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Abstract

Background: The human pathogen Helicobacter pylori (H. pylori) is a main cause for gastric inflammation and cancer.
Increasing bacterial resistance against antibiotics demands for innovative strategies for therapeutic intervention.

Methodology/Principal Findings: We present a method for structure-based virtual screening that is based on the
comprehensive prediction of ligand binding sites on a protein model and automated construction of a ligand-receptor
interaction map. Pharmacophoric features of the map are clustered and transformed in a correlation vector (‘virtual ligand’)
for rapid virtual screening of compound databases. This computer-based technique was validated for 18 different targets of
pharmaceutical interest in a retrospective screening experiment. Prospective screening for inhibitory agents was performed
for the protease HtrA from the human pathogen H. pylori using a homology model of the target protein. Among 22 tested
compounds six block E-cadherin cleavage by HtrA in vitro and result in reduced scattering and wound healing of gastric
epithelial cells, thereby preventing bacterial infiltration of the epithelium.

Conclusions/Significance: This study demonstrates that receptor-based virtual screening with a permissive (‘fuzzy’)
pharmacophore model can help identify small bioactive agents for combating bacterial infection.
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Introduction

The Gram-negative human pathogen Helicobacter pylori (H. pylori)

is a class 1 carcinogen responsible for the development of severe

gastric inflammation and cancer diseases [1]. Although combina-

tion-drug therapies have been successfully applied an increasing

bacterial resistance against these drugs is observed and novel

intervention strategies are urgently sought for [2]. Here, we

present a virtual screening technique for rapid identification of

bioactive compounds together with its successful application to

finding novel low molecular weight compounds against H. pylori

infection. We recently identified the serine protease high

temperature requirement A (HtrA) from H. pylori as a secreted

virulence factor that directly cleaves the tumor suppressor E-

cadherin on the surface of host cells [3]. Proteolytic cleavage of E-

cadherin has been linked to the malignant progression of

adenocarcinomas, rapid changes in cell adhesion, signaling,

apoptosis, and contributes to an invasive mesenchymal transfor-

mation [4,5]. The present study provides a general concept

for identifying bioactive agents inhibiting HtrA-mediated

E-cadherin cleavage, and therefore potentially combating bacterial

pathogenesis.

It is common to distinguish between receptor-based (‘structure-

based’) and ligand-based virtual screening approaches. While

ligand-based virtual screening requires at least one known

reference compound as a starting point, the input for structure-

based virtual screening is a three-dimensional (3D) receptor model

– typically an X-ray structure, or a carefully designed compar-

atative model of the target protein (‘homology model’) [6–9]. The

task is to fit screening compounds into the binding site of the

target, so that molecules are retrieved that are complementary to

the protein cavity [10]. An early approach exploiting both shape

and pharmacophoric feature complementary was LUDI [11,12], a

de novo design algorithm [13]. Automated ligand docking methods

are widely used for receptor-based virtual screening [14,15].

Another approach is to employ feature maps for virtual screening,

i.e. a projection of pharmacophoric features into the binding site

volume [16], and consider both ligand and structural information
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[17,18]. Still, for the majority of the potential bacterial drug

targets neither a reference ligand nor an experimentally

determined target structure is available, thus preventing immedi-

ate application of these virtual screening methods. The increasing

number of sequenced genomes, high-throughput structure deter-

mination and prediction by homology modeling [19] demand for

methods that are independent from the structure of a bound

reference ligand and also work on apo-proteins.

We here present a receptor-based virtual screening method that

combines several individual strengths of the aforementioned

strategies. A comparative model of the target protein is required

as input, from which a predicted ligand binding site is

automatically extracted and used as a shape and pharmacophoric

feature template for rapid screening of large compound collec-

tions. As a result, a list of candidate compounds is suggested for in

vitro testing. The method is based on a ‘fuzzy’ pharmacophore

representation [20] of binding site features and volumes [21,22],

which tolerates inaccuracies of the target protein model. Predicted

binding site features are encoded as an idealized receptor-derived

ligand pharmacophore or ‘virtual ligand’ [18], so that conven-

tional ligand-based virtual screening can be used to compare the

virtual ligand with real compounds stored in databases or

candidates generated by de novo design [13]. Here, we present

the application of the virtual ligand concept to finding inhibitors of

H. pylori protease HtrA [23].

Results

Model development and retrospective validation
Our virtual ligand concept uses the PocketPicker [21,22]

algorithm to calculate a discrete representation of one or more

potential ligand binding pockets on the surface of a 3D protein

model. For the generation of a feature map we used a subset of the

LUDI rules [11,12] to assign potential interaction points

complementary to the protein residues surrounding the pocket

(Table S1). The resulting three sets of discrete points for lipophilic

interactions, hydrogen-bond donors, and acceptors were trans-

ferred to a continuous pharmacophore representation using

LIQUID [20]. This is expected to allow for a certain degree of

tolerance to account for uncertainty of protein modeling [24].

Prior to the prospective application we thoroughly scrutinized

the virtual ligand approach in a retrospective virtual screening

study. Full details are provided in the supporting information.

Briefly, we computed the retrieval rate of known actives for a total

of 18 protein targets from three different compound databases: i)

the COBRA collection of drugs and lead compounds [25], ii) a

collection of combinatorial Ugi-type three-component adducts

[26,27], and iii) the Maximum Unbiased Validation (MUV) set

[28]. With only few exceptions, the virtual ligand method was able

to retrieve a significant portion of active compounds among the

top-ranking candidates, as determined by ROC analysis [29]

(Table 1, Table S2, ROC-area under curve (AUC).0.5). The full

overview of the prediction performance for individual parameter

combinations is presented in Tables S3, S4, S5. Compared to the

overall enrichment as computed by ROC-AUC the early

enrichment of known actives measured by the BEDROC score

[30] was low for the majority of the examined targets, which

clearly demonstrates the potential of the virtual ligand method for

‘scaffold-hooping’, i.e. the acceptance of different chemotypes

among the top ranks of a result list. Notable improvement of

prediction performance (i.e., retrieval of known ligands) was

achieved when the automatically predicted ligand binding cavities

were manually adjusted. This resulted in an average increase of

the ROC-AUC from 0.52 to 0.62 (Table 1, Table S3) and

underscores the importance of correct binding site prediction and

assignment for receptor-based virtual screening [31].

Prospective virtual screening
The actual prospective virtual screening study consisted of four

steps: i) construction of a homology model of H. pylori protease

HtrA, ii) identification and extraction of a ligand binding pocket of

the surface of the target, iii) generation of a pharmacophoric

feature map of the binding site and construction of a virtual ligand

model, iv) similarity searching in a large compound collection

using the virtual ligand as query.

Homology model. The exported protease HtrA is a serine

protease and believed to play an important role in H. pylori

induced pathogenesis [23]. It not only represents a potential target

for pharmaceutical research, but inhibition by a small molecule

inhibitor could be utilized to study the mechanism of H. pylori

infection of human mucosa. We constructed a comparatative

protein model derived from the protease DegP from Escherichia coli

in its active conformation (PDB ID: 3cs0 [32,33], 42% sequence

Table 1. Result averages of retrospective virtual screening.

Enzyme Database Pocket(s)a)
ROC-AUC ±
stdev.

BEDROC ±
stdev

ACE COBRA 1 0.3860.07 0.0060.00

COX-2 COBRA 1 0.5260.12 0.0560.06

COX-2 COBRA 1b) 0.6260.16 0.2360.10

DHFR COBRA 1 0.6560.05 0.1560.08

fXa COBRA 1 0.5260.14 0.0460.03

fXa COBRA 1, 6, 13, 17 0.7460.09 0.1460.07

PPARgamma COBRA 1 0.5360.04 0.0560.02

Trypsin COBRA 1 0.5660.13 0.0360.02

Tryptase COBRA 2, 4, 17 0.7260.06 0.1860.06

UPA COBRA 1 0.6760.07 0.1760.08

CathepsinG MUV 1 0.5460.09 0.0760.05

Eph MUV 2 0.5260.03 0.0560.02

ER-alpha MUV 1 0.6060.08 0.1360.10

ER-beta MUV 1 0.5560.05 0.0760.02

FAK MUV 1 0.6160.03 0.0960.02

fXa MUV 1 0.3960.09 0.0160.01

HIV-RT MUV 1 0.5260.11 0.0860.03

Hsp90 MUV 1 0.6460.05 0.1360.06

PKA MUV 1 0.5160.08 0.0560.02

Rho-kinase 2 MUV 1 0.5060.07 0.0460.02

fXa Ugi 1, 6, 13, 17 0.5860.03 0.1560.02

Trypsin Ugi 1 0.5160.04 0.0860.02

Tryptase Ugi 2, 4, 17 0.6560.06 0.5160.11

UPA Ugi 1 0.6160.06 0.1960.06

a)pockets numbered according to size based on PocketPicker (14) predictions.
b)the pocket volume was manually reduced.
ROC-AUC: Receiver-operator characteristic area under the curve; BEDROC:
Boltzman-enhanced ROC (alpha = 20); ACE: angiotensin converting enzyme;
COX-2: cyclooxygenase 2; DHFR: dihydrofolate reductase; fXa: factor Xa;
PPARgamma: peroxisome proliferator activated receptor gamma; UPA:
urokinase-type plasminogen activator; Eph: EphA4 receptor tyrosine kinase;
ER-alpha: estrogen receptor alpha; ER-beta: estrogen receptor beta; FAK: focal
adhesion kinase; HIV-RT: immuno-deficiency virus reverse transcriptase; Hsp90:
heat-shock protein 90. See also Tables S2, S3, S4, S5.
doi:10.1371/journal.pone.0017986.t001
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identity to HtrA; BLAST [34] e-value = 7610276) as described

[35].

Pocket extraction. We then applied virtual ligand

calculation to the model starting with PocketPicker. Figure 1

presents pockets 11, 12, and 38 from the pocket prediction. DegP

and H. pylori HtrA are known to form multimers [23,33]. Predicted

pockets larger than pocket 11 correspond to possible protein-

protein interaction sites and were omitted from the present

analysis. The selected pockets surround the active site residue

Ser221 [23]. Surface loops of trypsin-like serine proteases are

known to possess specificity sites [36]. These loops have similar

positions in the secondary structure of serine proteases, and in the

HtrA homology model actually form the selected pockets. We

therefore assume that the selected pockets might represent the S1

(pocket 12), S3 (pocket 11), and S29 (pocket 40) sites in this

catalytic center of HtrA.

Virtual ligand model and screening. Using these pockets

as input, the virtual ligand was calculated using a radius of 1.5 Å

for lipophilic interaction centers, and 1.9 Å for potential

hydrogen-bond donors and acceptors. Similarity between the

virtual ligand and screening compounds was computed using the

Manhattan distance metric. This set-up resulted from the

preliminary observations made in the retrospective study for

serine protease targets. In total, three virtual ligand models were

built using i) all three pockets (model 1), ii) pockets 12 and 38

(model 2), iii) only pocket 11 (model 3). The models were

compared against the screening database (556,763 compounds),

and 26 virtual hits (Table S6) were selected from the resulting lists

of 100 top-ranked compounds, ordered from the respective

supplier and tested for HtrA inhibition. Manual prioritization of

compounds was done to ensure that different chemotypes with

different scaffolds were among the final selection; the test

compounds lack apparent reactive groups, and are not too

lipophilic.

In vitro screening
Healthy intact epithelia depend on the integrity of adhesive

complexes including lateral tight junctions and E-cadherin-based

adherence junctions [37]. We recently identified E-cadherin as a

substrate of H. pylori HtrA and demonstrated that E-cadherin

cleavage by HtrA results in the loss of cell-cell contact enabling the

bacteria to invade the gastric epithelium [3]. We therefore tested

the selected compounds for their ability to block E-cadherin

cleavage by HtrA in vitro (Fig. 2A). From the original 26

compounds, 22 were soluble in DMSO, and six (27%) clearly

inhibited proteolytic activity of HtrA (Table S6). Recombinant E-

cadherin (2) was co-incubated with purified HtrA (+) and 22 test

compounds. From Western blot analysis, we saw efficient

inhibition of E-cadherin cleavage by HtrA by compounds 1, 3,

and 4, and partial inhibition by compounds 5, 6, and potentially

21. The activity of compound 1 (IC50 = 26612 mM) was reported

by us previously [3] (Figure 2A). Here, we repeated the dose-

response analysis corroborating this activity range (Figure S1A). At

a concentration of 100 mM, both compound 1 and compound 3
efficiently blocked E-Cadherin in vitro (Figure S1A, Figure S1B).

Notably, titration of compound 3 revealed only a slightly different

inhibitory activity of E-cadherin cleavage by HtrA (Figure S1B).

We additionally used casein as an artificial substrate for HtrA [32]

leading to similar results (Figure 2B). Slight differences of HtrA

digestion of E-cadherin in comparison to casein are visible in

Figure 2B, which might be caused by differences in substrate

recognition. In particular, compound 21 has a weak inhibitory

effect on E-cadherin cleavage but not on casein cleavage. We

therefore did not consider compound 21 for further analysis. It is

Figure 1. Ligand binding site predicted by PocketPicker [21,22]
on the surface of the HtrA homology model around the active
site. The binding site volume is visualized by blue spheres, with darker
color indicating higher buriedness. Surface patches contributed by the
putative active site residues are colored in red. The numbering of the
binding sites corresponds to the PocketPicker output.
doi:10.1371/journal.pone.0017986.g001

Figure 2. In vitro inhibition of HtrA-cleaved E-cadherin and
casein. Incubation of E-cadherin (A) or casein (B) as substrates with
HtrA led to efficient digestion in the+lane. The – lane shows the total
amount of substrate that was loaded in all lanes. Screening of 22
compounds (numbers above the Western blot) was performed at a
ligand concentration of 100 mM. E-cadherin was detected by Western
blot, and casein was visualized by SYPRO ruby staining.
doi:10.1371/journal.pone.0017986.g002
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reasonable to assume that HtrA possesses a substrate specificity

pocket that tolerates several residue patterns in the substrate

sequence. We are currently testing this hypothesis. For the most

potent inhibitor 1, we determined a purity of 92% (Figure S2) and

performed an additional direct inhibition assay using fluorescence-

labeled casein as substrate. Casein cleavage was reduced by

approximately 27% in the presence of the inhibitor (Figure S3).

The outcome of this study confirms that the virtual ligand

concept may be used for hit retrieval, even in combination with a

homology model of the protein target. It might thus be regarded as

a complement to automated ligand docking and re-scoring, and

related receptor-derived pharmacophore concepts [38–41]. Dock-

ing of all 26 compounds into the area defined by the virtual ligand

models supports this assumption, as there is no apparent

correlation between the docking score value and the actual

inhibitory activity of the compounds (Table S6).

Structure-activity relationship
Active compounds 1, 2, 4–6 were identified by virtual ligand

model 1, and active compound 3 was found with model 3.

Apparently, model 2 was unsuitable for hit retrieval. This model

did not include pocket 11 indicating that this sub-pocket might be

important for substrate recognition (Figure 1). Compounds 1, 2,

4–6 share a common scaffold (Figure S4A) decorated by two side

chains (R1 and R2 in Figure 3A,B). Figure S4B presents the best

scoring docking pose obtained for compound 1 (favorable GOLD

ASPscore = 18), and Figure S4C presents superimposed docked

conformations of all inhibitory compounds. Overall, a similar

common bound conformation can be assumed. According to the

docking poses obtained, the ring system of the R2 group of

compound 1 interacts with Phe209, and the terminal methyl is

placed in lipophilic pocket 11, where the interaction is mediated

by the side-chains of Ile253 and Met257. The same interaction

points were predicted for compound 5 but not for compounds 4
and 6, which have bulkier R1 substituents. As these do not fit into

pocket 11, their docking poses with a flipped scaffold received

higher scores. In the flipped orientation the bulky R1 substituents

are located near pocket 38, which is wider than pocket 11, and the

oxadiazole nitrogen atoms do not form hydrogen-bonds to the

backbone of Ile239, in contrast to compound 1. This could explain

the lower activity of compounds 4 and 6. In our binding model,

the R2 groups of compounds 1 and 5 are placed in pocket 38,

which allows an oxygen atom of the sulfone group of compound 1
to form a hydrogen bond with the backbone nitrogen of Gly219.

The corresponding sulfonyl oxygen of compound 5 cannot be

placed in this favorable position. The pyrrolidine side-chain of

compound 1 may also interact with the hydrophobic environment

of pocket 38. Summarizing, these observations from the predicted

docking modes could explain the lesser activity of compound 5
compared to compound 1.

Although compounds 7, 11 and 13 share the scaffold shown in

Figure 3A, they do not exhibit inhibitory activity towards HtrA.

Compound 7 possesses the bulkiest R1 group of this series, which

might explain its inactivity. Compounds 11 and 13 are strikingly

similar to inhibitory compound 4. Compound 11 only differs by a

3,4-configuration of the dimethoxybenzene group instead of a 3,5-

configuration. Such a small change of structure resulting in a

complete activity loss suggests a steep structure-activity landscape

[42]. Compound 13 also has a substituent in the para-position of

the R1 benzene suggesting this substituent might not be favorable.

Assuming that compounds 11 and 13 adopt a similar scaffold

orientation as compound 4, the para-substituents of 11 and 13
would point into a region outside the predicted pocket, without

any protein atoms as interaction partners (Figure S4D). A possible

explanation is that compound 4 actually adopts a different

preferred binding mode, which was not detected in the docking

simulations.

We superimposed docked conformations of compound 1 with

those found in the virtual screening study by rigid body alignment

(MOE version 2007.09). Both conformations feature a similar

bend (Figure 3A). This indicates that the virtual ligand algorithm

successfully encoded shape information about the binding site.

Due to the fact that the results – and consequently our

interpretations – of the docking procedure might be erroneous

we performed an additional flexible alignment of compounds 1, 4,

5, and 6, and calculated a consensus pharmacophore model

(Figure 3B). This model can serve as a starting point for further

virtual screenings based on ligand information alone. Note that

this model partly differs from the docking results, as the orientation

of the scaffold is flipped for compounds 4 and 6. Therefore, we

cannot unambiguously suggest a consensus binding pose for all

inhibitors.

