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Background
Bone is a poroelastic material often subject to physiological cyclic loadings that arise 
from walking, running, or other daily activities [1, 2]. These activities can cause the 
interstitial fluid flow in bone, which is believed to initiate a mechanical response in 
osteocytes for bone remodelling [2–6]. Thus, linking bone cyclic loading to local cortical 
bone tissue remodelling is an issue of great interest to understand the rate of bone tissue 
renewal [7].

Cortical bone makes up of osteons in interstitial bone tissue. The osteon is a funda-
mental building unit of the cortical bone at the microscopic scale (Fig. 1a), which con-
sists of roughly multi-layered cylindrical composites of mineralized fibres arranged in 
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3–5 μm thick lamellae around a central Haversian system (Fig. 1b), and each lamella 
has different mechanical properties [7]. Beno et al. [8] pointed out that the lacunar–
canalicular permeability coefficients vary in three orders of magnitude. Although the 
role of properties such as permeability in fluid flows inside the osteon is widely stud-
ied, the effect of spatial gradient distribution of properties on mechanical stimuli dur-
ing bone remodeling remains unclear.

Since experimental work at the osteon scale does not seem feasible at the moment, 
various theoretical models based on Biot’s poroelastic theory have been used to quan-
titatively evaluate the strain-induced interstitial fluid in cortical bone. Some of the 
analytical models mentioned above consider the bone tissue as a transverse isotropic 
poroelastic material [1, 7, 9]. One of the studies is the work of Rémond and Naili [9], 
who modelled the osteon as a hollow cylinder under cyclic loading and obtained ana-
lytical solutions of pressure distribution and mass flux to investigate bone remodel-
ling. This work was extended by Wu et al. [1] to demonstrate the loading conditions 
and material parameters on the distribution of fluid flow. Meanwhile, computational 
approaches are essential to the elucidation of the mechanical stimuli to osteocytes 
for bone remodelling. A finite element poroelastic model was developed to investi-
gate the effect of the spatial gradients of material properties on interstitial bone fluid 
pressure, and showed that permeability variations have no significant consequence on 
radial fluid velocity [7]. Animal-specific finite element models were presented com-
bining micro-CT reconstructions of the bone microstructure, to investigate whether 
microstructural changes associated with osteoporosis can affect the interstitial fluid 
flow around osteocytes [10]. In the above studies, most studies treated the single 
osteon as a homogeneous poroelastic material, yet the behaviour of the material is 
very sensitive to the spatial variation of properties such as the permeability parameter 
within the constituents. Therefore, the effects of material heterogeneity between each 
lamella on the interstitial fluid flow that stimulates osteocytes to remodel bone are 
not completely understood.

The purpose of this study was thus twofold: firstly, to develop a multi-layered poroelas-
tic slab model composed of multiple layers to quantify parameter values for the osteon 
structures. Secondly, to apply the model with calculated parameter values to investigate 

Fig. 1  a Microstructure of bone. b Longitudinal cross section of a single cylindrical osteon
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the specific influence of spatial gradient distribution of lacunar–canalicular permeability 
on fluid pressure and velocity in the lacunar–canalicular system.

Methods
Description of the geometry

Biot’s poroelasticity theory is used to account for the fluid–solid interactions in this mul-
tilayer model of an osteon. After giving the description of the geometry is given and the 
fundamental equations of poroelasticity are stated, the boundary and initial conditions 
corresponding to the osteon model are specified.

As illustrated in Fig. 2, a single osteon is idealized as a two-dimensional poroelastic 
hollow slab composed of multiple layers with a width of L in the r-direction, where each 
layer is assumed to be a transverse isotropic material and has a different value of perme-
ability. The model represents the longitudinal cross section of a single cylindrical osteon. 
Here, we neglected the Haversian canal at the centre of the osteon. The matrix material 
and fluid are assumed to be compressible. We assumed that fluid can flow freely from 
the outer and the inner boundaries of the osteon. The model is supposed to be axisym-
metric and the symmetry axis of the material is defined as z, so that the interstitial fluid 
flow can flow only in the radial direction. Physical quantities associated with the i-th 
layer are recognized by the subscript i. Additionally, all lamellae are assumed to be per-
fectly bonded between them. To apply axial strain loading on the osteon, two rigid and 
impermeable plates are placed at the top and bottom of this model.

