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The retinal prosthetic community has witnessed tremendous technological advances during the
last two decades since the emergence of pioneering work [1]. However, clinical outcomes indicate
it still needs substantial engineering endeavors to achieve near-normal vision. The early stage of
microelectronic retinal prosthetic research seemed quite promising, with the best visual acuity restored
by Argus systems of Second Sight Medical Products being much improved from 20/2520 to 20/1260 for
versions I and II, respectively [2]. Moreover, the Alpha-IMS of the Retinal Implant further enhanced
the best restored acuity to 20/546 with a short time interval [3,4]. Unfortunately, however, this best
record remained unbroken for nearly 10 years until the recent report of PRIMA from Pixium Vision [5].
It is worth noting that even the newly achieved record, 20/460 [5], is still far below the level of legal
blindness. This clearly suggests that, to practically help the visually impaired people, retinal prosthetic
research has far further to go. In particular, appropriate micro/nanofabrication technologies are
critical for the successful microelectronic prostheses. Accordingly, this Special Issue of Micromachines,
entitled “Micro/Nanofabrication for Retinal Implants”, publishes two reviews and five research articles,
which recapitulate stimulation approaches and introduce new electrode structures/materials for retinal
prosthetic research, respectively.

For future innovations in retinal prosthetics, comprehensive understanding of the current status is
essential. In that sense, the review paper of Shim et al. [6] is timely. They have systematically compared
a broad array of existing methodologies for retinal stimulation. As is well summarized with several
tables and figures, microelectronic approaches clearly need much improvement in spatial resolution.
Although optical stimulation methods seem to offer big advantages for high-resolution artificial vision,
Shim et al. concluded that they are somewhat less immature than electrical stimulation methods due
to remaining safety and technical challenges. They also compared other stimulation modalities such
as ultrasonic, magnetic, and chemical stimulation, which are all at the early stage of development
for retinal prosthetic application. Among those new technologies, ultrasound stimulation has been
particularly outlined in the other review paper by Lo et al. [7]. In the thorough review, they summarized
previous representative works which acoustically stimulated not only the retina but also the visual
cortex. Compared to the conventional microelectronic approaches, ultrasonic stimulation may achieve
higher spatial resolution in a non-invasive and safe manner, making it an attractive alternative to
electronic stimulation. However, Lo et al. pointed out that there is a trade-off between stimulation
efficiency and spatial resolution. Additionally, sophisticated transducer arrays are required to restore
complex visual percepts. Moreover, the underlying mechanism of ultrasonic stimulation needs to
be unraveled.
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In microelectronic approaches, stimulating electrodes have long been in two-dimensional planar
shapes which typically touch the epi-/sub-retinal surface. Recently, these planar electrodes have been
challenged by three-dimensional (3D) electrodes in diverse shapes [6,8,9]. In this Special Issue as
well, the two articles by Shire et al. and Seo et al. [10,11] reported 3D pillar electrode structures.
Their 3D microelectrodes are expected to be more efficient in subretinal stimulation by delivering
electric current closer to target retinal neurons. From the system perspective, a more charge-efficient
electrode design is preferred to increase the battery life of portable retinal prosthetics [12]. In addition,
Ha et al. demonstrated that even the substrate can go 3D for a more effective recording of retinal
spiking activities [13]. Given the intrinsic shape of the retina, their hemispherical microelectrode
array may play a role in ex-vivo experiments for not only retinal prosthetic but also fundamental
neurophysiology studies.

For a long time, it has been pointed out that non-uniform gap between epi-retinal electrode
and retinal tissue creates irregular stimulation thresholds [2]. Primarily because the retina has a
spherical shell-like shape, conformal coverage is highly challenging. In addition, the radius of
curvature would be slightly different across individuals. To address this issue, Zhou et al. [14] proposed
a hydrogel/elastomer bilayer and modulated the curvature of bilayers depending on monomer
concentration. Additionally, the use of hydrogel as a substrate may improve long-term reliability of
prostheses since hydrogel is known to be highly biocompatible [14]. Thus, this technology may be
appropriate for wide-field retinal prosthetic electrode array.

As a new stimulation electrode material that may enhance performance of retinal implants, carbon
nanotubes (CNTs) have recently became attractive due to their excellent electrical and mechanical
properties [15]. In our Special Issue, Watterson et al. [16] reported that the biocompatibility and the
mechanical integrity of CNT electrodes can be increased by adding an Al layer underneath an Fe
layer which was used as a catalyst for the CNT growth. Similar efforts would be essential to upgrade
biocompatibility when new materials are considered for retinal prosthetic applications.

In addition to numerous fabrication issues, it is critical for substantially improved artificial
vision to consider neurophysiological and medical aspects of microelectronic retinal implants [17].
For instance, artificial visual percepts are likely to be natural if electrically-evoked neural activities
are close matches of visually-evoked responses arising in healthy retinas [18]. However, given the
remarkable complexity of the retina, it seems extremely challenging to closely mimic physiological
(i.e., natural) spiking patterns in each retinal ganglion cell (RGC). Moreover, electric stimulation is
known to indiscriminately activate diverse types of RGCs. Luckily, recent studies demonstrated
that optimal stimulation parameters (e.g., stimulation frequency, pulse duration, and/or stimulus
amplitude) can more selectively activate certain types of RGCs [19–21], probably making the whole
retinal response more natural. In addition to these software approaches, hardware approaches such as
novel electrode structures/materials may further enhance the selectivity. A more clinical consideration
is that the degenerate retina demonstrated decreased consistency of electrically-evoked responses [22].
Therefore, response reliability may need to be guaranteed by innovative hardware/software strategies.
Lastly, it would be great to test whether newly developed retinal implants elicit complex spiking
responses similar to those arising in natural viewing conditions [23].
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