse. Axes of the ellipse are aligned with the eigenvectors of the

diffusion tensor, and the lengths of each axis represents the diffusion coefficient along the corresponding direction. Without coupling the diffusion

tensor is isotropic (blue circle). When coupling the modules using the same coupling strengths as in Figure 3F, the diffusion tensor becomes highly

anisotropic (red ellipse). The diffusion in this case is almost exclusively in the direction of the first principal component (major axis of the ellipse). This

direction closely matches the direction of coordinated drift (~uþ in Equation 55, dashed line). (B-C) same as Figure 5C–D, but for the internal noise

case.

DOI: https://doi.org/10.7554/eLife.48494.010
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occur. The rate of catastrophic readout errors, quantified in Figure 5C for specific choices of param-

eters, depends also on the noise sources, and on the probability that a set of shifted phases might

match an alternative position in the environment. The latter quantity is influenced by the size of the

environment, the number of modules, and the specific grid spacings and orientations (Fiete et al.,

2008; Welinder et al., 2008; Burak and Fiete, 2009; Sreenivasan and Fiete, 2011; Burak, 2014;

Vágó and Ujfalussy, 2018) (see also Figure 5—figure supplement 2).

The number of grid cell modules in the entorhinal cortices of rats and mice is unknown. So far

there is direct evidence for the existence of four modules, but the number may be larger

(Stensola et al., 2012; Rowland et al., 2016). A theoretical attempt to compare grid cell systems

with different number of modules in terms of the rate of readout discontinuities, would require addi-

tional assumptions on the range of positions that are represented in each system: increasing the

number of modules reduces the rate of readout discontinuities within the range of a given environ-

ment, but it offers the possibility to unambiguously represent larger environments (Fiete et al.,

2008; Mathis et al., 2012a; Wei et al., 2015; Vágó and Ujfalussy, 2018), for which the error rate is

higher Figure 5—figure supplement 2E–J. Furtheremore, the gain in capacity of the grid cell code,

obtained with addition of modules, may be harnessed by the entorhinal-hippocampal system to gen-

erate unique representations of different environments (Fyhn et al., 2007). Thus, incoherent phase

errors may lead to confusion between different spatial maps, in addition to the confusion between

two positions in any given environment. Accordingly, the rate of catastrophic readout errors may be

influenced by the number of spatial maps represented in the brain.

Our proposed mechanism for coupling modules is complementary to another possible mecha-

nism, of coupling grid cell modules through the reciprocal synaptic connectivity between the entorhi-

nal cortex and the hippocampus (Welinder et al., 2008; Sreenivasan and Fiete, 2011;

Burak, 2014). Since biological systems often harness multiple mechanisms to achieve the same func-

tion, both mechanisms might act in parallel to stabilize the grid cell code against catastrophic read-

out errors. As discussed in the introduction, it is highly unlikely that coupling via the hippocampus

could work in a novel environment, following global remapping. On the other hand, it is of particular

importance for the brain to establish a geometric representation of position, aided by idiothetic

path integration, under this scenario. Thus, the velocity coupling mechanism proposed in this work

may play an especially important role in generating a cognitive map of a novel environment.

Inputs from cells within the MEC may play a role in stabilizing the grid cell representation, along-

side inputs from the hippocampus or other areas. These may include inputs to grid cells from border

cells (Solstad et al., 2008) or object-vector cells (Høydal et al., 2019). Experimentally, it has been

demonstrated that phase resets occur in the grid cell representation upon encounters with enviorn-

mental boundaries (Hardcastle et al., 2015; Keinath et al., 2018; Ocko et al., 2018), and it has

been argued theoretically that such resets can be implemented in attractor models of grid cells by

inputs to grid cells from border cells (Hardcastle et al., 2015; Keinath et al., 2018; Ocko et al.,

2018; Pollock et al., 2018). The origin of spatial specificity of border cells and object-vector cells is

not yet identified, but since both types of cells are active even when an animal is not facing the fea-

tures associated with their activation, their role in stabilizing the grid cell representation may be simi-

lar to the hypothesized role of place cell inputs in stabilizing the grid cell code, perhaps more so

than the role of direct sensory inputs.

A model that involves synaptic coupling between modules, of a different architecture than the

one considered here, has been recently proposed in Kang and Balasubramanian (2019). This model

does not explore the consequences of noise on coding stability, and its primary goal is to explain

the ratios between grid spacings, and the emergence of modularity (see also Urdapilleta et al.,

2017). Hence, Kang and Balasubramanian (2019) address different questions from those studied in

the present work. Nevertheless, it is plausible that the synaptic connectivity proposed by Kang and

Balasubramanian stabilizes the dynamics against incompatible motion of the modules. An important

difference between the network architecture explored in Kang and Balasubramanian (2019) and

the architecture explored here, is that we consider connectivity between modules which is all-to-all

(every grid cell in one module projects to every grid cell in the other module), and is designed to be

invariant to any static, relative shift in the module phases. Hence, all combinations of phases are

steady states of the dynamics. In contrast, the synaptic connectivity considered in Kang and Balasu-

bramanian (2019) is spatially local. Consequently, it tends to produce interlocked patterns of activity

in adjacent modules, with shared spatial periodicity, and preferred relative spatial phases. These
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properties of the activity patterns are expected to limit the representational capacity of the code.

Here, we addressed a different computational goal, of stabilizing a distributed representation of

position over multiple modules, without compromising the dynamic range of the neural coding

scheme.

Our focus in this work was on the suppression of relative motion across modules, but noise in the

inputs, or in the intrinsic activity within the network, drives also coordinated motion. It is possible to

suppress the latter type of random motion by increasing the negative feedback in the system

(Figure 3A,C). In choosing our optimization goal for the coupling parameters, we did not attempt to

suppress coordinated drift for two reasons. First, coordinated drift is much less detrimental from the

coding perspective than relative drifts, as discussed in the introduction. Second, suppressing the

coordinated motion comes with an inevitable cost: a reduction in the gain of the system’s velocity

response. Nevertheless, it is interesting to consider also the suppression of coordinated drift. Next,

we briefly discuss the possible implementation of this goal.

For simplicity, consider a single one-dimensional module, structured as a ring attractor: in this sit-

uation, there is only coordinated motion. As in any continuous attractor network, stochasticity of

neural activity within the network drives diffusive motion of the bump’s position. This diffusive

motion gradually degrades the fidelity of the stored memory (Burak and Fiete, 2012). In the double

ring architecture (Xie et al., 2002), much of the drift arises from fluctuations in the difference of

activity between the two sub-populations that drive left and right motion. Using the negative self-

coupling of velocities, introduced in this work, it is possible to suppress these fluctuations to sub-

stantially reduce the noise-driven diffusion and stabilize the represented memory. It is interesting to

compare this mechanism with another proposal (Lim and Goldman, 2014) for stabilization of the

memory stored in a single ring attractor, using negative derivative feedback (Lim and Goldman,

2013). In (Lim and Goldman, 2014) the stabilization slows down the dynamics of all neurons in the

network, thereby slowing down the relaxation of any deformation in the shape of the activity bump

– not only the position of the activity bump on the ring attractor. In contrast, within the architecture

considered here, the unimodal shape of the activity bump is maintained, while the velocity feedback

mechanism slows down only noise driven diffusion of its position. Thus, the velocity coupling mecha-

nism identified in this work may be relevant to the stabilization of short-term memory in head direc-

tions cells of rodents (Taube, 2007) and insects (Seelig and Jayaraman, 2015), where there is no

evidence for slowly decaying deformations in the shape of the activity bump.

Experimental predictions
The grid spacing of a single module is determined by the coefficient that tunes how strongly activity

is modulated by velocity (g� in Equation 21): larger values of g� lead to smaller grid spacing. Thus,

in an uncoupled network the grid spacing ratios are determined by the coefficients g�. However, in

the network of coupled modules the spacing ratios are determined primarily by the inter-module

coupling parameters. Each one of the coefficients g� influences all the grid spacings, but has little

effect on the spacing ratios. For example, even if the g�s are identical in all modules, or if only one

module receives a velocity input, all modules shift their states with a velocity ratio that matches the

desired grid spacing ratio. An interesting prediction arises under a scenario in which one of the mod-

ules is disconnected from the others. This removes positive couplings from the other modules, but

leaves the negative self coupling within the module intact. Hence, the disconnected module is

expected to weaken its response to velocity inputs, and increase its grid spacing. Similarly, other

grid spacings, of modules that were originally connected to the disconnected module, are expected

to increase as well (see Figure 4—figure supplement 1).

The joint activity of grid cells can be expected to lie within a two-dimensional space when salient

sensory cues are available to the animal, regardless of the existence of an inter-module coupling

mechanism. The existence of a coupling mechanism must therefore be tested under conditions in

which external sensory cues are weak (Burak, 2014). It is instructive to compare this goal with what

has been learned about population activity within a single module (Yoon et al., 2013; Fyhn et al.,

2007; Allen et al., 2014; Trettel et al., 2019; Gardner et al., 2019). In that context, simultaneous

recordings from pairs of grid cells were highly informative, since grid cells from a single module

exhibit strong correlations (or anti-correlations) in their joint spiking activity. The preservation of

these correlations, under conditions in which the animal’s sense of position is disrupted, supports an
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interpretation that the correlations are maintained by recurrent connectivity within each module. In

contrast, cells belonging to different modules are expected to fire together in some positions in

space, and refrain from firing together in other parts of the environment. Averaged over motion in a

large environment, cell pairs from different modules are expected to exhibit weak correlations in

their activity, even if the updates of module phases are fully coordinated.

Analysis of spike correlations in grid cells from different modules (Trettel et al., 2019;

Gardner et al., 2019) confirms this expectation. During free running, spike correlation functions of

grid cells from different modules are much weaker than those observed within a module. Despite

being weak, these correlations can be statistically significant. Their existence originates from the fact

that in any specific environment, and especially in small enclosures, the firing fields of two grid cells

with different spatial scales slightly favor correlated or uncorrelated firing, depending on the precise

overlap between the spatial receptive fields of the two cells. During sleep, these weak correlations

are significantly reduced (Trettel et al., 2019; Gardner et al., 2019). A possible interpretation of

this result is that there is no coupling between modules during sleep. However, an alternative expla-

nation is that the reduction in correlations reflects an increase in the repertoire of positions and envi-

ronments represented in the sleep state: regions of joint firing and regions of disjoint firing are

expected to average out more evenly under such circumstances, leading to weaker correlations.

In order to test for the existence of a velocity coupling mechanism, it is desirable to test for corre-

lations in the updates of phases of different modules, instead of directly testing for correlations in

their phases. This will require simultaneous recordings from multiple grid cells, of sufficient numbers

that will enable reliable tracking of the module phases. Appropriate recordings are not yet available,

but techniques that enable simultaneous monitoring of large neural populations of the MEC

(Jun et al., 2017; Gu et al., 2018; Obenhaus et al., 2018) are likely to enable their acquisition in

the coming years. In similarity to the experiments that provided insights on the low dimensionality of

activity within each module, it will be necessary to test for inter-module coupling under conditions in

which the animal’s internal sense of position is not anchored to salient external cues.

Our model assumes that grid cells in the MEC are involved in idiothetic path integration, and har-

nesses ingredients from models of path integration in the grid cell system to generate the coupling

between modules. It is widely hypothesized that grid cells are indeed involved in path integration

(Hafting et al., 2005; McNaughton et al., 2006; Moser et al., 2008; Burak, 2014), but this involve-

ment is not experimentally established (see, however, Gil et al., 2018). Accordingly, a specific role

of any particular cell type within the MEC in idiothetic path integration is not yet identified. A spe-

cific population of cells that may provide the substrate for the connectivity proposed in our model

are the conjunctive cells observed mostly in layer III and deeper layers of the MEC (Sargolini et al.,

2006), which play a pivotal role in models of path integration in the grid cell system. We note that

these cells are tuned to head direction more closely than heading (Raudies et al., 2015), a difficulty

that faces all models of path integration within the MEC. The resolution of this difficulty may involve

computational elements within the entorhinal circuitry that have not yet been identified. Thus, future

experimental findings concerned with the mechanisms underlying path integration may call for (and

enable) corresponding refinements of our model.

Very little is known about synaptic connectivity between grid cells in the MEC, especially for cells

belonging functionally to different modules. An important conclusion of our work is that synaptic

connectivity between different modules may be beneficial for dynamically stabilizing the grid cell

representation during path integration and memory maintenance. The specific form of connectivity

that we identify is appealing for several reasons: first, it involves broad, relatively unstructured con-

nectivity between grid cells, that depends only on their preferred heading preference. A second

appealing feature of our proposed architecture is that it is sufficient to couple grid cells from mod-

ules with adjacent spacings, to achieve the desired stabilization of the grid cell representation. Since

there is a relationship between grid spacing and position along the dorsal-ventral axis

(Hafting et al., 2005; Stensola et al., 2012), all-to-all couplings between modules would require

long-range connectivity within the MEC. Recent evidence (Fu et al., 2018) hints that synaptic con-

nections between excitatory cells in the MEC may be more limited in range, but of sufficient spatial

extent to allow for coupling of adjacent modules.
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Materials and methods

Model and simulations details
The dynamics of the network are described by Equation 3 (or by Equation 22 for the Poisson spik-

ing neuron case). The synaptic time constant t ¼ 10ms, the transfer function fðxÞ ¼ t�1maxðx; 0Þ, and
I0 ¼ 3. All simulations were done using the Euler method for integration, with a time step

dt ¼ 0:1ms.

One-dimensional module
In the one-dimensional simulations the synaptic activation vector (Equation 2) includes synapses of

the right and left sub-populations, each comprising N ¼ 1000 neurons. Each neuron has a preferred

phase �i 2 ½0; 1�, uniformly arranged on a ring. The connectivity matrix W is defined by

W ¼ Wþ W�

Wþ W�

� �

; (8)

where

W�
ij ¼w j�i � �j�’jP

� �

; wð�Þ ¼ A
2N

exp � �2

2s2

� �

� 1

h i

: (9)

W� is a N�N matrix, ’¼ 0:2, A¼ 200, s2 ¼ 0:1, and jx1� x2jP is the minimal distance between two

points fx1;x2g 2 ½0;1� with periodic boundary conditions on ½0;1�, namely

jxjP ¼min jxjmod1;1� jxjmod1
� 	

: (10)

Coupled modules
Consider m coupled modules. The firing rate (Equation 3) of neuron i from module � is (Figure 2E):

r�;i ¼f
X

2N

j¼1

Wijs�;jþ I0 � b�� a
X

m

�¼1

C��!�

 !

; (11)

where !� is the velocity estimation of module m (Equation 4) , C�� is the coupling strength from

module � to module m (C�� is the self coupling strength of module m), and the sign ± is equal to +

(�) if the neuron i belongs to a right (left) sub-population. The proportionality factor

a¼ b
P

2N
i¼1

f0 P2N
j¼1

Wij�sjþ I0

� �h i�1

is included to simplify the units of the coupling strengths C��. Note

that a �!� does not depend on the parameter b. Thus, the choice of b is of no consequence for the

dynamics, and this parameter is included only for the sake of derivation convenience.

The coupling between the modules can be interpreted as arising from synaptic connectivity. This

can be seen by re-writing Equation 11 as:

r�;i ¼f
X

2N

j¼1

Wijs�;jþ a
X

m

�¼1

C��

X

2N

j¼1

Wc
ijs�;jþ I0� b�

 !

; (12)

where the 2N� 2N coupling connectivity matrix is:

Wc ¼ b

t

1 � � � 1 �1 � � � �1

..

. ..
. ..

. ..
.

1 � � � 1 �1 � � � �1

�1 � � � �1 1 � � � 1

..

. ..
. ..

. ..
.

�1 � � � �1 1 � � � 1

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

(13)

Thus, the synapses responsible for the coupling of any two neurons belonging to modules � and

� are of the same magnitude, abC��=t , and their signs depend only on the sub-populations (left or

right) of the pre- and post-synaptic neurons. In the case of m¼ 2, we use the coupling parameters:
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Cs¼�20, C12 ¼C1 »14:14 and C21 ¼C2 »28:3. In the case of m¼ 3, we use the parameters: Cs¼�20,

C12 »14:14, C21 ¼C23 »9:4, C32 »28:3, and C13 ¼C31 ¼ 0. Additional details on the choice of coupling

parameters are provided in Appendices 2 and 3.

Two-dimensional modules
In two dimensions, each module contains four sub-populations, and the synaptic activation vector is:

~s¼

~sR

~sL

~sU

~sD

0

B

B

B

@

1

C

C

C

A

(14)

Each sub-population contains N2 ¼ 64
2 neurons, arranged on a parallelogram. The preferred

phase of the i’th neuron in each sub-population is:

~�i ¼
�xi
�yi

� �

¼ xi~u1 þ yi~u2; ~u1 ¼
1

0
;

� �

~u2 ¼
0:5
ffiffi

3
p

2

� �

: (15)

where xi and yi are distributed uniformly in the interval ½0;1�. The connectivity matrix is now:

W ¼

WR WL WU WD

WR WL WU WD

WR WL WU WD

WR WL WU WD

0

B

B

B

@

1

C

C

C

A

; (16)

where

W
R;L
ij ¼w ~�i�~�j�

’

0

� ��

�

�

�

�

�

�

�

P2

 !

; W
U;D
ij ¼w ~�i �~�j �

0

’

� ��

�

�

�

�

�

�

�

P2

 !

; (17)

and

wð�Þ ¼ A

4N2
exp � �2

2s2

� �

� 1

� �

: (18)

The distance measure j � jP2
is defined using periodic boundary conditions on the parallelogram

(see Figure 4A): j~x1 �~x2jP2
is the minimal distance between the two points~x1 and~x2 on the torus that

is created by gluing the opposite edges of the parallelogram defined by the vertices

ð0;0Þ; ð1;0Þ; ð1
2
;
ffiffi

3
p

2
Þ; ð3

2
;
ffiffi

3
p

2
Þ (Figure 4A, compare with Equation 10, used in the one-dimensional case).

The firing rate of neuron i 2 {sub-population R or L} from module � is:

r�;i ¼f
X

4N2

j¼1

Wijs�;jþ I0 � b�;xðtÞ� a
X

m

�¼1

C��!�;x

 !

; (19)

where

!�;x �
b

t

X

i2R
s�;i �

X

i2L
s�;i

 !

: (20)

Firing rates of neurons from the up and down sub-populations are obtained from Equation 19-

Equation 20 by replacing x! y, , R!U, and L!D.

In each module, responses to horizontal and vertical velocity inputs are independent: the right

and left sub-populations respond to the horizontal velocity inputs, and affect �x, while the up and

down sub-populations respond to the vertical velocity inputs and affect �y. Hence, the two-dimen-

sional response tensor separates into independent, horizontal and vertical components with the

same structure as in the one-dimensional case. Since the linear response tensor (in each direction) is
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identical to that of the one-dimensional case, the coupling parameters are chosen in the same way

in one and two dimensions.

External velocity input
The external velocity input to module � (in two dimensions) in q 2 fx; yg direction is (Equation 19):

b�;qðtÞ ¼ g� VqðtÞþh�;qðtÞ
� �

: (21)

g� is a proportionality factor that depends on the module, VqðtÞ is a the component of the ani-

mal’s velocity in the q direction, and h�;qðtÞ is a white noise process with

hh�;qðtÞh�;q0ðt0Þi ¼ h2dqq0d��dðt� t0Þ. In Figure 4B and Figure 6B–C the external input is not noisy, so

h¼ 0. In Figure 4D–E and Figure 5, h¼ 0:02m � s�0:5.

In Figure 3E–F (one dimension) g1 ¼ 0:06 and g2 ¼ 0. In the simulations of Figure 4; Figure 6

(two dimensions) g1 ¼ 0:06 , g2 ¼ l0:06 , g3 ¼ l20:06. Thus, even without coupling of the modules,

the spacing ratio l is achieved by the ratios of the inputs strengths g�, and therefore, we can com-

pare between the coupled and uncoupled phases and readout (Figure 4; Figure 6).

Spiking network
In the case of spiking Poisson neurons Equation 3 is replaced by:

_si þ
si

t
¼
X

�

dðt� t
�
i Þ ; (22)

where
X

�

dðt� t
�
i Þ (23)

is the spike train of neuron i, and t
�
i are the spike times. Each neuron i generates spikes sampled

from a Poisson distribution with a firing rate riðtÞ, as defined in Equation 3 (Stevens and Zador,

1996; Gerstner and Kistler, 2002; Burak and Fiete, 2012).

Decoding
Decoding of the animal’s trajectory, based on spike trains, is performed in Figure 5; Figure 6 using

a decoder that sums spikes from recent history with an exponential temporal kernel (Mosheiff et al.,

2017). In Figure 5, we simulate a spike train for each neuron (Equation 23), sampled from an inho-

mogeneous Poisson process with a firing rate riðtÞ (note that the the network dynamics are determin-

istic and spikes are used only in the readout process). In Figure 6, the stochastic spike train is part of

of the dynamics (Equation 22). In both cases, the decoded location of the animal in time t is (Eqs.

S10, S11 and S13 in Mosheiff et al., 2017):

~̂xðtÞ ¼ argmax~x

X

i

ln �rið~xÞ½ �
Z t

�¥
dt0exp � t� t0

td

� �

X

�

dðt0 � t
�
i Þ : (24)

The summation is over all neurons. Here, td ¼ 10ms for all modules. The integral in Equation 24

yields an effective spike count of neuron i, weighted in time using a decaying exponential kernel,

and �rið~xÞ is the receptive field of neuron i at location ~x, measured separately from the firing rate of

each neuron in the steady state of the dynamics.

Diffusion tensor
Consider a system of spiking Poisson neurons, and m one-dimensional modules. The internal noise

introduces a diffusive drift. The network is now a single continuous attractor with dimension m (see

Appendix 5). Hence, the diffusion tensor is a m� m matrix, that can be calculated using Eq. S24 in

Burak and Fiete (2012), for the dynamics of the m dimensional attractor (Equation 77, Equation 78

and Equation 79 in Appendix 5):
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D��ð~�Þ ¼
1

2

X

2Nm

i¼1

n�;ið~�Þn�;ið~�Þ�rið~�Þ : (25)

where the summation is over all neurons, �rið~�Þ is the firing rate of neuron i in the steady state of

the system, and n�ð~�Þ is the left null eigenvector of the dynamics (Equation 78) corresponding to a

phase shift in the direction of module � (calculated numerically).
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et al. 2017. Fully integrated silicon probes for high-density recording of neural activity. Nature 551:232–236.
DOI: https://doi.org/10.1038/nature24636, PMID: 29120427

Mosheiff and Burak. eLife 2019;8:e48494. DOI: https://doi.org/10.7554/eLife.48494 20 of 32

Research article Neuroscience

https://doi.org/10.1523/JNEUROSCI.4330-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24790195
https://doi.org/10.1101/592006
https://doi.org/10.1101/592006
https://doi.org/10.1038/nn1905
http://www.ncbi.nlm.nih.gov/pubmed/17486102
https://doi.org/10.1073/pnas.1209918109
http://www.ncbi.nlm.nih.gov/pubmed/23045662
https://doi.org/10.1073/pnas.92.9.3844
http://www.ncbi.nlm.nih.gov/pubmed/7731993
https://doi.org/10.1016/j.conb.2014.01.013
http://www.ncbi.nlm.nih.gov/pubmed/24561907
https://doi.org/10.1371/journal.pcbi.1000291
http://www.ncbi.nlm.nih.gov/pubmed/19229307
https://doi.org/10.1073/pnas.1117386109
http://www.ncbi.nlm.nih.gov/pubmed/23047704
https://doi.org/10.1371/journal.pcbi.1005782
http://www.ncbi.nlm.nih.gov/pubmed/28968386
https://doi.org/10.7554/eLife.10094
http://www.ncbi.nlm.nih.gov/pubmed/26952211
https://doi.org/10.1038/nrn3827
http://www.ncbi.nlm.nih.gov/pubmed/25269553
https://doi.org/10.1523/JNEUROSCI.5684-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18596161
https://doi.org/10.1523/JNEUROSCI.4353-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16624947
https://doi.org/10.1038/nature05601
http://www.ncbi.nlm.nih.gov/pubmed/17322902
https://doi.org/10.1038/s41593-019-0360-0
http://www.ncbi.nlm.nih.gov/pubmed/30911185
https://doi.org/10.1038/s41593-017-0039-3
https://doi.org/10.1038/s41593-017-0039-3
http://www.ncbi.nlm.nih.gov/pubmed/29230055
https://doi.org/10.1038/nature22343
http://www.ncbi.nlm.nih.gov/pubmed/28538731
https://doi.org/10.1016/j.cell.2018.08.066
https://doi.org/10.1016/j.cell.2018.08.066
http://www.ncbi.nlm.nih.gov/pubmed/30270041
https://doi.org/10.1142/S0129065707001093
http://www.ncbi.nlm.nih.gov/pubmed/17696288
https://doi.org/10.1038/nature03721
http://www.ncbi.nlm.nih.gov/pubmed/15965463
https://doi.org/10.1016/j.neuron.2015.03.039
http://www.ncbi.nlm.nih.gov/pubmed/25892299
https://doi.org/10.1016/j.neuron.2014.10.048
http://www.ncbi.nlm.nih.gov/pubmed/25467986
http://www.ncbi.nlm.nih.gov/pubmed/25467986
https://doi.org/10.1038/s41586-019-1077-7
http://www.ncbi.nlm.nih.gov/pubmed/30944479
https://doi.org/10.1523/JNEUROSCI.3773-10.2011
https://doi.org/10.1523/JNEUROSCI.3773-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21414904
https://doi.org/10.1038/nature24636
http://www.ncbi.nlm.nih.gov/pubmed/29120427
https://doi.org/10.7554/eLife.48494


Kang L, Balasubramanian V. 2019. A geometric attractor mechanism for self-organization of entorhinal grid
modules. eLife 8:e46687. DOI: https://doi.org/10.7554/eLife.46687, PMID: 31373556

Keinath AT, Epstein RA, Balasubramanian V. 2018. Environmental deformations dynamically shift the grid cell
spatial metric. eLife 7:e38169. DOI: https://doi.org/10.7554/eLife.38169, PMID: 30346272

Kim SS, Rouault H, Druckmann S, Jayaraman V. 2017. Ring attractor dynamics in the Drosophila central brain.
Science 356:849–853. DOI: https://doi.org/10.1126/science.aal4835, PMID: 28473639

Kropff E, Treves A. 2008. The emergence of grid cells: intelligent design or just adaptation? Hippocampus 18:
1256–1269. DOI: https://doi.org/10.1002/hipo.20520, PMID: 19021261

Lim S, Goldman MS. 2013. Balanced cortical microcircuitry for maintaining information in working memory.
Nature Neuroscience 16:1306–1314. DOI: https://doi.org/10.1038/nn.3492, PMID: 23955560

Lim S, Goldman MS. 2014. Balanced cortical microcircuitry for spatial working memory based on corrective
feedback control. Journal of Neuroscience 34:6790–6806. DOI: https://doi.org/10.1523/JNEUROSCI.4602-13.
2014, PMID: 24828633

Manns JR, Howard MW, Eichenbaum H. 2007. Gradual changes in hippocampal activity support remembering
the order of events. Neuron 56:530–540. DOI: https://doi.org/10.1016/j.neuron.2007.08.017, PMID: 17988635

Mathis A, Herz AV, Stemmler M. 2012a. Optimal population codes for space: grid cells outperform place cells.
Neural Computation 24:2280–2317. DOI: https://doi.org/10.1162/NECO_a_00319, PMID: 22594833

Mathis A, Herz AV, Stemmler MB. 2012b. Resolution of nested neuronal representations can be exponential in
the number of neurons. Physical Review Letters 109:018103. DOI: https://doi.org/10.1103/PhysRevLett.109.
018103, PMID: 23031134

McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. 2006. Path integration and the neural basis of the
’cognitive map’. Nature Reviews Neuroscience 7:663–678. DOI: https://doi.org/10.1038/nrn1932, PMID: 1685
8394

Moser EI, Kropff E, Moser MB. 2008. Place cells, grid cells, and the brain’s spatial representation system. Annual
Review of Neuroscience 31:69–89. DOI: https://doi.org/10.1146/annurev.neuro.31.061307.090723, PMID: 182
84371

Mosheiff N, Agmon H, Moriel A, Burak Y. 2017. An efficient coding theory for a dynamic trajectory predicts non-
uniform allocation of entorhinal grid cells to modules. PLOS Computational Biology 13:e1005597. DOI: https://
doi.org/10.1371/journal.pcbi.1005597, PMID: 28628647

Muller RU, Kubie JL. 1987. The effects of changes in the environment on the spatial firing of hippocampal
complex-spike cells. The Journal of Neuroscience 7:1951–1968. DOI: https://doi.org/10.1523/JNEUROSCI.07-
07-01951.1987, PMID: 3612226

Obenhaus HA, Rose T, Zong W, Tsao A, Donato F, Høydal Ø, Goltstein A, Moser MB, Chen PM, Cheng L,
Moser EHI, Bonhoeffer T. 2018. Miniaturized two-photon microscopy enables the study of functional network
topography in the medial entorhinal cortex. In: Program No. 689.06. 2018 Neuroscience Meeting Planner. San
Diego: Society for Neuroscience.

Ocko SA, Hardcastle K, Giocomo LM, Ganguli S. 2018. Emergent elasticity in the neural code for space. PNAS
115:E11798–E11806. DOI: https://doi.org/10.1073/pnas.1805959115, PMID: 30482856

O’Keefe J, Nadel L. 1978. The Hippocampus as a Cognitive Map. Oxford University Press.
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Readout of the phase velocity
In this Appendix, we derive the relationship between ! (Equation 4) and the phase velocity _�

(Equation 1) . To simplify the presentation, we consider separately two situations: first, a noise

free network, in which the phase velocity is driven by velocity inputs. Second, a module

consisting of Poisson spiking neurons where, for simplicity, we set the velocity inputs to be

zero. In the latter case the phase velocity is driven by the stochasticity of the neurons

participating in the network dynamics. From the derivation it is easily seen that in the general

case, and as long as the linearization of the dynamics (forming the basis of the calculation in

both cases) is valid, the phase velocity, as well as ! can be expressed as a sum of independent

contributions arising from the two sources considered below.

Phase velocity due to velocity inputs
Consider a single one dimensional module, whose dynamics follow Equation 3, and whose

synaptic connectivity is described by the double ring model, as specified by Equations 8-10.

We expand the dynamic equation around a steady state �sð�Þ, so that si ¼ �sið�Þ þ dsi, and

assume small velocity input dIðtÞ (see similar expansion in Burak and Fiete, 2012). After

linearization:

_dsi ¼
X

2N

j¼1

Kijð�Þdsj� dIðtÞf0ð�gið�ÞÞ (26)

where

Kijð�Þ ¼�1

t
dijþf0ð�gið�ÞÞWij (27)

and �gið�Þ ¼
P

2N
j¼1

Wij�sj þ I0 is the synaptic input in the steady state �sið�Þ. The velocity of the

phase � is obtained by projection of Equation 26 on the left eigenvector of K with zero

eigenvalue,~vð�Þ (Burak and Fiete, 2012). After some algebra we obtain

_�¼ vT � d _~s¼ adIðtÞ ; (28)

where

a¼
X

i2R
vif

0ð�giÞ�
X

i2L
vif

0ð�giÞ
 !

: (29)

Hence, _� is proportional to the velocity input dIðtÞ. Note that both~v and �g rotate together

with the position � of the activity bump. Thus, a is independent of �.

Let us define the 2N dimensional vector:

~v0 ¼ b

1

:::

1

�1

:::

�1

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

; (30)

where b is a constant, whose value is determined below. The projection of Equation 26 on

~v0 results in
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vT
0
� d _~s¼�vT

0
� d~s
t

þ
X

2N

i;j¼1

v0;if
0ð�giÞWijdsjþ dIðtÞ

X

2N

i¼1

v2
0;i

b
f0ð�giÞ : (31)

The second term on the right hand side of Equation 31 vanishes due to the symmetry of

f0ð�giÞ to exchange of the right and left sub-populations, the antisymmetry of v0 to this

exchange, and the structure of the matrix W. Using the definition of ! (Equation 4), we can

write:

!¼ vT
0
�~s
t

¼ vT
0
� d~s
t

: (32)

Thus, Equation 31 becomes:

t _!¼�!þ ~adIðtÞ ; (33)

where

~a¼ 2b
X

i2R
f0ð�giÞ : (34)

In Equation 34 we use again the symmetry of f0ð�giÞ to exchange of the right and left sub-

populations. We set b (Equation 30) such that ~a ¼ a. Using Equation 29 and Equation 34:

b¼
P

i2R vif
0ð�giÞ�

P

i2L vif
0ð�giÞ

2
P

i2Rf
0ð�giÞ

: (35)

From Equation 33 we see that the readout velocity ! is a convolution of adIðtÞ, with the

filter

f ðtÞ ¼ 1

t
exp � t

t

� �

: (36)

Combining Equation 28 and Equation 33 we conclude that

!ðtÞ ¼ f ðtÞ � _�ðtÞ : (37)

Hence, ! is equal to the phase velocity, smoothed over a relatively short time scale set by

the synaptic time constant (t ¼ 10ms).

Phase velocity due to internal noise
Consider next a single one dimensional module with Poisson spiking neurons, following the

dynamics of Equation 22. In the limit of large firing rates, Equation 22 can be replaced by

_siþ
si

t
¼ riþ �i ; (38)

where �i is a white noise process with h�iðtÞ�jðt0Þi ¼ riðtÞdijdðt � t0Þ (Burak and Fiete, 2012).

We use a similar expansion as in section Phase velocity due to velocity inputs in this Appendix

, and project the linearized dynamics on~vð�Þ, the left null eigenvector of K, to obtain:

_�¼ vT � d _~s¼ dIðtÞ
X

2N

i¼1

viv0;i

b
f0ð�giÞþ vT �~� : (39)

The first term on the right hand side of Equation 39 is the contribution to the phase

velocity arising from the velocity inputs, discussed above. From here on we assume that the

velocity input vanishes. The only contribution to the phase velocity is then the second term of

Equation 39, originating from the neural stochasticity. In order to relate this term to !, let us

define:
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~vð�Þ ¼~vþþ~v� (40)

~vþ ¼ 1

2

~vL þ~vR

~vL þ~vR

� �

; ~v� ¼ 1

2

~vRþ~vL

~vL þ~vR

� �

(41)

where~vR and~vL are the first or last N coordinates of~vð�Þ, respectively (Appendix 1—figure

1). Equation 39 becomes:

_�¼ ðvT� þ vTþÞ �~� : (42)

Appendix 1—figure 1. Structure of the left null eigenvector. (A) The left eigenvector of K with

zero eigenvalue,~vð� ¼ 0:5Þ (the bump is centered around � ¼ 0:5), computed numerically. The

first N coordinates of~v (right sub-population) in red, and the last N coordinates of~v (left sub-

population) in blue. (B)~v� (red and blue for the right and left sub-population respectively), and

~vþ (yellow, identical for both of the sub-populations), as defined in Equation 41. The black

dashed line represents the firing rate bump of the steady state (unitless for the sake of

comparison with~v).

DOI: https://doi.org/10.7554/eLife.48494.013

Next, we examine the structure of~vþ and~v�. The left and right components of vþ are

spatially antisymmetric with respect to the peak of the activity bump, and precisely vanish at

the center of the bump (yellow trace in Appendix 1—figure 1B). The components of v� are

symmetric (blue and red traces). We note that the Poisson noise is expressed only within the

relatively narrow extent of the activity bump (dashed line). Two consequences follow: first,~vTþ �
~� is very small due to the nearly vanishing values of vþ on the activity bump. Second, the

components of v� are nearly constant in magnitude along the narrow extent of the bump, but

have opposite signs in the left and right sub-populations. This magnitude can be evaluated by

rewriting Equation 35 as:

b
X

i2R
f0ð�giÞ ¼

X

i2R
v�if

0ð�giÞ : (43)

As the magnitude of v� is nearly constant along the bump, we conclude from Equation 43

that this magnitude equals approximately b, and~vT� �~� »~vT
0
�~�. Hence, Equation 42 becomes:

_�»vT
0
�~� : (44)

We now project the linearized dynamics of Equation 38 on the vector~v0 to obtain:

t _!¼�!þ vT
0
�~�» �!þ _� : (45)

Thus, ! is approximately a convolution of the velocity phase with the exponential filer f ,

with the synaptic time integration t. Therefore:
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!» f � _� ; (46)

as in the case of phase velocity due to external inputs.
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Linear response tensor
We next wish to understand how our system of coupled modules responds to an external

velocity input~bðtÞ. First, consider two modules, each in one dimension, that follow the

dynamics of Equation 3. The synaptic activation vector is now 4N dimensional and has the

form:

~s¼
~s1

~s2

� �

¼

~s1;R

~s1;L

~s2;R

~s2;L

0

B

B

B

@

1

C

C

C

A

: (47)

The firing rate of neuron i from module 1 is (Figure 2E):

r1;i ¼f
X

2N

j¼1

Wijs1;j þ I0 � b1 � aC1!2 � aCs!1

 !

; (48)

where the total velocity input is dI ¼ b1 þ aC1!2 þ aCs!1. A similar equation for the rate r2;i

is obtained by switching the indices 1 $ 2 in Equation 48. The constant

a¼ 1

b
P

2N
i¼1

f0ð�giÞ
¼ 1

a
(49)

is a proportionality factor that could in principle be absorbed into the definition of the

coupling strength parameters, but makes the units of the coupling strengths C� more

convenient. Substitution of dI and Equation 37 in Equation 28 yields:

_�1 ¼ ab1 þC1f � _�2þCsf � _�1 : (50)

More generally, for m modules:

_~�¼ a~bðtÞþ f �C _~�: (51)

Thus, the phase velocities are proportional to the external velocity input, plus the velocities

of all other modules filtered in time, and coupled by the matrix C. If we assume that the

velocity is sufficiently small, that the position can be regarded as fixed within the synaptic time

scale, the convolution with the filter f can be omitted (note that the integral of f , Equation 36

, is equal to unity), and we obtain:

_~�¼ aðI�CÞ�1 �~bðtÞ � X �~bðtÞ ; (52)

where X is the linear response tensor.

B.1 Two modules
In the case of two modules and identical self coupling strength Cs for both modules, we can

easily find the eigenvalues X� and eigenvectors of X. The coupling matrix in this case is:

C¼ Cs C1

C2 Cs

� �

: (53)

Using Equation 7 we obtain:
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X� ¼ a

1�C�
¼ a

1�ðCs�
ffiffiffiffiffiffiffiffiffiffiffi

C1C2

p
Þ : (54)

The eigenvectors of X are:

~u� ¼
ffiffiffiffiffiffi

C1

p

�
ffiffiffiffiffiffi

C2

p
� �

: (55)

Thus, the phase motion of the two modules can be represented as:

_�þ
_��

 !

¼
Xþ 0

0 X�

� �

�
bþ

b�

� �

; (56)

where

�þ

��

� �

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi

C1C2

p
ffiffiffiffiffiffi

C2

p
�1þ

ffiffiffiffiffiffi

C1

p
�2

ffiffiffiffiffiffi

C2

p
�1�

ffiffiffiffiffiffi

C1

p
�2

� �

; (57)

and

bþ

b�

� �

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi

C1C2

p
ffiffiffiffiffiffi

C2

p
b1 þ

ffiffiffiffiffiffi

C1

p
b2

ffiffiffiffiffiffi

C2

p
b1 �

ffiffiffiffiffiffi

C1

p
b2

� �

: (58)

Here, �� are the joint or relative phases of the modules, respectively. We choose

parameters such that Xþ is large and X� is small in order to obtain large joint motion and small

relative motion between modules for any external input. Note that X� » 0 implies that _�� » 0

(Equation 56), and in this case (Equation 57):

_�1
_�2
»

ffiffiffiffiffiffi

C1

C2

r

: (59)

Thus, we can set the velocity ratio between modules (namely, the spacing ratio l), by the

ratio of the coupling parameters, using Equation 59. We choose

ffiffiffiffiffiffi

C2

C1

r

¼ l¼
ffiffiffi

2

p
: (60)

We choose Xþ ¼ a to maintain the same response to coordinated velocity inputs, as in the

case of no coupling. Using Equation 54 we see that this requires Cs þ
ffiffiffiffiffiffiffiffiffiffiffi

C1C2

p
¼ 0, which

implies

C1 ¼�Cs=l

C1 ¼�lCs;
(61)

and

X� ¼ a

1� 2Cs

(62)

To obtain small X�, Cs should be negative, with a large absolute magnitude. Note that a

large positive magnitude of Cs, although seems here as a suitable choice, would cause

instability of the system (discussed in Appendix D).
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Optimization of the coupling strengths for m modules
We now wish to find appropriate coupling strengths, C��, in the general case of m modules,

while allowing for different self couplings in each module. We optimize C�� as follows.

Let~u be a vector in the direction of the mutual motion of ~�. The ratios of the components

of~u are the ratios between corresponding grid spacings. We demand that~u is an eigenvector

of X (Equation 7) with an eigenvalue a. Under this choice, the motion response in the mutual

direction is the same as without coupling (where
_~� ¼ a~b, Equation 52). Any other eigenvalue

of X should be close to zero, such that the motion in any direction, other than the mutual

direction, is small.

Equivalent requirements are that~u is an eigenvector of C with eigenvalue , and any other

eigenvalue of C has a large magnitude (see Equation 52). In addition, as discussed below

(Stability conditions) all the eigenvalues of C must be smaller than unity, which excludes the

possibility that they take large positive values. In order to find the optimal coupling

parameters we apply the Karush-Kuhn-Tucker theorem with the Lagrangian:

L¼ TrðCÞþ
X

m

�¼1

�i
X

m

�¼1

C��u�þ
X

m

�¼1

z�ðC2

�� �QÞ : (63)

The first term of the Lagrangian favors negative eigenvalues with large absolute magnitude,

whereas the second term, involving m Lagrange multipliers �i, enforces the existence of the

eigenvector~u with eigenvalue . As the coupling magnitudes cannot be infinitely large, we

constrain the self couplings by requiring that C2

��<Q , where Q>0 is a constant. This constraint

is enforced by the third term in Equation 63, where z� � 0’s are Karush-Kuhn-Tucker

multipliers. We thus obtain the equations:

qL
qC��

¼ 0; (64)

qL
q�i

¼ 0; (65)

z� C2

�� �Q
� �

¼ 0; (66)

which results in:

C�� ¼� ffiffiffiffi

Q
p �Cs; C~u¼ 0 : (67)

For m ¼ 2 and~u ¼ 1

l

� �

we obtain a single solution:

C¼
Cs �Cs=l

�lCs Cs

� �

; (68)

which is identical to the solution we found in Appendix B.1.

For m>2 and a given vector~u there are multiple solutions. The general solution follows the

equations:

C�� ¼Cs (69)
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X

�

C��u� ¼ 0; (70)

for every �. As there are m2 parameters and 2m equations to follow, there are m2 � 2m

degrees of freedom in the solution.

For example, for m ¼ 3 and ui ¼ li�1, the solutions are the all C��’s that obey:

CsþlC12þl2C13 ¼ 0; (71)

C21þlCsþl2C23 ¼ 0; (72)

C31þlC32þl2Cs ¼ 0: (73)

Making the additional choice that only successive modules are coupled yields the solution:

C¼
Cs �Cs=l 0

�lCs�l2C23 Cs C23

0 �lCs Cs

0

B

@

1

C

A
; (74)

where there is a freedom in choosing C23. In Figure 4, Figure 5 and Figure 6 we chose

C23 ¼ C21.

For general number of modules m, coupling only successive modules leads to a degeneracy

of solutions with m� 2 degrees of freedom, since the matrix C�� includes 3m� 2 non-vanishing

entries and we solve 2m equations. The remaining degeneracy can be resolved by requiring

identical coupling strengths to each module (1<�<m) from its neighbors: C�;�þ1 ¼ C�;��1. The

solution is then:

C¼

Cs �Cs=l 0 � � � 0

C0 Cs C0
. .
. ..

.

0 C0 Cs C0
. .
. ..

.

..

. . .
.

C0 Cs C0 0

..

. . .
.

C0 Cs C0

0 ::: ::: 0 �lCs Cs

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

A

; (75)

where C0 ¼ �lCs=ð1þ l2Þ.
In principle, other constraints on the coupling strengths can be used instead of the

requirement that C2

��<Q for all �. For example, limiting the magnitude of all the coupling

strengths (C2

��<Q), instead of only the magnitude of the self couplings, yields solutions with

smaller range of allowed parameters (in the case of multiple solutions), but otherwise identical

structure. A different possible constraint is of the form
Pm

�;�¼1
C2

��<Q. This constraint results in

a symmetric solution: C�� / u�u�
P

k
u2
k

� d��. We prefer the constraint in Equation 63 as we do not

see a compelling reason to limit all of the coupling parameters together instead of limiting

them separately.
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Stability conditions
To map the stability conditions of the coupled network, we consider the dynamics of the

velocity estimation ~! (Equation 33). As Equation 33 is obtained by projecting the full

dynamics of the network on the vector~v0, stable network would result in finite ~!. We

substitute the total velocity input d~I ¼ aC � ~!þ~bðtÞ in Equation 33 and obtain:

t _~!¼�~!þC �~!þa~bðtÞ ¼�ðI�CÞ �~!þa~bðtÞ : (76)

Thus, in order to maintain the stability of ~!, as well as the stability of the full network, all

eigenvalues of C must be smaller than unity, and all eigenvalues of X (Equation 7) must be

positive.
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The coupled network as a single attractor
In this Appendix we consider the system as a single neural network with recurrent connectivity

that includes both the inter- and intra-modular synaptic connections, instead of thinking of the

system as composed of m coupled attractors (modules). The derivation of the system dynamics

presented here, is necessary in order to calculate the diffusion tensor (Equation 25). In

addition, it offers an alternative approach for obtaining the linear response tensor X, and

provides some additional insights on the behaviour of the network.

We expand the dynamics of Equation 3 around the steady state �sð~�Þ (see similar expansion

in Appendix A). Here ~� is the vector of represented phases in all modules, where �� is the

phase of module �. The dynamics of neuron i from module � (for simplicity, we assume one

dimensional modules) can be written as:

d_si ¼
X

2Nm

j¼1

Km;ij � dsj� b�f
0 �gið��Þ
� �

; (77)

where the sign ± is + () if neuron i belongs to a right (left) sub-population. Here, Km is a

2Nm� 2Nm matrix:

Km ¼

Kð�1ÞþB11 B12 � � � B1m

B21 Kð�2ÞþB22
..
.

..

.
Kð�m�1ÞþBm�1;m�1 Bm�1;m

Bm1 ::: Bm;m�1 Kð�mÞþBmm

0

B

B

B

B

B

@

1

C

C

C

C

C

A

; (78)

where Kð�Þ is defined in Equation 27, and

B�� ¼ aC��b

t

�F0
� F0

�

F0
� �F0

�

 !

; F0
� ¼

f0ð�g1ð��ÞÞ ::: f0ð�g1ð��ÞÞ
..
. . .

. ..
.

f0ð�gNð��ÞÞ ::: f0ð�gNð��ÞÞ

0

B

B

@

1

C

C

A

: (79)

As the system is a continuous attractor of dimension m, there exist m left eigenvectors of

Km with zero eigenvalue,~n�ð~�Þ, which we compute numerically. The diffusion tensor is

computed in Equation 25, using these vectors~n�ð~�Þ.
By projecting Equation 77 on~n�ð~�Þ we obtain the linear response tensor X, such that

Equation 6 is valid. Explicitly:

X�� ¼
X

i2�
n�;idIif

0ð�gið��ÞÞ ; (80)

where,

dIi ¼
�1 i2fleftg
1 i2frightg

�

; (81)

and i 2 � means that the ith neuron belongs to module �. Using this approach numerically,

yields nearly identical results as Equation 52.
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