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A B S T R A C T   

Cerebral Microbleeds (CMBs) are small chronic brain hemorrhages, which have been considered as diagnostic 
indicators for different cerebrovascular diseases including stroke, dysfunction, dementia, and cognitive 
impairment. However, automated detection and identification of CMBs in Magnetic Resonance (MR) images is a 
very challenging task due to their wide distribution throughout the brain, small sizes, and the high degree of 
visual similarity between CMBs and CMB mimics such as calcifications, irons, and veins. In this paper, we 
propose a fully automated two-stage integrated deep learning approach for efficient CMBs detection, which 
combines a regional-based You Only Look Once (YOLO) stage for potential CMBs candidate detection and three- 
dimensional convolutional neural networks (3D-CNN) stage for false positives reduction. Both stages are con
ducted using the 3D contextual information of microbleeds from the MR susceptibility-weighted imaging (SWI) 
and phase images. However, we average the adjacent slices of SWI and complement the phase images inde
pendently and utilize them as a two-channel input for the regional-based YOLO method. This enables YOLO to 
learn more reliable and representative hierarchal features and hence achieve better detection performance. The 
proposed work was independently trained and evaluated using high and low in-plane resolution data, which 
contained 72 subjects with 188 CMBs and 107 subjects with 572 CMBs, respectively. The results in the first stage 
show that the proposed regional-based YOLO efficiently detected the CMBs with an overall sensitivity of 93.62% 
and 78.85% and an average number of false positives per subject (FPavg) of 52.18 and 155.50 throughout the five- 
folds cross-validation for both the high and low in-plane resolution data, respectively. These findings out
performed results by previously utilized techniques such as 3D fast radial symmetry transform, producing fewer 
FPavg and lower computational cost. The 3D-CNN based second stage further improved the detection performance 
by reducing the FPavg to 1.42 and 1.89 for the high and low in-plane resolution data, respectively. The outcomes 
of this work might provide useful guidelines towards applying deep learning algorithms for automatic CMBs 
detection.   

1. Introduction 

Cerebral Microbleeds (CMBs) are small foci of chronic brain hem
orrhages that are generated by structural malformation of the small 
blood vessels and the deposits of blood products. CMBs have a high 
prevalence in several populations, including healthy elderlies (Martinez- 
Ramirez et al., 2014). It is observed that CMBs may cause a high risk of 
future intracranial hemorrhage and can be a biomarker for cerebral 
amyloid angiopathy and cerebral small-vessel diseases. Besides, the 
presence of microbleeds could increase the possible clinical implications 

of ischemic stroke, traumatic brain injury, and Alzheimer’s diseases. 
Indeed, direct pathological observations have also revealed that CMBs 
bring about damage to the surrounding brain tissue, which cause 
dysfunction, dementia, and cognitive impairment (Koennecke, 2006, 
Charidimou et al., 2013). Therefore, accurate differentiation of CMBs 
from different suspicious regions (i.e., CMB mimics) such as calcifica
tions, irons, and veins is important for proper diagnosis and appropriate 
treatment. 

Currently, Computed Tomography (CT) and Magnetic Resonance 
(MR) imaging technologies are the most reliable screening modalities 
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used for CMBs or hemorrhages identification. In clinical practice, MR 
imaging specifically with the modern advances of using gradient-echo 
(GRE) and susceptibility-weighted imaging (SWI) is usually preferred 
over CT imaging due to the ionization radiation effect by CT scanner 
(Chen et al., 2014). According to the theory of brain tissue magnetic 
susceptibility, MR imaging could assist in differentiating between 
paramagnetic hemorrhages and diamagnetic calcifications. Thence, the 
paramagnetic blood products (i.e., CMBs) are highly sensitive to 
screening in SWI, producing small spherical regions with hypointensities 
(Chen et al., 2014). Although SWI improves the identification of CMBs, 
visual inspection by neuroradiologists is still time-consuming, fault- 
prone, laborious, and subjective. Actually, a tradeoff between true 
positive detection rates (TPR) and number of false positives (FPs) has 
been recognized during the CMBs identification process. Therefore, a 
need of the second reader either via other expert or automated 
computer-aided detection (CAD) is demanded for further improving the 
efficiency of microbleeds detection assessment. However, automated 
detection of CMBs is a challenging task due to the large variation among 
the CMBs locations in the brain, their small sizes, and the presence of 
CMB mimics such as calcifications (Charidimou and Werring, 2011; 
Charidimou et al., 2013). 

The past decade has witnessed numerous investigations and attempts 
to solving this challenging task. Early studies have applied low-level 
hand-crafted features to differentiate between CMBs and CMB mimics, 
including size, geometrical information, and voxel intensity. A semi- 
automated detection method based on the statistical thresholding 
technique and support vector machine (SVM) is proposed to distinguish 
the true CMBs from hypointensities within SWI image (Barnes et al., 
2011). Authors in (Bian et al., 2013) developed a semi-automated 
detection method that employed a two-dimensional fast radial symme
try transform (2D-FRST) algorithm on minimum intensity projected SWI 
to detect putative CMBs. Furthermore, the work in (Kuijf et al., 2012) 
applied a 3D version of FRST on 7.0 T MR images to derive 3D 
contextual information of microbleeds for further enhancement of 
detection performance. Their method achieved a sensitivity of 71.2%, 
while the FPs were censored manually. In fact, these studies required a 
user-intervention that manually eliminate the false positives. 

The main shortcoming of the aforementioned conventional methods 
is associated with the limitations of utilizing the engineering features (i. 
e., designed or hand-crafted features). Recently, supervised deep 
learning convolutional neural networks (CNNs) have gained a lot of 
attention in various medical imaging applications, including brain, 
breast, lung, and skin cancers detection (Al-masni et al., 2018b), clas
sification (Al-antari et al., 2018; Masood et al., 2018), segmentation (Al- 
Masni et al., 2018a; Zhao et al., 2018; Chen et al., 2018) as well as in the 
detection of CMBs. This is due to the capability of CNNs in learning and 
extracting robust and effective hierarchy features, which lead to sig
nificant improvement of detection performance. In fact, most of the 
recent works on automatic detection of CMBs were accomplished in a 
two-cascaded framework; detection stage for potential candidate reve
lation and classification or discrimination stage for FPs reduction (Dou 
et al., 2016; Liu et al., Chen et al., 2019; Wang et al., 2019; Hong et al., 
2019). A two-stage CNN for automatic detection of CMBs is proposed 
using SWI images (Dou et al., 2016). They exploited the 3D fully con
volutional network (3D-FCN) followed by 3D-CNN as screening stage 
and discrimination stage, respectively. Their cascaded network achieved 
a sensitivity or TPR of 93.16%, a precision of 44.31%, and an average 
number of FPs per subject (FPavg) of 2.74. More recently, Liu et al. 
developed a 3D-FRST for candidate detection stage using SWI images 
and 3D deep learning residual network (3D-ResNet) for the FPs reduc
tion stage using both SWI and phase images (Liu et al., 2019). This 
framework obtained a sensitivity of 95.80%, a precision of 70.90%, and 
an FPavg of 1.6. Similar work was proposed by Chen et al., which inte
grated 2D-FRST (Bian et al., 2013) and 3D-ResNet using 7.0 T SWI im
ages (Chen et al., 2019). The detection performance of CMBs was 
improved over using only the 2D-FRST and achieved a sensitivity, 

precision, and FPavgof 94.69%, 71.98%, and 11.58, respectively. In 
2019, Wang et al. employed the 2D densely connected neural network 
(2D-DenseNet) for detection of the CMBs (Wang et al., 2019). They 
dispensed the candidate detection stage by using a sliding window over 
the entire MR image and achieved higher performance with overall 
sensitivity of 97.78% and classification accuracy of 97.71%. Similarly, 
Hong et al. adapted the 2D-ResNet-50 for distinguishing the 2D CMBs 
patches retrieved by the sliding window from the non-CMBs, achieving a 
sensitivity of 95.71% and an accuracy of 97.46% (Hong et al., 2019). 
However, utilizing a 2D sliding window strategy over the whole 3D MR 
volume per subject requires high computational burden and large 
execution time. For example, if we consider the detection of lesions from 
a data with a size of 512 × 448 × 72 voxels (as the case of this study), 
over 16 million 2D patches have to be extracted in a pixel-wise manner. 
It is of note that all the above studies have utilized high-resolution im
ages with an in-plane resolution of about 0.45 × 0.45 mm2. Although 
this high-resolution data is preferred for more accurate CMBs detection 
either by expert physicians or computer-aided detection algorithms, it is 
not practically used in routine clinical exams due to lengthened scan 
time. 

In this paper, we present a new two-stage integrated deep learning 
approach for automatic CMBs detection. In the first stage, a regional- 
based CNN method based on You Only Look Once (YOLO) is proposed 
for detecting potential CMBs candidates. Then, a 3D-CNN is designed for 
distinguishing the true CMBs from challenging mimics and hence 
reducing the FPs. Both stages are conducted using the 3D contextual 
information from the MR SWI and phase images. It is noteworthy that 
the proposed deep learning regional-based YOLO method (i.e., candi
date detection stage) outperforms the commonly utilized FRST strategy 
and achieves superior detection performance in terms of sensitivity and 
FPavgwith a lower computational cost. This is due to that YOLO directly 
learns the spatial contextual features of input MR images during the 
training process. 

The contributions of this paper are summarized as follows: 1) we 
develop a completely integrated deep learning method for efficient 
CMBs identification throughout a combination of the regional-based 
YOLO utilized for CMBs candidate detection and 3D-CNN used for FPs 
reduction. 2) For the first time, we address using low in-plane resolution 
MR data besides the high-resolution images with in-plane resolution of 
0.80 × 0.80 mm and 0.50 × 0.50 mm, respectively, which makes the 
proposed work more applicable for practical clinical usage. 3) For the 
first stage, we average the adjacent slices of SWI and complement phase 
images independently and utilize them as a two-channel input for 
regional-based YOLO method. These settings enable YOLO to learn more 
reliable and representative hierarchal features and hence achieve better 
detection performance compared to the using of only one-channel 
image. In the same context, the input of 3D-CNN stage is small 3D 
patches including both original SWI and phase images. 4) We make the 
utilized dataset along with the ground-truth labels available for re
searchers for further improvement and investigations through this link: 
https://github.com/Yonsei-MILab/Cerebral-Microbleeds-Detection. 

The rest of this paper proceeds as follows. Section 2 explains in detail 
the proposed deep learning two-stage approach. Experimental results of 
both stages are drawn in Section 3. Discussion of the findings and 
comparison against the recent studies are presented in Section 4. Finally, 
we present the conclusions in Section 5. 

2. Materials and methods 

2.1. Proposed deep learning architecture 

The proposed deep learning two-stage approach for CMBs detection 
integrates a regional-based YOLO for potential candidate detection and 
a 3D-CNN for discrimination of actual CMBs from putative false posi
tives. The locations information of suspicious regions that may include 
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microbleeds is first determined via the regional-based YOLO, which 
provides multiple bounding boxes associated with confidence scores for 
all sub-regions of input MR images. Then, all these predicted candidates, 
which represent CMBs and CMB mimics, are cropped in small 3D 
patches and passed into the 3D-CNN stage to reduce the FPs. An over
view diagram of the proposed work is illustrated in Fig. 1. 

2.1.1. First stage: regional-based YOLO for candidates detection 
You Only Look Once (YOLO) is one of the recent regional deep 

learning CNN techniques that originated for object detection in the 
images. It is able to simultaneously detect the locations of objects in the 
input images and classify them into different categories. Unlike the 
conventional R-CNN (Girshick et al., 2014) and Fast-RCNN (Girshick, 
2015) that applied classification network to several proposal regions 
within an image and hence required expensive computational cost and 

also be hard to optimize, YOLO proceeds both detection and classifica
tion tasks utilizing a single convolutional network as a regression 
problem, which provides bounding boxes’ coordinates along with their 
class predictions. Thus, YOLO is able to encode the global contextual 
information via looking into the entire input image only once. In fact, 
the regional-based YOLO technique has achieved successes in computer 
vision tasks and widely utilized in medical applications such as lung 
nodules (Sindhu et al., 2018), breast abnormalities (Al-masni et al., 
2018b; Al-Masni et al., 2017), and lymphocytes detection (Rijthoven 
et al., 2018). The following paragraphs summarize the principal con
cepts of YOLO, however, more technical details exist in the original 
papers (Redmon et al., 2016; Redmon and Farhadi, 2017). 

The input composite MR image is divided into S × S non-overlapped 
grid cells, where S = 7 in this work. For each microbleed presented on 
the input image, only one grid cell is responsible to detect it. In the end, 

Fig. 1. Overview diagram of the proposed two-stage deep learning approach.  

M.A. Al-masni et al.                                                                                                                                                                                                                            



NeuroImage: Clinical 28 (2020) 102464

4

each grid cell is represented by B bounding boxes known as anchors 
associated with five components: x,y,width,height,andconfidence. The (x,
y) represent the center location coordinates of CMB in the MR image, 
while the confidence reflects the probability of the presence of micro
bleeds within a certain width and height from the center location. In other 
words, confidence could be defined as an intersection over union (IOU) 
between the predicted boxes by YOLO and the ground-truth labels by 
neuroradiologists. Consider, if there are no microbleeds in a particular 
grid cell, then, the confidence scores of the bounding boxes of that cell 
should be zero. The (x, y) coordinates, width and height are normalized 
relative to the size of the MR image to [0, 1]. 

In this paper, we employed YOLOv2 for more accurate detection of 
CMBs from brain images (Redmon and Farhadi, 2017). This version of 
YOLO adds a variety of ideas to the initial YOLO for better detection 
results and faster performance, including batch normalization, fine- 
tuning with high-resolution network, using anchor boxes, multi-scale 
training, and pass-through layer concatenation. The configuration of 
the utilized regional-based YOLO consists of 23 convolutional layers 
with kernel sizes of 3 × 3 and various feature maps; and five max- 
pooling layers with sizes of 2 × 2 and strides of two. Convolutional 
layer with a kernel size of 1 × 1 is placed between every two sequential 
convolutional layers with a kernel size of 3× 3. This operation is 
inspired by GoogleNet (Inception) model (Szegedy et al., 2015) and 
known as the bottleneck layer. It fastens the computations through 
feature maps reduction. The sub-sampling layers shrink the input MR 
brain image by a factor of 32 (25) from 448 × 448 into 14 × 14 pixels. 
Further, each convolutional layer is followed by batch normalization 
and leaky activation function except the last convolutional layer, which 
is followed by a linear activation function. By taking the advantages of 
residual networks (He et al., 2016), the presented regional-based YOLO 
adds a pass-through layer that concatenates the higher resolution fea
tures from early layers with the low-resolution features. The number of 
features of the last convolutional layer should be computed as follows: 

NumberofFeatures = B× (BoundingBoxComponents+C), (1)  

where B and C refer to the number of anchors and classes, respectively. 
In our case, we have chosen B = 5 to retrieve most possible bounding 
boxes associated to different aspect ratios that may contain microbleeds. 
Since we have trained this stage using only one class (i.e., CMBs), we set 
C = 1. Thus, the last convolutional layer has a number of features equals 
to 30. Finally, a multimodal logistic regression layer, softmax classifier, 
is placed at the top of the network to produce a tensor of predictions, 
containing the detected bounding boxes information and the predicted 
class. During training, regional-based YOLO optimizes the network by 
minimizing the loss function computed as a relation with the ground- 
truth and predicted bounding boxes. The designed loss function is 
computed as an aggregation of four parts related to the coordinates (x,
y), width and height, confidence scores, and classification loss of the 
detected bounding boxes and ground-truth. This work is conducted 
using a batch size of 64, learning rate and decay of 0.0005, and a mo
mentum of 0.9. The complete configuration with source code is available 
online here (Redmon and Farhadi). 

In this paper, we input a composite image consisting of MR SWI and 
the complement of phase images as a two-channel input image to the 
regional-based YOLO. In order to address the 3D contextual information 
of microbleeds, we independently average the adjacent slices of both 
channels. Different combinations of input format to the candidate 
detection stage have been investigated in Section 3.1.1. Moreover, we 
inspect training the proposed regional-based YOLO using high in-plane 
resolution (HR) and low in-plane resolution (LR) data. This investigation 
provides a glimmer of hope towards the possibility of using the LR data 
practically for CMBs detection in actual clinical settings. Related to this, 
more details exist in Section 3.1.2. 

At the end of this stage, we receive the locations of the detected 
bounding boxes from those having high confidence score and then, we 

deliver all these locations, including CMBs and non-CMBs, with an 
integrating of both 3D small patches from SWI and phase images to the 
3D-CNN discrimination stage for further reduction of FPs. 

2.1.2. Second Stage: 3D-CNN for FPs reduction 
As an integration with the potential candidate detection stage, the 

second stage is designed to robustly reveal the positive samples (i.e., 
CMBs) from a large number of negative samples (i.e., CMB mimics) as a 
classification task. The input to this stage is 3D cropped regions around 
the center position of the detected bounding boxes associated with 
higher confidence scores via regional-based YOLO. As successfully 
applied in (Liu et al., 2019), we exploit training the proposed 3D-CNN 
using both SWI and phase images with sizes of 16 × 16 × 16 voxels for 
each. Thus, the 3D-CNN stage is able to learn richer contextual spatial 
representations of CMBs from 3D training samples with sizes of 16×

32× 16voxels. The input size is chosen to be large enough to include the 
microbleeds and limit the computational workload. 

The structure of the proposed 3D-CNN contains five convolutional 
layers with kernel sizes of 3 × 3 × 3 and two max-pooling layers with 
sizes of 2 × 2 × 2 and strides of two. To increase the stability of the 
network and speed up the learning process, each convolutional layer is 
appended by batch normalization and rectified linear unit (ReLU) acti
vation function. Then, the extracted features from these convolutional 
layers are flattened and passed into three fully-connected (FC) layers. 
The number of units or neurons of the last FC layer is assigned to the 
number of classes in our task, which represents the CMBs and Non- 
CMBs. Additionally, one dropout layer is utilized after the first FC 
layer to regularize and prevent networks from overfitting. This network 
is trained using learning rate, batch size, and number of epochs equals to 
0.001, 50, and 200. Structural details are presented in Fig. 1. It is 
noteworthy that to avoid the overfitting that may occur during training 
the high imbalanced training samples at this stage, a non-complicated 
network should be utilized besides the using of dropout, weighted- 
class, and data augmentation strategies. Hence, we implemented a 
non-complicated 3D-CNN to accomplish the second stage instead of 
adapting the well-known ResNet or DenseNet. As overall, the proposed 
3D-CNN contains five convolutional layers and three FC layers with 
1,355,450 trainable parameters. 

2.2. Dataset 

2.2.1. Original dataset 
To evaluate the proposed two-stage deep learning approach for 

CMBs detection, we have collected a set of MR brain volumes at Gachon 
University Gil Medical Center. Human data acquisition was performed 
in accordance with the relevant regulations and guidelines. Written 
informed consent was obtained from all participants and the study was 
approved by Institutional Review Board of Gachon University Gil 
Medical Center.The dataset used in this work existed of two in-plane 
resolutions; high-resolution (HR) with 0.50 × 0.50 mm2 and low- 
resolution (LR) with 0.80 × 0.80 mm2. Data was acquired using 3.0 T 
Verio and Skyra Siemens MRI scanners (Siemens Healthineers, Ger
many). For HR data, a total of 72 subjects including 188 microbleeds 
were collected with the following imaging parameters: repetition time 
(TR) of 27 ms, echo time (TE) of 20 ms, flip angle (FA) of 15◦, pixel 
bandwidth (BW) of 120 Hz/pixel, image matrix size of 512 × 448 × 72 
voxels, slice thickness of 2 mm, field of view (FOV) of 256 × 224mm2, 
and scan time of 4.45 min. In addition, a total of 107 subjects including 
572 microbleeds were acquired for LR data with the following param
eters: TR of 40, TE of 13.7, FA of 15◦, BW of 120 Hz/pixel, image matrix 
size of 288 × 252 × 72 voxels, slice thickness of 2 mm, FOV of 201 × 229 
mm2, and scan time of 1.62 min. 

To properly train and test the proposed deep learning detection 
framework, the dataset was split, on the subject-level instead of image- 
level that contains microbleeds, into five-folds. Table 1 summarizes the 
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distribution of the utilized dataset throughout five-folds. This division is 
utilized for the generation of the training, validation, and testing sets as 
described in Section 2.4. It is of note that this division was applied on 
both the candidate detection stage via regional-based YOLO and the FPs 
reduction stage via 3D-CNN. 

2.2.2. Ground-truth labeling 
Expert neuroradiologist with 24 years of experience and a neurolo

gist with 15 years of experience reviewed the images together, where the 
gold standard was obtained based on the consensus of all the raters. The 
gold standard labeling of CMBs was performed by expert neuroradiol
ogists using both the pre-processed SWI and phase images. This process 
was accomplished using our in-house software developed by Matlab 
2019a (MathWorks Inc., Natick, MA, USA). The neuroradiologists were 
able to simultaneously examine the axial plane of the SWI and phase 

brain images of the same subject. Once the microbleeds were assigned, 
the locations information with the slice numbers were derived. This 
manual annotation was performed by determining the central position 
of microbleeds in MR image. Then, we adjusted a small bounding box 
around each labeled microbleeds with a size of 20 × 20 pixels as a 
requirement of the first stage YOLO detector. The labeling was per
formed according to the criteria proposed by (Greenberg et al., 2009). 
CMB were defined as =<10 mm in diameter and was discriminated from 
calcification using phase images. 

2.3. Pre-Processing and augmentation 

Image pre-processing is a prerequisite step in most MR applications. 
In this work, data normalization, brain region extraction, and SWI 
generation were applied. In order to increase the consistency among the 
input intensities, all input slices of each subject were normalized in 
range 0 to 1 as follows: 

Inorm =
Ivalue − Imax
Imax − Imin

, (2)  

where Ivalue, Inorm, Imin, and Imax refer to the original, normalized, mini
mum, and maximum pixel intensities. Moreover, we applied the fast, 
robust, and automated brain extraction tool (BET) on the MR magnitude 
images to segment the head into brain and non-brain (Smith, 2002). The 
generated binary mask of brain tissue via BET is then applied to the MR 
SWI and phase images. This process enables computer-aided detection 

Table 1 
Distribution of dataset throughout five-folds.  

Fold HR Data LR Data Total 

Subjects CMBs Subjects CMBs Subjects CMBs 

Fold 1 14 36 21 143 35 179 
Fold 2 14 28 21 101 35 129 
Fold 3 14 40 21 68 35 108 
Fold 4 14 36 21 134 35 170 
Fold 5 16 48 23 126 39 174 
Total 72 188 107 572 179 760  

Fig. 2. Examples of brain tissue extraction via BET on both high and low in-plane resolution data appeared on first and second rows, respectively. Every sample is 
extracted from a different subject. White contours indicate the boundaries of brain mask generated by BET, while small green boxes refer to the locations of 
microbleeds assigned by radiologists. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

M.A. Al-masni et al.                                                                                                                                                                                                                            



NeuroImage: Clinical 28 (2020) 102464

6

algorithms to avoid getting more incorrect candidates of CMBs located 
outer the brain tissue region (i.e., over the skull region). Fig. 2 shows 
some examples of the segmented brain tissue on both HR and LR MR SWI 
images. For SWI generation, magnitude and unwrapped phase images 
are required. The process starts by generating a phase mask from the 
unwrapped phase image, which linearly scales negative phase values (i. 
e., amplitudes) between zero and unity. Then, the final SWI is produced 
by multiplying the original magnitude image few times with the corre
sponding phase mask (Haacke et al., 2004). Furthermore, for the input 
of the regional-based YOLO stage, HR images were resized into 448 ×
448 pixels by eliminating 64 zero rows from the top and bottom of the 
HR data, while the LR images were scaled into 448 × 448 pixels using 
bilinear interpolation. Regarding the 3D-CNN stage, the input of 16 ×
16 × 16 voxels from each SWI and phase images was captured from the 
original data. 

For appropriate training of deep learning networks and overcoming 
the issue of insufficient training data, we applied the augmentation 
process to enlarge the training samples in both proposed stages. This 
process included rotation operation of input images that contains CMBs 
four times with angles of 0◦, 90◦, 180◦, and 270◦. In addition, we applied 
horizontal and vertical flipping to the rotated images with angles of 
0◦ and 270◦. Thus, a total of eight 2D images were generated for each 
training data in the regional-based YOLO stage. These augmentation 
processes were also applied to the 3D input data of the 3D-CNN stage 
and repeated three times along with the three directions (i.e., axial, 
sagittal, and coronal). Therefore, 24 3D samples were generated for each 
training data in the 3D-CNN stage. 

2.4. Training and testing 

In this study, the proposed deep learning two-stage approach pro
ceeded using a k-fold cross-validation (k = 5) to increase the reliability 
and effectiveness of the proposed work and reduce the bias error. To this 
end, our data was randomly split into five subsets based on the subject- 
level with almost equal number of subjects as presented in Table 1. 
Then, we consider one subset as a testing set, while the remaining four 
subsets were utilized as training and validation sets. This process is 
repeated k times to involve all subsets as testing. For each k-fold, the 
proposed networks of the candidate detection stage and FPs reduction 
stage should be trained, validated, and tested using separate sets. The 
training set is utilized to train the networks with different hyper- 
parameters. However, the network optimization and final model eval
uation were independently performed using the validation and testing 
sets, respectively. Since the proposed work is kind of supervised learning 
which only requires the ground-truth labeling at the training time, it can 
be considered as a fully automated approach. However, at testing time, 
the input data is only passed into networks to obtain predictions without 
the need of ground-truth. Nevertheless, we utilized the ground-truth of 
testing data for overall performance evaluation. 

The system implementation was performed on a personal computer 
equipped with a GPU of NVIDIA GeForce GTX 1080 Ti. The regional- 
based YOLO stage was conducted using C++ programming language 
on the Darknet framework, while the 3D-CNN stage was implemented 
with Python programming language using Keras and Tensorflow 
backend. 

2.5. Evaluation metrics 

To quantitatively evaluate the capability of the proposed deep 
learning two-stage approach for CMBs detection, we computed the 
following evaluation indices. Sensitivity, also known as the true positive 
rate (TPR), computes the ratio of CMBs that are correctly detected. 
Precision, also known as the positive predictive value (PPV), indicates 
the proportion of the accurately detected CMBs from all cases that 
detected as CMBs (i.e., from all positive detected cases). F1-score is 
utilized since it is preferred when dealing with imbalanced data. It is 

defined as a harmonic mean between PPV and TPR. We also used the 
average number of false positives per subjects (FPavg). All these metrics 
could be defined mathematically as follows. 

Sensitivity(TPR) =
TP

TP+ FN
, (3)  

Precision(PPV) =
TP

TP+ FP
, (4)  

F1 − score = 2 ×
TPR× PPV
TPR+ PPV

=
2 × TP

(2 × TP) + FN + FP
, (5)  

FPavg =
FP
N
, (6)  

where TP and FN are the actual positive cases named as true positive and 
false negative; FP and TN are the actual negative cases defined as false 
positive and true negative, respectively. N refers to the number of sub
jects in the testing set. The detection performance of the first stage YOLO 
detector was computed as the overlap between the automatically 
resulted bounding boxes via YOLO and the manually ground-truth 
annotation boxes with intersection over union (IOU) of greater than 
80%. Since the size of boxes would affect the metrics, we determined all 
the ground-truth boxes by 20 × 20 pixels. Thus, when YOLO was trained 
using this size information, it produced a similar box size. 

3. Experimental results 

3.1. Experimental setup 

Several attempts and investigations for selecting proper input along 
with training the regional-based YOLO network using different resolu
tion data were tested. All the experiments in the following subsections 
were evaluated using the first fold test on the CMBs candidate detection 
stage with a confidence score equals to 0.01. The reason of performing 
the experiments using only the first fold test is to check how efficient are 
the designed experiments. After the verification of different setups, the 
best scenario was utilized to test and analyze the results over all the five 
folds. All the obtained results throughout these experiments were ach
ieved with tuned deep learning hyper-parameters such as learning rate, 
batch size, and number of epochs. All these hyper-parameters have been 
fixed for all k-folds. In this experiment, we generated different input 
combinations from the original magnitude, high-pass filtered phase and 
SWI images as shown in Fig. 3 (a), (b), and (c), respectively. The use of 
different images was motivated by the fact that clinical radiologists also 
use these various images when diagnosing CMB (e.g. to differentiate 
between CMB and calcification). 

3.1.1. Experiments on proper composite input data 
In this section, all experiments were trained and tested using the HR 

data. 

3.1.1.1. One-Channel: SWI image. We first examined the performance of 
the regional-based YOLO using an MR input image containing only 
single channel of the HR SWI image. The input image I can be repre
sented as follows. 

I[s]ch = SWI
[s], ch = 1 (7)  

where ch is the channel number of input image and s refers to the slice 
number that involved microbleeds. SWI images are known to display 
blood products such as microbleeds with high sensitivity when 
screening. Fig. 3 (d) shows the line profile of the SWI, phase and 
magnitude images over a CMB which partially explains performance of 
the different combinations. Thus, training network using SWI images 
provided good CMBs detection sensitivity of 91.67% and FPavg of 23.57 
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as presented in Table 2. 

3.1.1.2. Two-Channels: SWI and phase images. Here, we investigated the 
significance of using phase image besides the SWI. The input image I has 
two channels, including SWI and phase images as follows. 

I[s]ch =
{
SWI[s], ch = 1
Phase[s], ch = 2

(8) 

The detection performance using this input composite image (i.e., 
SWI and Phase) was improved in term of sensitivity to 97.22% compared 
to the case of using only one-channel of SWI. However, the overall FPavg 

was declined generating more false positives of 275.50 as shown in 
Table 2. This is due to that the overall visualization of microbleeds can 
be portrayed as being blurred when the input integrates the low in
tensities from SWI (red line in Fig. 3 (d)) and high intensities from phase 
image (blue line in Fig. 3 (d)) in regions containing microbleeds. If the 
input image consists of multi-channel, the filter at the first convolutional 
layer should have the same number of channels. Then, convolution is 
performed as a pixel-wise dot product for all channels producing a single 
channel output. This aggregation could be the reason behind extracting 
insufficient features in the case of using SWI and phase images. More 
specifically, the contrast the composite input of SWI and phase at the 
microbleeds regions is deteriorated due to that the convolution process 
on an image of two-channels with opposite intensities (i.e., hypointen
sity on SWI and hyperintensity on phase image) may accumulate them, 
leading to obtain a larger number of FPs. Another explanation could be 
due to that the optimization algorithm gets stuck in some local 
minimum. 

3.1.1.3. Three-Channels: SWI, Phase, and magnitude images. Here, three- 
channels input image is composed as follows. 

I[s]ch =

⎧
⎨

⎩

SWI[s], ch = 1
Phase[s], ch = 2

Magnitude[s], ch = 3
(9) 

As presented in Table 2, the detection performance of the regional- 
based YOLO decreased with a sensitivity of 88.89%. Even though this 

composite input enhanced the FPavg measure with 69.50 FPs per subject 
compared to the 275.50 FPs that were generated in the previous trial. As 
shown in Fig. 3 (d), the information generated from the magnitude 
image is not beneficial since similar and clearer data could be exploited 
from SWI images. The tradeoff between sensitivity and FPavg motivates 
to think of generating more effective composite input without the need 
of adding the magnitude information. 

3.1.1.4. Two-Channels: SWI and complement phase images. To overcome 
the problem of 3.1.1.2 due to the integration of hypointensities from 
SWI and hyperintensities from phase images in the microbleeds loca
tions, here usage of the complement phase image along with the original 
SWI image is described in the following expression. 

I[s]ch =
{

SWI[s], ch = 1
1 − Phase[s], ch = 2

(10) 

It is of note that both SWI and phase images were normalized in the 
range of 0 to 1. This composite input enables the candidate detection 
network to be trained more effectively since it becomes more intelli
gible. The detection performance was improved in terms of sensitivity 
and FPavg with 94.44% and 56.44, respectively. 

3.1.1.5. Two-Channels: Average of adjacent slices of SWI and complement 
phase images. Finally, we examined using 3D contextual information by 
averaging the adjacent slices of SWI and complement phase images as 
follows. 

I[s]ch =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑k=s+1

k=s− 1
SWI[k]

3
, ch = 1

∑k=s+1

k=s− 1
1 − Phase[k]

3
, ch = 2

(11) 

This combination input enables using addition details of microbleeds 
from adjacent slices. The results given in Table 2 shows the detection of 
CMBs was achieved with a sensitivity of 100% and FPavg of 53.71 cases. 
Because of this increased sensitivity, the following studies were 

Fig. 3. Criteria of selecting proper input data throughout various combinations of (a) magnitude, (b) phase, and (c) SWI images. (d) Horizontal profile lines of the 
original magnitude, phase, and SWI images generated from black boxes. 

Table 2 
Performance of regional-based YOLO on different HR inputs throughout first fold test.  

Number of Channels Input Image Complement* Averaging of Adjacent Slices Sensitivity (%) FPavg  

One-Channel SWI × × 91.67  23.57 
Two-Channels SWI and Phase × × 97.22  275.50 
Three-Channels SWI, Phase, and Magnitude × × 88.89  69.50 
Two-Channels SWI and Phase ✓ × 94.44  56.44 
Two-Channels SWI and Phase ✓ ✓  100.00  53.71  

* Complement is applied to the phase image. 
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implemented using this input channels. 

3.1.2. Experiments on different In-Plane resolutions 

3.1.2.1. HR data. In this section, we trained and tested the effect of 
training the proposed regional-based YOLO using only the HR data (i.e., 
0.5 × 0.5 mm2). As presented in Table 3, the detection performance 
shows that using the HR data plays a critical role in obtaining higher true 
positive cases with a sensitivity of 100% as well as fewer number of false 
positives with a FPavg of 53.71 cases throughout the first fold test. 

3.1.2.2. LR data. Here, we investigated the impact of training and 
testing the candidate detection stage using only the LR data (i.e., 0.80 ×
0.80 mm2). As expected, the regional-based YOLO network encounters 
difficulty to learn more representative features of microbleeds from the 
LR data, which causes a drop of the detection performance, achieving a 
sensitivity of 83.22%. Moreover, the number of false positives was 
dramatically increased to 683 candidates per subject (Table 3). This 
decline of performance is due to that most of the CMBs in the LR data are 
not clearly appeared and also considered as challenging cases for 
radiologists. 

3.1.2.3. Combination of HR and LR data. In this experiment, we trained 
and tested the proposed detection stage using a dataset contains both HR 
and LR data. When training the proposed candidate detection stage 
using the combination of high and low in-resolution data, the overall 
detection performance of the regional-based YOLO throughout the first 
fold test achieves a sensitivity of 91.62% and a FPavg of 479.17 as shown 
in Table 3. These results are extremely close to the weighted average 
performance of HR and LR cases. Accordingly, training the deep learning 
networks using these combinations of different in-plane resolutions af
fects directly the overall performance and specifically on the case of 
using HR data, which leads to generating a high number of false posi
tives. Therefore, this type of heterogeneous training using different in- 
plane resolution data is not preferred. 

3.2. Performance of CMBs detection via regional-based YOLO (1st Stage) 

This section analyzes the performance of CMBs candidate detection 
via the proposed regional-based YOLO technique. As aforementioned, 
the potential candidates of microbleeds generated by YOLO are associ
ated with confidence scores. However, determining proper threshold of 
the confidence score is a critical issue since it directly affects the 
detection performance. The higher the confidence, the lower detection 
sensitivity of microbleeds and the lower number of potential candidates. 
The effectiveness of the confidence score threshold on both sensitivity 
and FPavg throughout all five-folds test is presented in Fig. 4 (a), (b), and 
(c) for the HR data and Fig. 4 (d), (e), and (f) for the LR data. Larger 
number of bounding boxes candidates are generated in the case of 
applying small confidence score. As a result, different threshold values 
of 0.01 and 0.05 have been carefully chosen for the HR and LR data, 
respectively. These threshold values provide reasonable tradeoff be
tween false positive candidates and detectable CMBs. Even though 
applying a single threshold could achieve good performance and provide 
generalization throughout all the five-folds, selecting the threshold 
based on looking at its effect on the performance in the test set may 

cause overfitting. It is true that with these thresholds we achieved not 
very high sensitivity but at the same time not too many FPavg. This is 
because we have a limited size of labeled data, including only 188 CMBs 
in the case of HR data. Then, if we lower the threshold, a large number of 
FPs will be generated causing very high imbalanced training samples (i. 
e., CMBs vs Non-CMBs), leading to cause overfitting problem during the 
network training. 

For quantitative assessment, we present the overall candidate 
detection performance of the proposed regional-based YOLO technique 
throughout all five-folds test in Table 4. For HR data, the proposed 
candidate detection network achieves overall sensitivity and FPavg of 
93.62% and 52.18, respectively. It accurately detects 176 out of 188 
microbleeds, while it only loses 12 microbleeds. However, for LR data, 
the overall detection performance was decreased with sensitivity and 
FPavg of 78.85% and 155.5, respectively. The true positives of 451 out of 
472 and false negatives of 121 microbleeds were derived. Fig. 5 shows 
some examples of the true positives, false positives, and false negatives 
that are generated by the regional-based YOLO for both resolutions. It is 
obvious from these examples that the number of false positive candi
dates (i.e., CMBs mimics) in the LR data is bigger compared to the false 
positives in the HR data. 

3.3. Performance of FPs reduction via 3D-CNN (2nd Stage) 

The main aim of the 3D-CNN stage is to reduce the large number of 
false positive candidates that were generated through the candidate 
detection stage and further single out CMBs from the challenging ones. It 
is of note that the inputs to this stage represent all the generated po
tential candidates from the regional-based YOLO technique. Thus, the 
false negatives cases cannot be included in the FPs reduction stage. The 
proposed FPs reduction stage via the 3D-CNN is conducted as a classi
fication task, in which the proposed network learns robust features from 
the combined 3D SWI and phase patches and further distinguishes them 
into CMBs and non-CMBs. Since the number of true CMBs and non-CMBs 
candidates are not equal, we have applied the weighted-class strategy 
during training of our 3D-CNN classifier in order to address the imbal
anced issue of training data. 

For the quantitative results of the proposed 3D-CNN, Table 5 and 
Table 6 present the classification performance throughout all five-folds 
test for high and low in-plane resolutions, respectively. It is shown that 
the proposed network has the capability to differentiate between CMBs 
and non-CMBs candidates with high classification achievement. We 
obtain overall sensitivity of 94.32% and 91.80% and a precision of 
61.94% and 67.21% for the high and low in-plane resolutions, respec
tively. The disparity of results between the high and low in-plane reso
lutions is due to the variations of the number of input data and their 
image quality. Regarding the average number of false positives per 
subject (FPavg), we achieved promising results with 1.42 for the HR and 
1.89 for the LR data. 

3.4. Further testing on normal healthy subjects 

In this section, we performed further analysis by testing our proposed 
deep learning two-stage networks using normal healthy subjects. To this 
end, we have collected additional 22 MR brain volumes from the same 
medical healthcare center in which fourteen subjects represent HR data, 
while the rest are in the LR settings. It is of note that we utilized these 
data as further testing using the best network’s weights of the regional- 
based YOLO and 3D-CNN stages independently for both HR and LR data. 
In other words, for the candidate detection stage via regional-based 
YOLO, we tested the HR and LR normal healthy subjects using the 
final trained network weights of the first and fifth folds, respectively, 
since they resulted in the highest sensitivities as reported in Table 6. 
Similarly, we tested the FPs reduction stage via 3D-CNN using the final 
weights from the second and fifth folds for HR and LR data, respectively 

Table 3 
Performance of regional-based YOLO on various in-plane resolution throughout 
the first fold test.  

In-Plane Resolution Sensitivity (%) FPavg  

High-Resolution (HR)  100.00  53.71 
Low-Resolution (LR)  83.22  683.0 
Combinations of HR and LR  91.62  479.17  
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(see Table 5 and Table 6). The results of this testing are presented in 
Table 7. It is shown that the proposed two-stage networks could only 
retrieve FPavg of 0.50 and 2.14 for both HR and LR data, respectively. 
Superior performances were achieved for both HR and LR data in term of 
specificity. All the provided scans of healthy subjects were checked by 
neuroradiologists and also all the FPavg were confirmed as Non-CMBs. As 
we are dealing with healthy subjects (i.e., only negative samples), it is 
impossible to compute other measurements such as sensitivity and 
precision, which are directly in relation to the true positive samples (i.e., 
microbleeds). Hence, we present the specificity which is a true negative 
rate. Fig. 6 (a) and (b) illustrate some CMBs candidates, which are 
generated by the regional-based YOLO for HR and LR data, respectively. 
The second row in this figure shows some remaining candidates (i.e., 
falsely detected as microbleeds) after the FPs reduction stage via 3D- 
CNN. 

4. Discussion 

Many investigations and efforts have been conducted in recent years 

for automatic detection of intracranial diseases such as hemorrhage and 
calcification. For example, the reliable differentiation between cerebral 
microbleeds from calcifications is crucial for accurate diagnosis and 
hence appropriate treatment. Currently, generating the SWI from the 
MR magnitude and phase images is essential for better visualization of 
cerebral veins without the need for applying the contrast agents. This is 
due to that SWI is highly sensitive to the local tissue susceptibility and 
paramagnetic blood products such as microbleeds. In this study, we 
developed a new two cascaded deep learning approach for CMBs 
detection from the 3D-MR images. The first candidate detection stage is 
performed using the regional-based YOLO technique, which generates 
potential CMBs candidates. The second stage via 3D-CNN is developed 
as an integration with the potential candidate detection stage, where its 
main role is to rigorously differentiate between true positive candidates 
(i.e., CMBs) and negative candidates (i.e., CMB mimics). In fact, a two- 
stage process is usually inevitable to fulfill the challenging task of 
automated CMBs detection from MR brain images. This is due to that 
CMBs have small sizes, a high degree of visual similarity with other CMB 
mimics, as well as their wide distribution throughout the brain. Our 

Fig. 4. Impact of the confidence score threshold on the detection performance of the proposed regional-based YOLO throughout all five-folds test. (a) and (d) 
Sensitivity versus threshold. (b) and (e) FPavg versus threshold. (c) and (f) Sensitivity versus FPavg . The top row is for the HR data, while the second row is for the 
LR data. 

Table 4 
Overall candidate detection performance via the regional-based YOLO throughout all five-folds test for both HR and LR data.  

Fold Test High in-plane Resolution Low in-plane Resolution 

TPs FNs Sensitivity (%) FPavg  TPs FNs Sensitivity (%) FPavg  

1st Fold* 36 0  100.00  53.71 99 44  69.23  157.00 
2nd Fold 27 1  96.43  41.14 89 12  88.12  171.00 
3rd Fold 34 6  85.00  64.35 45 23  66.18  133.29 
4th Fold 34 2  94.44  51.07 104 30  77.61  148.67 
5th Fold 45 3  93.75  50.80 114 12  90.48  182.35 
Total 176 12  93.62  52.18 451 121  78.85  155.50  

* Since the first fold test is utilized in the experimental setup, the results of this fold test may get biased. 
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Fig. 5. Examples of the detected suspicious regions by the proposed regional-based YOLO (yellow boxes) for HR (top three rows) and LR (bottom three rows), 
however, first, second, and third rows in each indicate the TPs, FPs, and FNs cases, respectively. Green boxes refer to labeled ground-truth microbleeds by radi
ologists. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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proposed framework was trained using 3D contextual spatial informa
tion from both SWI and phase images. The proper choice of the input 
data is critical and may lead the proposed network to provide superior 
detection performance. As presented in section 3.1.1, we investigated 
five different combinations of inputs. We found that the information 
from both SWI and phase images facilitated the regional-based YOLO 
network to learn appropriate representations of microbleeds. However, 
the information from the magnitude images did not add further details. 
Similar results have been presented in the work of Liu et al. (Liu et al., 
2019). Also, using the complement of phase besides the original SWI 
images enable the detection network to obtain better detection of CMBs. 
Moreover, the detection stage via the regional-based YOLO achieved 
superior detection performance of CMBs and less number of FPs when it 
was trained using SWI and complement phase images with additional 
details of microbleeds from the adjacent slices as shown in Table 2. It is 
noteworthy that we applied the brain extraction tool (BET) as a pre
processing step to all input images. This process enables our proposed 
deep learning regional-based YOLO to only detect potential candidates 
of CMBs from the brain tissue region and further avoid getting more 
incorrect candidates existed over the skull region. 

Regarding the in-plane resolution data, it is of note that most of the 
recent previous works on CMBs detection were performed using HR data 
of approximately 0.45 × 0.45 mm2. In this paper, we performed further 

analyses to show the effect of training the proposed deep learning 
regional-based YOLO using different in-plane resolutions; HR with 0.50 
× 0.50 mm2 and LR with 0.80 × 0.80 mm2 as explained in section 3.1.2. 
The results in Table 3 show how the detection stage could provide higher 
achievements on microbleeds detection when the network was trained 
with HR data compared to LR data. Besides, the effect of training the 
detection stage network using the combined data from both HR and LR 
data is also evaluated. In this case, the proposed deep learning regional- 
based YOLO learned features from both in-plane resolutions (i.e., good 
representations from HR and plain features from LR), leading to 
obtaining moderate detection sensitivity and a large number of FPavg. To 
preserve higher detection performance while keeping not too many FPs 
per subject, it is better to train the deep learning network separately 
using the same in-plane resolution data every time. 

In this paper, we collected our data from two different scanners (i.e., 
3.0 T Verio and Skyra Siemens MRI). We analyzed the performance of 
the YOLO detector throughout all test folds by visualizing the perfor
mance distribution per subject for each scanner. This analysis provides 
an intuitive overview of the results in terms of sensitivity and FPavg. 
Fig. 7 shows how the performances of different scanners that have 
similar in-plane resolution are very close to each other, which could 
reflect minimal differences in their noise characteristics. Moreover, we 
performed the generalization study between scanners for both LR and 
HR data. In this investigation, we trained the 3D-CNN using candidates 
from Verio scanner (i.e., 47 subjects for HR and 74 subjects for LR), 
while we tested the network using the Skyra data (i.e., 25 subjects for HR 
and 33 subjects for LR). This investigation provides general observation 
on how the deep learning methods could be generalized when they are 
tested on different data acquired from other scanners. The generaliza
tion performances of the 3D-CNN for both HR and LR are presented in 
Table 8. As expected, the results show that performance is inferior due to 
the reduced amount of training data. However, the results show a po
tential ability for generalization. 

In spite of that splitting the data based on scanner type, in which 
training and testing are performed using different sets from different 
scanners, could provide a generalization performance, this kind of 
splitting will reduce the amount of training data and may cause an 
overfitting problem on the built network, leading to provide untrusted 
detection system. Due to this, in this paper we merged all data with the 
same in-plane resolution from both scanners to generate a bigger 
amount of training data. The identified imaging parameters that were 
utilized in this study for data acquisition could be heterogeneous with 
other scanners. Despite this, we think that acquiring MRI data with a 
comparable spatial resolution is sufficient to test and validate our pro
posed work on microbleeds detection. 

The limited size of labeled training data is a major obstacle that 
encounters the deep learning approaches in biomedical clinical appli
cations. To address this issue, we have augmented the training data eight 
times in the CMBs candidate detection stage via YOLO using different 
rotation and flipping operations. For the FPs reduction stage via 3D- 
CNN, the input 3D patches were also enlarged 24 times where the 
augmentation process was repeated three times along with the three 
views (i.e., axial, sagittal, and coronal). Further, we have utilized 5-folds 
cross-validation throughout the proposed deep learning two-stage 
approach. This scheme increases the reliability of the proposed frame
work since all the MR brain images for all subjects were evaluated and 
tested. In contrast, the previous studies on the CMBs detection did not 
utilize this procedure, however, they allocated a fixed small portion of 
their data as a test set, while the remaining data was utilized for training. 
The only limitation of applying the k-fold cross-validation strategy is 
that it requires to train and evaluate the proposed network k times. 
Hence, in this work, we have trained the proposed two-stage approach 
five times to fulfill the tasks of CMBs candidate detection and FPs 
reduction separately for both HR and LR data. 

Furthermore, we present a comparison with the latest relevant works 

Table 5 
Evaluation performance of the FPs reduction stage via the proposed 3D-CNN for 
the HR data.  

Fold 
Test 

TPs FNs Sensitivity 
(%) 

Precision 
(%) 

F1-score 
(%) 

FPavg  

1st Fold 34 2  94.44  75.56  83.95  0.79 
2nd 

Fold 
27 0  100.00  52.94  69.23  1.71 

3rd 
Fold 

31 3  91.18  91.18  91.18  0.21 

4th 
Fold 

32 2  94.12  47.06  62.75  2.57 

5th 
Fold 

42 3  93.33  60.00  73.04  1.75 

Total 166 10  94.32  61.94  74.77  1.42  

Table 6 
Evaluation performance of the FPs reduction stage via the proposed 3D-CNN for 
the LR data.  

Fold 
Test 

TPs FNs Sensitivity 
(%) 

Precision 
(%) 

F1-score 
(%) 

FPavg  

1st Fold 91 8  91.92  73.98  81.98  1.52 
2nd 

Fold 
82 7  92.13  77.36  84.10  1.14 

3rd 
Fold 

41 4  91.11  51.90  66.13  1.81 

4th 
Fold 

93 11  89.42  64.14  74.70  2.48 

5th 
Fold 

107 7  93.86  65.64  77.26  2.43 

Total 414 37  91.80  67.21  77.60  1.89  

Table 7 
Performances of the proposed two-stage networks on normal healthy subjects.  

Data Candidate Detection Stage via 
Regional-based YOLO 

FPs Reduction Stage 
via 3D-CNN 

FPavg  Specificity 
(%) 

FPavg  

HR (14 
Subjects)  

54.29  99.08  0.50 

LR (8 
Subjects)  

202.25  98.15  2.14  
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in the literature as reported in Table 9. As presented, most of the pre
vious works adapted the fast radial symmetry transform (FRST) as a 
candidate detection stage. The FRST is a method that uses the local 
radial symmetry to single out spherical regions existed in the brain 

images. It is observed that our proposed deep learning regional-based 
YOLO outperforms the most commonly utilized FRST method on the 
detection of the CMBs and achieves high sensitivity and a limited 
number of false positives per subject. Since the utilized datasets among 
all previous methods are not the same, we provide direct comparison 
through implementing the 3D version of FRST and applied it to our 
dataset. Here, we also implemented 3D-FRST to check its ability on 
detecting CMB potential candidates against the proposed YOLO detec
tor. The 3D-FRST is more sensitive, but at the cost of generating a lot of 
FPs per subject. The proposed regional-based YOLO generates a limited 
number of FPavg of 155.5 and 52.18 compared to a large number of 
candidates generated by 3D-FRST with FPavg of 946.1 and 497.4 for LR 
and HR data, respectively. Then, for the second stage, we trained and 
tested the 3D-CNN on the CMB candidates generated by the 3D-FRST 

(a) (b)
Fig. 6. Examples of some CMBs candidates via the regional-based YOLO for normal healthy subjects: (a) for HR data and (b) for LR data. The second row indicates 
the remaining FPs after the FPs reduction via 3D-CNN. 

(a)

(92.22%) (88.25%) (94.36%) (74.66%)

(b)

(59.36) (48.36)

(168.58) (149.66)

Fig. 7. Distribution performances per subject for the YOLO detector throughout all fold tests for each scanner and in-plane resolution in terms of (a) sensitivity and 
(b) FPavg . The highlighted measurements in the parenthesis represent the overall average performances per scanner within a particular in-plane resolution in terms of 
(a) sensitivity and (b) FPavg . The number of data collected using Skyra is 25 HR and 33 LR scans, while 47 HR and 74 LR scans were collected using Verio scanner. 

Table 8 
Generalization performances of 3D-CNN on both HR and LR data that are trained 
using data from Verio scanner and tested on data from Skyra scanner.  

Data TPs FNs Sensitivity 
(%) 

Precision 
(%) 

F1-Score 
(%) 

FPavg  

HR 44 18  70.97  51.16  59.46  1.68 
LR 148 24  86.05  64.35  73.63  2.48  
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method. Similar to what we performed on the candidates via YOLO, we 
evaluated this investigation using five-folds cross-validation separately 
for HR and LR data. