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ABSTRACT

CMGSDB (Database for Computational Modeling of
Gene Silencing) is an integration of heterogeneous
data sources about Caenorhabditis elegans with
capabilities for compositional data mining (CDM)
across diverse domains. Besides gene, protein and
functional annotations, CMGSDB currently unifies
information about 531 RNAi phenotypes obtained
from heterogeneous databases using a hierarchical
scheme. A phenotype browser at the CMGSDB
website serves this hierarchy and relates pheno-
types to other biological entities. The application of
CDM to CMGSDB produces ‘chains’ of relationships
in the data by finding two-way connections between
sets of biological entities. Chains can, for example,
relate the knock down of a set of genes during
an RNAi experiment to the disruption of a pathway
or specific gene expression through another set
of genes not directly related to the former set.
The web interface for CMGSDB is available at
https://bioinformatics.cs.vt.edu/cmgs/CMGSDB/,
and serves individual biological entity information
as well as details of all chains computed by CDM.

INTRODUCTION

The availability of high-throughput screens has opened up
awareness of the importance of data integration to reveal
useful biological insight. For instance, the study of even
a focused aspect of cellular activity, such as gene action,
now benefits from multiple high-throughput data acquisi-
tion technologies, such as microarrays, genome-wide
deletion screens and RNAi assays. While enormous quan-
tities of data are available, it remains a major challenge
to construe meaningful biological evidence from this
data that explains, for example, the role of a biological
pathway, the effects of a SNP on disease phenotypes or the

regulatory networks or metabolic pathways underlying a
cellular state. Two major factors make this process harder.
First, high-throughput experiments for a given genome are
performed by independent groups of researchers that
develop their own naming conventions and schemes for
information storage and retrieval. This makes it difficult
for scientists to utilize ‘all’ available data for a genome
to draw inferences. Second, even if such integration is
accomplished, the possibility of linking data across
sources is often restricted to individual entities, such as
genes or proteins; it is difficult to track ‘sets’ of entities,
which is the more natural way to interact with such
databases.
As a case in point, consider the possibilities of integ-

ration opened up by the availability of RNAi screens.
Post-transcriptional gene silencing via RNAi was first
described in the nematode Caenorhabditis elegans (1), and
is presently utilized for a variety of functional genomics
experiments using RNAi assays. Although Wormbase
serves as a centralized repository for C. elegans data,
the sources of RNAi experiments in C. elegans are many,
their data representation formats are varied and some
information is lost while integrating them into the
Wormbase (2) schema.
Here, we present CMGSDB, a database for computa-

tional models in gene silencing, where the following goals
have been achieved. We have integrated genome annota-
tion data, gene expression data, protein interaction data,
gene regulation data, GO (Gene Ontology) annotation
data and RNAi data for C. elegans into a centralized
schema. RNAi experiments and phenotypes have been
integrated from independent research groups into a
single schema. A common hierarchical structure has
been designed to organize the phenotypes from different
sources. The hierarchy is available in the form of a web
browser. Compositional data mining (CDM) (3) is used to
identify relationships among sets of entities across
the database schema, where these sets are mined automa-
tically and not defined a priori. A detailed web interface
that reports all the data and the patterns computed
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is available at https://bioinformatics.cs.vt.edu/cmgs/
CMGSDB/.

COMPOSITIONAL DATA MINING (CDM)

The basic idea in CDM is to mirror the shift-of-
vocabulary as we traverse a database schema in a compo-
sition of data-mining algorithms that mine the respective
entities and relationships. For instance, consider a multi-
ple stress environment where numerous physiological
responses are occurring simultaneously. Efforts to identify
a set of C. elegans genes [perhaps encoding transcription
factors (TFs)] to knock down (via RNAi) in order to
ascertain key mechanisms of response might begin by
identifying those genes whose knockdown produces
phenotypes that modulate survival, and then find one or
more TFs that combinatorially control the expression
of these genes. This analysis can be modeled as a chain:
TFs! genes! phenotypes. Each step in this chain is
computed using a data-mining algorithm, so that we first
mine the relationship between TFs and genes for
concerted (TF, gene) sets called ‘biclusters’, then mine
the relationship between genes and phenotypes to find
concerted biclusters of (gene, phenotype) pairs. The
biclusters share the gene boundary leading us to investi-
gate if these biclusters approximately match at the gene
interface. The projection of the biclusters with an
approximate match at one interface is called a ‘redescrip-
tion’. Thus, CDM is a way of problem decomposition
(see Ref. (3) for more details) where biclustering and
redescription mining algorithms are chained in a way that
mirrors the underlying ‘join-order’ path in the database
schema.
As illustrated in Figure 1, we mine biclusters between

genes and the TFs that regulate them, mine biclusters
between genes and the phenotypes that result when they
are knocked down, and relate one side of the first bicluster
with one side of the second bicluster. Hence the task of
integrating diverse data sources is reduced to composing
data-mining patterns computed over each of the sources
separately. The advantage of this formulation is that each
data source can be mined individually using a biclustering
algorithm that is suited for that purpose. For instance,
the xMotif (4), SAMBA (5) and ISA (6) algorithms
are suited for mining numeric data (e.g. such as gene
expression relationships), while a priori (7) and CHARM
(8) algorithms are suited for mining Boolean data
(e.g. graph adjacencies).
The approximate matching of biclusters is ensured

using a similarity search algorithm or redescription
mining approach. This problem, in various guises, has
been studied by the database community; see Refs. (9) and
(10) for examples. In this article, we utilize a cover-tree
approach for fast computation of similar biclusters. The
overlap between the sides of biclusters is qualified using
the Jaccard’s coefficient: the Jaccard’s coefficient between
two sets X and Y is the ratio:

jX \Yj=jX�Yj

It is zero if the sets are disjoint and one if they are the
same. In practice, we use a lax threshold on Jaccard’s
coefficient such as 0.5 and ensure that all similarities have
a P-value significance of at least 0.001. Specifically, we use
the hypergeometric distribution to assess the likelihood of
observing a given Jaccard’s threshold (given the sizes of
X and Y) and use this probability to derive a P-value test.

Given a database schema and two entity sets participat-
ing in it, e.g. ‘TFs’ and ‘phenotypes’, we first identify the
paths between these entity sets in the underlying E/R
diagram of the schema. Observe that there can be many
paths, including recursive ones (e.g. ‘TFs regulate TFs
which regulate other genes, contributing to phenotypes,
when knocked down.’). Corresponding to each path,
we instantiate a sequence of biclusterings and use the
cover tree to identify redescriptions that can link them
into chains.

CMGSDB DATA SOURCES AND METHODS

We refer to the biological entities captured in CMGSDB
as ‘biots’. CMGSDB contains exhaustive data about
the following biots in C. elegans: chromosomes, genes,
transcripts and proteins. For genes, extensive annotations
(IDs, locations, names, annotations, locus and transcripts)

Figure 1. Finding TFs whose knockdown induces improved desiccation
tolerance in C. elegans. Two biclusters (shaded rectangles) joined at the
gene interface using a redescription between their projections. Below
that is the CDM schema, displaying the sequence of primitives.
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are complemented by microarray data, RNAi knockout
experimental data, interaction data, gene regulatory infor-
mation and functional categorization using the GO
categories. Proteins, besides containing complete annota-
tions, are enhanced by the addition of SwissProt/TrEMBL
cross-references, physical structure details and properties
and orthology/paralogy information. Finally, groups of
all types of biots and biot information are linked together
by patterns found by CDM, as described in the CDM
section.

Data sources

Genome annotation data (chromosomes, genes, proteins,
sequences, transcripts) for C. elegans are retrieved from
Wormbase (2). Attention has been paid to retaining
all transcripts and their respective constituting coding
sequences for each gene. These transcripts serve as a link
to gene expression data and RNAi transcript information.
Gene orthology and paralogy data have also been taken
from Wormbase.

Protein sequences and annotations have been obtained
from Wormbase, while their physical properties and
Protein Data Bank [PDB; (11)] homologs have been
obtained from the Structural Genomics of C. elegans
[SGCE; (12)] project. Protein interaction data and gene
regulatory information have been obtained from
BioGRID (13). Internal mappings from BioGRID IDs
to Wormbase IDs have been generated.

Genome-wide gene expression data for 496 C. elegans
microarray experiments have been collected from
Stanford Microarray Database [SMD; (14)]. Expression
values have been related to the genes through gene
transcripts.

The RNAi component of CMGSDB is one of
the chief characteristics that separates CMGSDB from
other C. elegans resources. The RNAi experiments
obtained from Wormbase have been supplemented by
RNAi experiments retrieved from Phenobank (15),
PhenomicDB (16) and RNAi phenome database (17).
The same has been done for RNAi phenotypes. All RNAi
phenotypes, thus obtained, have been organized into a
hierarchical structure, with body, cell, development, lethal
and sterile and miscellaneous as the top phenotypic
categories. While Phenobank’s experiments test all
C. elegans genes for their role in the first two rounds
of mitotic cell division, RNAi phenome database’s
experiments are aimed at evaluating the effects of RNAi
on genes whose knock down causes embryonic lethality.
PhenomicDB is a multi-organism phenotype–genotype
database including human, mouse, fruit fly, C. elegans and
other model organisms. Apart from these web-based
RNAi data sources, there are a number of genome-wide
RNAi screens in literature that are undocumented in
these web-based sources but have been included in
CMGSDB (18–36).

Database schema

The key components of CMGSDB are illustrated in
Figure 2. Biots are contained in light green boxes, which
are represented by one or more relations in CMGSDB.

Blue arrows represent relationships in CMGSDB. Plain
black arrows represent data flow.

Applying CDM to CMGSDB

We applied CDM to CMGSDB as follows. There are
a variety of biclustering algorithms that can be applied
for mining relationships (37). For the purpose of this
study, we utilized CHARM (38) to mine biclusters in
binary relationships. For gene expression data, we utilized
SAMBA (5) to mine biclusters.
Given a binary 0–1 matrix, the CHARM algorithm

identifies sets of rows that show the same bit (0/1) patterns
across all columns. The row set is grown to be maximal
in size and, together with the columns for which the
rows have a ‘1’, defines the bicluster. CHARM identifies

Figure 2. Data integration and analysis in CMGSDB.
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overlapping biclusters, which can be organized alongside
a lattice of subset relationships.
The SAMBA algorithm casts biclustering as a problem

of finding bicliques in a bipartite graph. Given an edge-
weighted graph (e.g. between genes and experiments
labeled with expression levels) SAMBA detects dense sub-
graphs, which are then iteratively improved (using local
addition/removal of vertices) in a post-processing phase.
Biclusters are connected if the overlap between the

participating entities satisfied a Jaccard’s threshold of
0.5. Chains computed in this manner all mediate through
the gene entity set, since it serves a central role in
CMGSDB (i.e. all relationships involve genes).
Patterns mined by CDM serve many purposes.

For instance, they can be used to impute functions and
properties to unannotated genes, they can make unex-
pected connections between upstream and downstream
indicators, and they can summarize the distribution of
data in the database more succinctly by identifying the
sets of entities that dominate in many compositions.

QUERYING CMGSDB

The CMGSDB consists of a web interface and a
PostgreSQL database management system. The web
interface has been implemented using static and dynamic
HTML, PHP, CSS and JavaScript. PostgreSQL is used
to store the data described in the previous section and in
Figure 2.
The web interface of CMGSDB can be used for

querying. The user can search against all C. elegans
biots. Genes, for example, can be searched using names,
loci, transcript IDs and annotations. A biot page, apart
from displaying basic information about that biot, also
displays relationships with other biots that have been
captured within CMGSDB. For instance, the phenotype
page not only displays phenotype description, ID and
source, but also shows existing relationships with other
phenotypes, GO categories associated with the phenotype,
RNAi experiments in which the phenotype was observed,
genes whose knockdown resulted in the phenotype, and
chains in which the phenotype participates. Biot pages are
closely interlinked through biot IDs. As far as possible,
biots are hyperlinked on pages. A biot page also contains
hyperlinks to Wormbase and GO wherever applicable.
Figure 3 illustrates the page for the gpr-1 gene through
a screenshot.
Chains, as described before, are available for searching

and browsing. Chains can be queried by participating
genes, number of common genes among all biclusters
and number of biclusters. A chain with three biclusters
containing gene glp-1 is shown in Table 1.

LIN-12/Notch signaling

In C. elegans, the LIN-12/Notch protein family mediates
cell–cell interactions. Glp-1 and lin-12 encode two proteins
in the LIN-12/Notch pathway, which is conserved in
mammalian development. The two general cell–cell inter-
actions that determine cell fate and involve these proteins

are lateral specification and induction. Querying
CMGSDB for glp-1 gives two chains (chain 153 and
chain 154). Table 1 illustrates chain 153, which demon-
strates a chain of three (two non-trivial) biclusters. The
biclusters with the GO categories and RNAi phenotypes

Figure 3. Screenshot of the gene page.
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suggest that genes in this chain contribute to the structural
aspects of cell division such as pattern specification
leading to asymmetry of division, and these might be
important to avoid embryonic lethality, protruding vulva
and sterile progeny. Furthermore, this set of genes is likely
to be self-regulated.

Four genes characterize the two chains: par-1, apx-1,
nmy-2 and glp-1. Par-1 encodes a serine threonine kinase,
which is required for the spatial regulation of GLP-1
asymmetry (39). Par-1 is connected to glp-1 through
the GO and gene regulation blocks. Apx-1 encodes a
ligand homolog to the Delta protein of Drosophila. Both
proteins contribute to the establishment of the dorsal-
ventral axis in the early C. elegans embryo (40). Chains
153 and 154 suggest an interaction between par-1 and
apx-1. The likelihood of this prediction is further strength-
ened by the computational prediction of interaction
between the same pair of genes (or their products) by
Zhong and Sternberg (41). A putative gene in the Notch
pathway is nmy-2, which encodes a maternally expressed
non-muscle myosin II. The corresponding protein is
linked through the phenotype bicluster containing par-1.
The function of NMY-2 and PAR-5 is to together
establish polarization in the C. elegans zygote along the
anterior–posterior axis 23. In summary, glp-1 and par-1
interaction was already suggested, while apx-1 and nmy-2
represent new potential interactions with glp-1 in the
LIN-12/Notch pathway, uncovered through CDM.

Wnt pathway

The Wnt signal transduction pathway regulates diverse
processes including cell proliferation, migration, polarity,
differentiation and axon outgrowth in C. elegans. The
signaling is composed of two pathways, the canonical
wnt/BAR-1 pathway and the non-canonical wnt/WRM-1
pathway. A common component in both pathways is the
HMG box containing protein POP-1, which is a member
of the TCF/LEF family of TFs. The wnt-signaling
pathway regulates the activation of the latter (42,43).
CMGSDB reported 32 chains containing pop-1, the
common target of the two wnt-pathways. These 32
chains suggested 18 new gene candidates (daf-2, par-2,
par-3, par-5, par-6, pkc-3, pkc-6, ooc-3, gpa-16, mbk-2,
mes-1, csn-3, pgl-1, egl-46, tac-1, rab-5, tba-2, uri-1) for
the pathway. Of these, only par-5 (chains 234, 236, 240)

has been confirmed as a regulator of pop-1 (44).
pop-1 is connected to par-2 (chains 204, 206, 210, 212)
through a regulatory network (45,46). Consistent with the
results from CMGSDB, Zhong and Sternberg (41)
predicted interactions between par-2, mes-1 (chains 246,
248), a gene encoding a tyrosine kinase-like protein that is
required for unequal cell division (47), ooc-3 (chains 222,
224), encoding a protein required to establish asymme-
trical anterior–posterior cortical domains and spindle
orientation (48), and gpa-16 (chains 234, 236), encoding
a member of the G-protein alpha-subunit family of hetero-
chromatic GTPase that effects spindle position and
orientation (49). It can be hypothesized that PAR-2 is
regulated by POP-1 over PAR-5. Further evidence shows
that PAR-2 is regulated independently from the wnt-
pathway, as it is not regulated by MOM-5 and MOM-2,
the wnt-receptor and wnt-ligand, respectively (50). From
the above gene list of 18 genes, CMGSDB suggests an
interaction of wnt-proteins with the tyrosine kinase
receptor DAF-2, which is involved in longevity and insulin
signaling. This can be a potential link between daf-
proteins and wnt-pathway proteins, indicating a possible
connection between insulin and wnt signaling.

Some database statistics

In this section, we describe some basic statistics about
the data in CMGSDB, especially focusing on data related
to RNAi experiments and phenotypes and chains.
Figure 4 illustrates some of the statistics of chains.
Chains consisting of 3, 4 and 5 biclusters, number 2054,
1654 and 426, respectively. Figure 4 examines the distri-
bution of the total number of genes in a chain and the
number of common genes among all biclusters in a chain.
CMGSDB stores 81 722 RNAi experiments and 565

RNAi phenotypes. This includes 145 028 relationships
between 21 222 unique C. elegans gene transcripts and the
above 565 phenotypes.

PHENOTYPE BROWSER

In CMGSDB, phenotypes from several different sources
have been organized into a common hierarchy. This
hierarchy is available for browsing via a phenotype
browser available at https://bioinformatics.cs.vt.edu/
cmgs/CMGSDB/Treeview/index.php. The viewer has

Table 1. Summary of chain 153 containing gene glp-1

Bicluster Type Set 1 Set 2

1 Gene-phenotype nmy-1, par-1 PBPhen25 (Asymmetry of division), WBPhen30 (Embryonic lethal), WBPhen301
(Protruding vulva), WBPhen320 (Sterile), WBPhen326 (Sterile progeny),
WBPhen7 (Asymmetry of division abnormal)

2 Gene-GO apx-1, glp-1, nmy-1, par-1 GO:0002119 [Larval dev. (sensu Nematoda)], GO:0044464 (Cell part), GO:0009987
(Cellular process), GO:0048856 (Anatomical structure dev.), GO:0007389
(Pattern specification process), GO:0009790 (Embryonic dev.), GO:0009791
(Post-embryonic dev.)

3 Gene-gene glp-1, par-1 glp-1, par-1

Nucleic Acids Research, 2008, Vol. 36, Database issue D73



been implemented using the PHP TreeView class and
is dynamically linked to individual phenotype pages and
to other biots. Figure 5 illustrates the phenotype browser
with the tree view on the left.

DOWNLOADS

We have made the CMGSDB schema, scripts and raw
data freely available under the GPL. Only the software for
computing chains is not included. The download package
is available at https://bioinformatics.cs.vt.edu/cmgs/
CMGSDB/download.php.

Using this package, a user with proper hardware and
software resources (including PostgreSQL and Perl) can
locally set up an exact replica of CMGSDB’s back end.
The data is downloaded at runtime dynamically over
the Internet. Scripts prepare the data and populate the
database. This includes the integration of phenotypes
from various sources.

All data in CMGSDB (except data related to chains) is
available for download as flat files in download page.

CONCLUDING REMARKS

The integration of RNAi data and the application of
data mining within CMSGDB provides the user with
enhanced abilities to interpret raw C. elegans data. Unlike
existing C. elegans resources, CMGSDB integrates RNAi
data from multiple discrete sources. Using chains, users
can discover new associations and relationships in the
data that can be tested experimentally. A very meaningful
future direction is to further consolidate the phenotypes
to support alternate sets of phenotypes. This could be
done by identifying very similar phenotypes as the same
or by choosing a level of specialization in the phenotype
tree. During the next 2 years of the CMGS project,
additional data mining and modeling capabilities will
be added.
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