Governing equations

Considering the problem symmetry, the stress components are σθr = σθz = σzr = 0 , 
and the displacement components is uθ = 0 , and therefore the constitutive laws for the 
osteon in a low-frequency cyclic loading such as walking can be written as [11, 12]:

(1)σrr = M11εrr +M12εθθ +M13εzz − αp,

(2)σθθ = M12εrr +M11εθθ +M13εzz − αp.

Fig. 2  The single osteon model is shaped as a two-dimensional hollow poroelastic slab consisting of n layers 
with cyclic loading applied in the longitudinal direction
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where, σij , εij and p are, respectively, the total stress and strain components and the 
interstitial fluid pressure in the cylindrical coordinate system; α is Biot’s effective stress 
coefficients in the isotropic plane (r-θ plane); and the drained elasticity tensor Mij of the 
solid skeleton can be expressed in the following form [11, 12]:

in which Er and µr are drained Young’s modulus and Poisson’s ratio in the isotropic 
plane, respectively, and Ez and µz are similar quantities related to the direction of the 
axis of symmetry.

Continuity equation is also known as liquid mass conservation equation. The model 
in this paper based on cylindrical geometry of the osteon and its poroelastic proper-
ties. Material is modeled as transverse isotropic. Both fluid and solid phases are sup-
posed to be compressible. Therefore, the flow of interstitial fluid in osteon to satisfy 
the continuity equation as follows [12]:

where k is the intrinsic permeability in the isotropic plane and µ is the viscosity of the 
pore fluid, and ∇2 is a differential operator.

The fluid volumetric variation relation for a transversely isotropic material may be 
written as:

where ξ is the variation of fluid content per unit reference volume. N  is Biot’s modulus 
and α′ is Biot’s effective stress coefficients in the z-direction.

Usually, bone is subjected to low-frequency cyclic loading from the activities of 
daily life. The equilibrium equations and the strain displacement relation can be writ-
ten as follows:

where ur is the components of the vector of displacement in the cylindrical coordinate 
system.

Substituting Eqs. (1) and (2) into equilibrium equation Eq. (6), we obtain:

(3)

M11 = Er(Ez − Erµ
2
z)(1+ µr)

−1(Ez − Ezµr − 2Erµ
2
z)

−1,

M12 = Er(Ezµr − Erµ
2
z)(1+ µr)

−1(Ez − Ezµr − 2Erµ
2
z)

−1,

M13 = ErEzµz(Ez − Ezµr − 2Erµ
2
z)

−1,

(4)
∂ξ

∂t
=

k

µ
∇

2p,

(5)p = N
[

ξ −
(

αεrr + αεθθ + α′εzz
)]

,

(6)
∂σrr

∂r
+

σrr − σθθ

r
= 0,

(7)εrr =
∂ur

∂r
,

(8)εθθ =
ur

r
,

(9)
∂

∂r
(M11εrr +M12εθθ )+

(M11 −M12)(εrr − εθθ )

r
− α

∂p

∂r
= 0.
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Then, substituting Eqs. (7) and (8) into (9), we obtain:

Considering the problem symmetry and fluid flow only in the radial direction, the 
radial displacement ui,r and fluid pressure p depend only on r and t. We assume that 
the axial cyclic loading is in the form of an applied strain [2], εz(t) = εz0e

iωt , where 
εz0 and ω are the amplitude of the cyclic strain and its angular frequency, respectively. 
Therefore, the stress components, the vector of displacement and the interstitial fluid 
pressure in each layer have the solution forms of σrr = σi,r0(r)e

iωt , σθθ = σi,θ0(r)e
iωt , 

ui,r = ui,r0(r)e
iωt and p = pi,0e

iωt [7, 9, 13], where σi,r0 , σi,θ0 , ui,r0 and pi,0 are the radial 
stress amplitude, the radial displacement amplitude and the interstitial fluid pressure 
amplitude in each layer of the lamellar bone. Thus, Eq. (10) can be expressed by:

where ci is the integral constant determined by the boundary conditions.
Substituting Eqs. (7) and (8) into equilibrium equation Eq. (2), we obtain:

Substituting Eq. (12) into the continuity Eq. (4), we obtain:

Applying ui,r = ui,r0(r)e
iωt , p = pi,0e

iωt and substituting Eq. (11) into Eq. (13) leads to 
the differential equation of pi,0(r) in each bone lamella to be derived as:

Interface and boundary conditions

We considered normal physiological activities to have low frequencies of loading. The 
Haversian canal in the centre of the osteon plays a reservoir role. The interstitial fluid 
pressure, fluid flux, displacement and stress are considered continuous at the boundaries 
of the layer. Therefore, the initial and boundary conditions for interstitial fluid pressure p 
can be described by:

1.	 The osteon is in a state of balance before cyclic loading is applied, and the fluid pres-
sure in each layer of the osteon is null:	

2.	 At both end of the osteon ( r = r0 = a and r = rn = b ), the fluid flow pressure is 
assumed to be null. This boundary condition means that the cement surface of the 

(10)M11

∂

∂r

(

∂ur

∂r
+

ur

r

)

− α
∂p

∂r
= 0.

(11)
dui,r0(r)

dr
+

ui,r0(r)

r
=

αpi,o(r)

M11

+ ci,

(12)ξ = α
∂ur

∂r
+ α

ur

r
+ α′εz0e

iωt
+ p/N ,

(13)
∂

∂t

(

α
∂ur

∂r
+ α

ur

r
+ α′εz0e

iωt
+ p/N

)

−
k

µ
∇

2p = 0.

(14)
d2pi,0(r)

dr2
+

1

r

dpi,0(r)

dr
−

iωµ(M11 + Nα2)

kMM11

pi,0(r) =
iωµ

k
(αc + α

′

εz0).

(15)t = 0; pi,0 = 0 (i = 1, · · · , n),
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osteon is supposed to be full permeable. It is significant to use this permeable case 
for stimulating the presence of the micro-cracks.	

3.	 At the interface between two successive layers of the osteon ( r = ri, i = 1, 2, . . . , n− 1 ), 
the fluid pressure, displacement, normal velocity and normal stress are continuous:	

	

Solution for interstitial fluid pressure and seepage velocity

The fundamental solution for interstitial fluid pressure can be obtained by solving the 
differential Eq. (14) as follows:

where Ai , Bi and ci are unknown coefficients to be determined by the boundary condi-
tions, and I0 and K0 denote the first kind and the second kind modified Bessel function 
of order zero, respectively. By substituting Eqs. (15)–(17) into Eq. (19), these equations 
can be written as follows in matrix form:

where the nonzero elements between akl and fk are given by:

By applying Cramer’s rule to Eq. (21), we can obtain the interstitial fluid pressure solu-
tion with the unknown coefficient ci.

According the governing Eqs.  (2)–(7), we can also obtain the differential equation 
related to the displacement of each bone lamella by:

(16)p1,0 = pn,0 = 0;

(17)pi,0 = pi+1,0, −
κi

µ

∂pi,0

∂ri
= −

κi+1

µ

∂pi+1,0

∂ri+1

,

(18)ui,r0 = ui+1,r0, σi,r0 = σi+1,r0,

(19)pi,0(r) = −
NM11(αci + α′εz0)

M11 + Nα2
+ AiI0(Cr)+ BiK0(Cr),

(20)[akl]























A1

B1

...

An

Bn























=























f1
0
...

0

f2n























, (k , l = 1, . . . , 2n),

(21)

a11 = I0(C1a), a12 = K0(C1a),

a2i,2i−1 = I0(Ciri), a2i,2i = K0(Ciri), a2i,2i+1 = −I0(Ciri), a2i,2i+2 = −K0(Ciri),

a2i+1,2i−1 = κiI1(Ciri), a2i+1,2i = −κiK1(Ciri), a2i+1,2i+1 = −κi+1I1(Ci+1ri),

a2i+1,2i+2 = κi+1K1(Ci+1ri), (i = 1, . . . , n− 1),

a2n,2n−1 = I0(Cnb), a2n,2n = K0(Cnb),

f1 =
NM11(αc1 + α′εz0)

M11 + Nα2
, f2i =

NM11(αci + α′εz0)

M11 + Nα2
−

NM11(αci+1 + α′εz0)

M11 + Nα2
,

f2i+1 = 0, f2n = −
NM11(αcn + α′εz0)

M11 + Nα2
.

(22)
∂ui,r0(r)

∂r
+

ui,r0(r)

∂r
=

[

−
Nα(αci + α′εz0)

M11 +Mα2
+ ci

]

+
αAi

M11

I0(Cr)+
αBi

M11

K0(Cr).
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The fundamental solution for Eq. (22) can be written as

where I1 and K1 are the modified Bessel function of the first order.
Using the boundary condition (18), the following equations can be derived:

(23)ui,r0 =
1

2
r

[

−
Nα(αci + α′εz0)

M11 +Mα2
+ ci

]

+
α

CM11
[AiI1(Cr)− BiK1(Cr)]+

si

r
,

(24)

1

2
ri

[

−
Nα(αci + α′εz0)

M11 + Nα2
+ ci

]

+
α

CM11
[AiI1(Cri)− BiK1(Cri)]+

si

ri

=
1

2
ri

[

−
Nα(αci+1 + α′εz0)

M11 + Nα2
+ ci+1

]

+
α

CM11
[Ai+1I1(Cri)− Bi+1K1(Cri)]+

si+1

ri
,

1

2
M11

[

−
Nα(αci + α′εz0)

M11 + Nα2
+ ci

]

+
α

C
×

{

C[AiI0(Cri)+ BiK0(Cri)] −
1

r
[AiI1(Cri)− BiK1(Cri)]

}

−M11

si

r
2
i

+
1

2
M12

[

−
Nα(αci + α′εz0)

M11 + Nα2
+ ci

]

+
αM12

liCM11

[AiI1(Cri)− BiK1(Cri)] +M12

si

r
2
i

=
1

2
M11

[

−
Nα(αci+1 + α′εz0)

M11 + Nα2
+ ci+1

]

+
α

C
×

{

C[Ai+1I0(Cri)+ Bi+1K0(Cri)] −
1

r
[Ai+1I1(Cri+1)− Bi+1K1(Cri+1)]

}

−M11

si+1

r
2
i

+
1

2
M12

[

−
Nα(αci+1 + α′εz0)

M11 + Nα2
+ ci+1

]

+
M12α

riCM11

[Ai+1I1(Cri)− Bi+1K1(Cri)] +M12

si+1

r
2
i

.

Table 1  Geometrical and  material properties of  cortical bone as  poroelastic material [7, 
11, 13–16]

Symbol (unit) Description Value

Er (GPa) Drained Young’s modulus in the isotropic plane (r-θ plane) 15.9

Ez (GPa) Drained Young’s modulus in the z-direction 20.3

M (GPa) Biot’s modulus 38

µr Poisson’s ratio in the isotropic plane 0.328

µz Poisson’s ratio in the z-direction 0.25

α Biot’s effective stress coefficients in the isotropic plane (r-θ plane) 0.132

α′ Biot’s effective stress coefficients in the z-direction 0.092

µ (Pa s) Viscosity of the pore fluid 10−3

a (μm) Inner radius of the osteon 50

b (μm) Outer radius of the osteon 150
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From the above linear equations, the unknown coefficient ci can be obtained. Substi-
tuting Ai, Bi, ci into Eq. (19), we get the analytical solution for the interstitial fluid pres-
sure on each bone lamella.

To understand the mechanism of mechanical stimuli given to interstitial fluid flow, we 
investigated the seepage velocity in the lacunar–canalicular pores According to Darcy’s 
law [9], the seepage velocity qr for the ith layer is derived as follows:

Numerical parameters

For the purpose of investigating the effect of spatial gradients of permeability on inter-
stitial fluid flow and seepage velocity, Eqs.  (19) and (25) are used for the parametric 
studies. The geometric and transverse isotropic poroelastic material properties for an 
osteon are listed in Table 1 [7, 11, 13–16]. The range of strain is selected between 0.04 
and 0.3% to study the poroelastic response of a loaded osteon bone [17]. The loading 
frequency is chosen to be 1–21 Hz, which correspond to those of physiological activities 
[3]. The geometry of the inner and outer radii of the osteon is defined as: a = 50 μm and 
b = 150 μm [13], respectively. Here, we assume that a single osteon is composed of six 
layers, with each of the concentric lamellae having the same width.

Among the material properties listed in Table  1, the permeability of each lamella is 
extremely difficult to determine due to the heterogeneity of the bone material and the 
multiscale structure of porous bone [4, 18–20]. According to previous theoretical and 
experimental results, the lacuna-canalicular permeability of cortical bone exhibits a 
broad variability, with values ranging from 10−17 to 10−25 m2 [18]. In our study, we chose 
the low value of 10−18 m2 for the lacunar–canalicular permeability (PLC) as a reference 

(25)qr = −
k

µ

∂pi,0(r)

∂r

Table 2  Settings of single cortical bone permeability for poroelastic analysis

Permeability k1 k2 k3 k4 k5 k6

Case 1 0.5× 10
−18

0.7× 10
−18

0.9× 10
−18

1.1× 10
−18

1.3× 10
−18

1.5× 10
−18

Case 2 0.5× 10
−18

1.0× 10
−18

1.5× 10
−18

1.5× 10
−18

1.0× 10
−18

0.5× 10
−18

Case 3 1.5× 10
−18

1.0× 10
−18

0.5× 10
−18

0.5× 10
−18

1.0× 10
−18

1.5× 10
−18

Fig. 3  Fluid pressure distribution along the radial displacement r in case 1: a different strain amplitude at 
frequency of loading ω = 21 and b different loading frequency at strain amplitude εz0 = 0.00092
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case to investigate lacunar–canalicular permeability effects on the behaviour of inter-
stitial fluid flow. Here, we considered three cases listed in Table  2. In Case 1, perme-
ability is linearly distributed from the first layer to the last layer. In both Case 2 and Case 
3, lacunar–canalicular permeability has a symmetric distribution about the central axis 
( r = L/2 ). Around the centre of cortical bone, interstitial fluid in Case 2 can move more 
rapidly around the centre of the osteon than fluid close to the osteon surfaces, while 
Case 3 represents the reverse condition.

Results
Effects of stain amplitude and loading frequency on fluid flow pressure

Figures  3a, 4a and 5a show the variations in interstitial fluid pressure distribution for 
different values of strain amplitude as a function of position for the loading frequen-
cies in cases 1, 2 and 3. We can conclude that at this loading frequency, interstitial fluid 
pressure varies in amplitude mostly for different strain amplitudes, and the larger the 
value of the strain amplitude is, the stronger the attractive effect of strain amplitude on 
the interstitial fluid pressure in all three cases. For cases 1 and 3, the results exhibit an 
asymmetrical interstitial fluid pressure distribution about the central axis at r = 100 μm, 
owing to the asymmetrical spatial gradient distribution of permeability. For case 2, the 
spatial gradient of the interstitial fluid pressure in the vicinity of the Haversian canal 
wall is larger than that around the cement line surface, corresponding to the spatial dis-
tribution of permeability. The variation in interstitial fluid pressure p with respect to 

Fig. 4  Fluid pressure distribution as a function of the radial displacement r for case 2: a pressure versus with 
different strain amplitude at loading frequency ω = 21 , b pressure versus with different loading frequency at 
strain amplitude εz0 = 0.00092

Fig. 5  Fluid pressure distribution along the radial displacement r in case 3: a different strain amplitude at 
frequency of loading ω = 21 and b different loading frequency at strain amplitude εz0 = 0.00092
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location r is depicted in Figs. 3b, 4b and 5b with different values of loading frequency 
ω for εz0 = 0.00092 . In all three figures, increasing the loading frequency ω caused the 
interstitial fluid pressure to become larger. As shown in Figs. 3, 4 and 5, interstitial fluid 
pressure amplitudes in the osteon depend more on the strain amplitude than the load-
ing frequency in a physiological loading state. Thus, strain amplitude plays a key role in 
governing poroelastic behaviour.

Effect of strain amplitude on seepage velocity

In bone materials, the seepage velocity is closely associated with the mechanical stim-
uli to osteocytes during the bone remodelling process. We studied the seepage veloc-
ity distribution on strain amplitude εz0 inside the single-osteon model. Figure 6 shows 
the seepage velocity distribution along the r-direction in cases 1–3 at the interstitial 
fluid pressure peak. Figure  6a corresponds to the result for loading strain amplitude 
εz0 = 0.00092 , and Fig. 6b corresponds to the result for εz0 = 0.003 . In the two parts of 
the figures, the results of the seepage velocity in a single osteon with constant perme-
ability, i.e., ki = 1.0 (i = 1, 2, . . . , 6) , are taken as a reference. As shown in Fig. 6a and b, 
the profiles of the two velocities are very similar, but the seepage velocity value for b is 
much larger than that for a, which this signifies that the seepage velocity value is related 
to strain amplitude mostly. We also found that the permeability distribution in each 
lamella of the osteon is an especially important factor that influences seepage velocity. 
The maximum value of seepage velocity appears at both ends of the osteon in all the 
three cases and the reference.

Discussion
Considering a poroelastic hollow multi-layered slab model subjected to cyclic loading in 
the longitudinal direction allowed us to study the effect of lamellar structure character-
istics and material properties on interstitial fluid pressure and seepage velocity distribu-
tion stimuli to osteocytes embedded in an osteon.

The results in this paper have shown that spatial permeability can cause a remarkable 
variation in interstitial fluid and seepage velocity distributions in the osteon. To under-
stand how bone permeability affects cellular activities in a remodelling bone, Rémond 

Fig. 6  Seepage velocity distribution along the r-direction for a longitudinal strain amplitude fixed at 
εz0 = 0.00092 and b longitudinal strain amplitude fixed at εz0 = 0.003 in all three cases with the permeability 
constant ki = 1.0× 10

−18 (i = 1, 2, . . . , 6) as reference
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et al. [7] built a finite element model to explain the effect of spatial gradients of perme-
ability on interstitial fluid flow in cortical bone. They pointed out that spatial gradients of 
permeability do not cause an obvious variation in radial fluid velocity distribution. This is 
opposite to our results, shown in Fig. 6. However, their results on the effect of the spatial 
distribution of permeability on interstitial fluid pressure are almost in exact accordance 
with our work. Such different results may be a consequence of the boundary conditions. 
Rémond et al. assumed that permeability decreases in a linear fashion from the inside 
to the outside radius, while ours assumed that different layers between each other have 
different values of permeability. All lamellae are perfectly bonded to between each other, 
and the same layer is assumed to be a homogeneous and transversely isotropic material. 
Wu et al. [1] showed that the velocity changes litter when permeability exceeds 10−21 m2, 
and Gatti et al. [10] found that the effect of permeability on velocity is limited when the 
permeability is larger than 10−20 m2. The above two references assumed that osteon is 
homogeneous and listed the permeability span from several orders of magnitude (from 
10−23 to 10−21  m2). But in our study, the permeability in different layer was set to be 
on the same order of magnitude, 10−18 m2 to suit the continuum mechanics as much as 
possible. Therefore, fluid velocity is index of interstitial fluid flow stimuli given to osteo-
cytes. Setting an appropriate value of permeability according to the experimental find-
ings can help us better understand the load induced fluid stimuli on osteocytes buried in 
the lacunar–canalicular system.

Seepage velocity is considered one of the characteristics of mechanical stimuli to oste-
ocytes embedded in lacunar–canalicular poro. Strain amplitude and loading frequency 
influence the behaviour of the interstitial fluid. Figure  6 shows that when the strain 
amplitude increases, the seepage velocity and thus the mechanical stimuli to osteocytes 
are close to both ends of the osteon, while the flow around the centre of the osteon’s 
lamellae decreases in all three cases. This study implies that osteocytes buried near both 
ends of the osteon mainly function as mechanosensory cells during the bone remodel-
ling process.

There are several limitations related to the assumptions of this model. First, our atten-
tion in this paper was only focused on the contribution of lacunar–canalicular poros-
ity (PLC) on interstitial fluid transport and the mechanotransduction phenomenon 
in osteons and neglected vascular porosity (PV) and collagen–apatite porosity (PCA). 
However, the results of Cowin’s [21] study suggest that interstitial fluid pressure in the 
vascular pores and collagen–apatite pores is lowest compared to pressure in the lacu-
nar–canalicular pores. Therefore, the assumption of only lacunar–canalicular perme-
ability here seems justified. Second, among the material constants listed in Table  1, 
permeability is the factor that influences interstitial fluid pressure and seepage velocity 
more remarkably than the others [2]. We selected only permeability because it is consid-
ered to be spatially distributed in this model. Finally, we chose the low value of 10−18 m2 
for the PLC as a representative permeability to suit the continuum mechanics [1]. How-
ever, setting the appropriate distribution of permeability can help us to understand the 
mechanisms of physiological activity-induced bone remodelling. This is based on experi-
mental findings. A more sophisticated correlation with the PV, PCA and other material 
constants would be necessary to address this issue in the future and may contribute to 
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a better understanding of the mechanism of mechanotransduction and the interstitial 
fluid effects on the bone remodelling process.

Conclusions
In summary, this analysis provides the distributions of interstitial fluid pressure and 
seepage velocity in cortical bone and emphasizes the importance of lamellar structure 
characteristics and material properties, such as permeability. Our results suggest that 
the amplitude strain of cyclic loading affects pore pressure and fluid velocity remarkably 
more than loading frequency and interstitial fluid pressure is greatly influenced by per-
meability variations.
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