For identification of protein residues possibly interacting with

the bound inhibitors a hybrid approach was used including both

ligand and binding site information. Docked conformations of all

inhibitors were superimposed and a pharmacophore model was

calculated with LIQUID. This model was placed in the binding

site and visually investigated for potential ligand-receptor

interactions. Figure 3C presents this model and the corresponding

residues, which may serve as a guideline for HtrA mutation studies

to determine the actual pharmacophoric interaction pattern.

Cell-based studies
To probe whether compounds 1 and 3 – as representatives of

the two prevalent scaffolds among the top-ranking hits – are able

Figure 3. Consensus LIQUID pharamacophore model and
binding site of HtrA. (A) Superimposition of the docked (cyan) and
the database (green) conformation of compound 1. (B) Flexible
alignment and LIQUID consensus pharmacophore model of inhibitor
compounds 1, 4, 5 and 6. Below, a 2D graph representation of the
model is shown. Red spheres indicate a hydrogen-bond acceptor, blue
a hydrogen-bond donor, and green a lipophilic group. The purple
sphere indicates an acceptor and/or a donor. (C) LIQUID consensus
pharmacophore model of compounds 1, 2, 3, 4, 5 and 6, placed in the
binding site of HtrA. Residues possibly interacting with the pharmaco-
phore features are shown and labeled. If only a backbone interaction is
possible, a ‘B’ was added to the residue number. Note that only features
are shown that are in vicinity to protein residues.
doi:10.1371/journal.pone.0017986.g003
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to prevent disruption of epithelia by H. pylori, we investigated their

effect on functional adhesion of epithelial cells. Confluent MCF-7

and MNK-28 cells develop functional E-cadherin-dependent

intercellular adhesions, which are actively disrupted by H. pylori

after HtrA-induced shedding of the ectodomain of E-cadherin

[3,43]. We tested if compounds 1 and 3 might be suitable to

inhibit HtrA-triggered E-cadherin cleavage in H. pylori infections

(Figure 4). Cells were either colonized with H. pylori alone

(Figure 4A, lane 2), in combination with 100 mM compound 1 or

compound 3 (Figure 4A, lane 3), or left uninfected and untreated

by any of the two compounds (Figure 4A, lane 1). E-cadherin

cleavage was analyzed by the detection of soluble E-cadherin in

the supernatants of cells (‘E-cad sol.’). Both compounds decreased

the formation of soluble E-cadherin fragments upon infection with

H. pylori supporting these compounds as functional small molecule

inhibitors of HtrA. Performing confocal laser scanning microsco-

py, we detected E-cadherin in the plasma membrane of uninfected

MCF-7 cells (Figure 4B and 4C, ‘mock’). After colonization with

H. pylori membrane localization of E-cadherin was strongly

relieved and intercellular adhesions were disrupted (Figure 4B

and 4C, ‘Hp’). Compounds were added to MCF-7 cells prior to H.

pylori infection and did not affect E-cadherin staining or cell

morphology. Finally, both compounds 1 and 3 efficiently blocked

H. pylori-induced loss of intercellular adhesions and E-cadherin

staining, and judging from cell morphology compound 3 appears

to be the more effective agent (Figure 4B and 4C, lower right

panel).

Ectodomain shedding of E-cadherin promotes cell proliferation,

migration, and invasion and is considered a relevant and

important cancer biomarker [3]. To investigate biological

significant inhibition of HtrA-mediated E-cadherin cleavage, we

performed a wound-healing assay as a model of cellular

proliferation and migration. A confluent cell monolayer exhibiting

a 500 mm thick ‘scratch’ was left untreated, infected with H. pylori,

or treated with compound 1 or 3 together with H. pylori for a

period of 24 hours. Direct comparison of MKN-28 cells revealed

that inhibition of HtrA by compounds 1 and 3 led to an obvious

delay of wound closure (Figure 4D). Although we cannot exclude

the possibility that these compounds might also interfere with

proliferation- or migration-associated signal transduction path-

ways, these data imply that the successful pharmacological

inhibition of HtrA-mediated E-cadherin cleavage has a notable

influence on cellular proliferation and migration.

Discussion

In this work we present the successful application of virtual

screening based on the automated extraction of a ligand-binding

site and receptor-based pharmacophores. ‘Virtual ligand’ screen-

ing for inhibitors of H. pylori-secreted HtrA resulted in the

identification of several hits. Compounds 1 and 3 exhibit

pronounced bioactivity in in vitro infection experiments. These

results confirm the applicability of homology model-based virtual

screening to hit finding. In this preliminary study, several scaffold

Figure 4. Effects of compounds 1 and 3 on E-cadherin-mediated cell adhesion. (A) MKN-28 cells were infected with H. pylori for 16 h. Where
indicated, cells were co-treated with 100 mM compound 1 or compound 3. The formation of soluble E-cadherin fragment in the supernatant of cells
was detected by Western blot using an antibody detecting the extracellular E-cadherin domain. Equal amounts of cells were demonstrated by the
detection of GAPDH in protein lysates. (B) Confluent MCF-7 cells were untreated (mock) or infected with H. pylori for 16 h (right), which resulted in a
loss of E-cadherin-mediated cells adhesion and a scattered phenotype. Cells were co-treated with a 100 mM solution of compound 1 (B) or 3 (C),
thereby preventing dissociation of E-cadherin-mediated cell contacts and the scattered phenotype. E-cadherin (green) was stained using an antibody
detecting the intracellular domain. Nuclei (blue) were stained using DAPI. Scale bar: 10 mm. (D) Compounds 1 and 3 delay wound healing of H. pylori-
infected MKN-28 cells. MKN-28 cells were seeded on cell culture dishes equipped with a silicone insert, which was removed when cells reached
confluence. The obtained scratch of exactly 500 mm was monitored for 24 hours while cells were treated with H. pylori and compound 1 or 3.
doi:10.1371/journal.pone.0017986.g004
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structures were retrieved from a large screening compound

collection, which offer rich opportunity for hit profiling and

eventual hit-to-lead optimization. Retrospective screening exper-

iments showed that the definition of the binding site volume

critically affects screening performance, and final manual control

and selection of (sub-)pockets appears to be mandatory for the

retrieval of bioactive compounds. The prospective screening

experiment demonstrates that identification of various bioactive

chemotypes is possible, and a preliminary structure-activity

relationship may be deduced from these data. Certainly, the

overall performance of the virtual ligand concept will remain

target-dependent. The best inhibitor 1 exhibits sustained bioac-

tivity in vitro and effectively prevents the disruption of epithelial

cells by H. pylori. We wish to stress that this substance should be

considered as a ‘tool compound’ rather than a pharmaceutical

lead structure. Its potency is moderate and we identified potential

aqueous solubility issues. Compound 3 appears to be even more

effective in cell culture (Figure 4) and possesses a promising

alternative scaffold for actual lead compound development. With a

total of six inhibitors available, additional virtual screening runs

and de novo design methods can now be applied for HtrA inhibitor

optimization. These first-in-class HtrA inhibitors will help to gain

new insights into the relationships between human host cells and

H. pylori on the molecular level.

Materials and Methods

Virtual ligand modeling
The virtual ligand was calculated in four steps:

i) The protonation state of the target structure was deter-

mined with MOE Protonate3D (MOE version 2007.09

The Molecular Operating Environment, Chemical Com-

puting Group Inc., Montreal, Canada).

ii) Potential ligand binding sites were predicted by Pock-

etPicker [21,22]. In brief, PocketPicker uses a geometric

approach to identify those nodes of a grid (1 Å spacing

placed around the protein), which are buried in clefts of the

protein surface. These nodes are clustered to disjunct sets

using a calculated buriedness value. Each set of nodes is

assumed to represent the volume and the shape of a

potential ligand binding site.

iii) One or more pocket models calculated in the previous step

were used as the input for the further processing. The set of

residues including a non-hydrogen atom with a minimal

distance to one of the nodes of the respective model was

calculated. This set is assumed to be the set of interacting

pocket residues. The program iterates over all atoms of the

set and all nodes of the pocket model and checks for each

node/atom pair if one of the rules given in Table S1 is

satisfied. For rules 1 and 2 this was done by calculating the

distance d of the optimal position of an interaction partner

of the atom and the pocket node under observation (Eq. 1).

d~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

calczD2
opt{2:Dcalc

:Dopt
:cos Aopt{Acalc

� �q
, where ð1Þ

Dcalc and Acalc are the calculated distance and angle values

between the points required by the respective rule and Dopt

and Aopt the optimal values given by the rule. The value of d

should be zero; since the distribution of the pocket nodes is

discrete a tolerance of 0.9 Å was allowed. This value is close

to half the maximal distance of two nodes, which is given by

(31/2)/2 for the PocketPicker grid, and ensures that at least

one node satisfies the rule if the interaction points into the

space defined by the pocket model. For rule 3 and 4, the

Euclidian distance between the points under investigation

was compared to the optimum value (tolerance: 0.5 Å). The

coordinates of the corresponding pocket nodes satisfying a

rule were stored in separate sets for each interaction type.

iii) The given rules were taken from the de novo design program

LUDI [11,12] and represent a subset of the original LUDI

rules. Aromatic carbon atoms were treated as aliphatic/

lipophilic.

iv) The program LIQUID [20] was used for clustering the

nodes in the sets of each interaction type. A local feature

density (LFD) was used to determine if a node belongs to a

cluster. Using principal component analysis, LIQUID

calculates a trivariate Gaussian distribution (trivG) [20] for

each cluster that represents so-called ‘fuzzy’ potential

pharmacophore points (fPPP). The set of the fPPPs for all

interaction types was used to calculate a 120-dimensional

correlation vector, the ‘virtual ligand’ (Eq. 2).

CV A,B
d ~

1

#pairs(A,B)

XA

i

XB

j

1

2
trivGi

:trivGj

� �
, where ð2Þ

A and B are interaction types under investigation; d is one of

twenty distance intervals with a width of 1 Å (from 0 to

20 Å); i and j are fPPPs of types A or B, respectively.

The whole algorithm was implemented in the programming

language Java [44] using the Chemistry Development Kit (CDK)

[45].

Data sets and data set preparation
For the retrospective virtual screening experiments we used the

COBRA dataset (version 6.1) of bioactive compounds [25], a

compilation of 15,540 three-component Ugi reaction products

[18,26,27], and the Maximum Unbiased Validation (MUV) sets

[28]. The Ugi products had been tested for inhibition of five serine

proteases: chymotrypsin, factor Xa, trypsin, tryptase, and

urokinase-type plasminogen activator. Only a subset of the targets

included in the COBRA database was selected for the screening

experiments, and some of the MUV datasets had to be excluded

due to unavailability of protein models in the protein database

(PDB) [32]. For prospective screening, the compound collections

(Gold and Platinum, 04.2007) from Asinex Ltd. (Moscow, Russia)

and Specs v04.2007 (Delft, The Netherlands) were pooled and

served as screening database. MOE conformation import (MOE

version 2007.09) was used to calculate up to 250 conformers for

each molecule in the screening database. LIQUID was used to

derive the pharmacophore model and correlation vector for each

conformer.

Virtual screening parameters
LIQUID employs several parameters for the calculation of

pharmacophore models: cluster radius for hydrogen-bond accep-

tor, donor and lipophilic clusters and scaling of correlation vectors

(no scaling, block scaling to range [0,1], and vector scaling to

range [0,1]). The cluster radii were set to the default value of

1.9 Å, while all scaling options were tested. Also, for distance

calculation both Manhattan and Euclidian distance and the cosine

similarity were used. Testing was done by ten-times leave-group-

out cross-validation with random 50+50 splits [46]. For perfor-

mance evaluation we used the receiver operating characteristic

area under curve (ROC-AUC) [29] and the Boltzmann-enhanced
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discrimination of receiver operating characteristic (BEDROC,

with alpha = 20) [30]. Ligand docking was done with the software

GOLD and the ASP scoring function [47].

Homology modeling
A homology model of the protease HtrA of Helicobacter pylori was

built using MOE Homology (MOE version 2007.09) and the

structure model of the protease HtrA of Escherichia coli as template

(PDB ID 3cs0), as described [35].

Experimental procedures
Cloning, expression and purification of HtrA of H. pylori was

performed as described previously [23]. The ordered test

compounds were dissolved in DMSO and diluted to stock

concentration. 0.5 mg HtrA was incubated with the corresponding

amount of the respective compound and 0.1 mg E-cadherin/Fc-

Chimera (R&D Systems) or casein in 50 mM 4-(2-hydroxyethyl)-

1-piperazineethane sulfonic acid (HEPES) buffer (pH 7.4) for two

hours at 37uC. The reaction was stopped by boiling for five

minutes and analyzed by SDS-PAGE and SYPRO Ruby staining

(Invitrogen) or Western-blotting and immunostaining with anti-E-

cadherin antibody (Santa Cruz Biotechnology). A film was

exposed to the ECL/HRP chemo-luminescence reaction and

scanned, or data were acquired directly by a FUSION-FX7

camera (Vilber Lourmat). Background noise filtering by a rolling-

ball algorithm and the measurement of brightness densities was

performed using ImageJ (version1.41o) [48].

Cell culture, bacteria and infection experiments
Human breast cancer cells (MCF-7, LGC Standards GmbH,

Germany, http://www.lgcstandards-atcc.org) and human gastric

cancer cells (MKN-28 [3]) were grown in DMEM medium

(Biochrom, Germany) and 10% FCS (Biowest, France) in a

humidified 10% CO2 atmosphere at 37uC. Cells were seeded on

glass slides 48 hours before infection. 1–2 h prior to infection

medium was replaced by serum-free DMEM. H. pylori strain

Hp26695 was cultured on agar plates containing 10% horse serum

under micro-aerophilic conditions at 37uC for 48 hours. For

infection, bacteria were harvested in PBS Dulbecco’s medium,

pH 7.4, added to the host cells at a multiplicity of infection (MOI)

of 100 for 16 h. Cells were fixed in 4% paraformaldehyde in PBS,

and permeabilized in 0.2% Triton X-100 in PBS. Immunostaining

was performed using anti-E-cadherin (cl. 36 detects the intracel-

lular domain, BD Biosciences), For nuclei staining, 49,6-diamin-2-

phenylin-dol-dihydrochloride (DAPI, Roche) was used according

to the manufacturer’s instructions. Samples were analyzed by

confocal laser scanning microscopy using a Zeiss LSM 510 Meta

confocal microscope. Images were processed using Corel Photo-

paint (Corel Inc., Ottawa, Canada). Supernatants of cells were

analyzed for E-cadherin cleavage by the detection of the soluble E-

cadherin fragment by Western blot analysis as described above.

Cells were then lysed in 20 mM Tris (pH 7.5), 0.42 M NaCl,

1.5 mM MgCl2, 0.2 mM EDTA, 10 mM K2HPO4, 1 mM

Na3VO4, 10 mM NaF, 1.25% Nonidet P-40 and 10% glycerol.

Aliquots were analyzed for GAPDH expression using an anti-

GAPDH antibody (Abcam) to demonstrate equal numbers of cells.

For the wound healing assay a silicone insert was placed on a cell

culture surface before seeding gastric epithelial MKN-28 cells.

When cells reached confluence, the silicone insert was removed

resulting in 500 mm thick ‘scratch’. The cells were either left

untreated, infected with H. pylori, or treated with test compounds

together with H. pylori for 24 h and monitored by an inverse

microscope.

Supporting Information

Figure S1 In vitro inhibition of E-cadherin cleavage by
HtrA in the presence of different concentrations of
compound 1 (1, 3, 10, 30 100 mM) (A) and compound 3
(5, 10, 50, 75, 100 mM) (B). E-cadherin and HtrA were
detected by Western blot.

(PDF)

Figure S2 Purity analysis of compound 1. We performed

HPLC and mass detection of compound 1 in 100% DMSO.

Compound purity was determined to be 92%, and the correct

mass peak was detected at 546 Da. (A) HPLC report for

compound 1 (Shimadzu LCMS2020). (B) Mass spectrum recorded

for compound 1 (Shimadzu LCMS2020).

(PDF)

Figure S3 Enzyme inhibition assay. Raw data (triplicates)

obtained for compound 1 (termed ‘‘HHI’’ in this plate reader

protocol) in the protease inhibition assay. Inhibition of HtrA by

compound 1 was tested in a fluorimetric protease assay as

described (Protease Detection Kit, Jena Bioscience, Germany;

substrate: casein). 50 ml incubation buffer were mixed with 100 ml

sample and 50 ml casein stock solution as specified by the vendor,

and incubated for 3 h at 37uC. 500 ml precipitation reagent were

added and incubated for 30 min at 37uC. The reaction vials were

centrifuged at 12.000 g for 5 min. 400 ml of the supernatant were

mixed with 600 ml assay buffer. Fluorescence was measured in a

Tecan M1000 spectrometer (excitation wavelength: 490 nm,

emission wavelength: 525 nm), in a Greiner 384 well plate (flat

bottom black plate) holding 100 ml per well. Final concentration of

HtrA: ca. 10 nM, compound 1: 170 mM.

(PDF)

Figure S4 (A) Scaffold of compounds 1, 4, 5 and 6
(inhibitory activity), and 7, 11, 13 (no inhibitory
activity). (B) Superposition of docking poses of compounds 1
(cyan), 4 (pink), 5 (blue) and 6 (magenta). (C) Same as (B) including

compounds 2 (grey) and 3 (orange). (D) Superposition of

compounds 7, 11, 13.

(PDF)

Table S1 Idealized geometric interaction rules used for
the calculation of the virtual ligand model (8).

(DOC)

Table S2 Results of retrospective screening; averaged
over all targets.

(DOCX)

Table S3 Results of retrospective screening using the
COBRA database. Three different dissimilarity metrics were

used a) Euclidian distance, b) Manhattan distance c) Cosine

similarity. The highest ROC-AUC for each model is marked in

bold.

(DOCX)

Table S4 Results of retrospective screening using the
UGI database. Three different dissimilarity metrics were used a)

Euclidian distance, b) Manhattan distance c) Cosine similarity.

The highest ROC-AUC for each model is marked in bold.

(DOCX)
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Table S5 Results of retrospective screening using the
MUV database. Three different dissimilarity metrics were used

a) Euclidian distance, b) Manhattan distance c) Cosine similarity.

The highest ROC-AUC for each model is marked in bold.

(DOCX)

Table S6 Structures and activities (inhibition of HtrA)
of the inhibitory compounds, ordered according to
falling inhibitory activity. The Gold docking rank calculated

for all 26 ordered compounds as well as the Gold ASP score in

brackets is shown in column 5.

(DOCX)
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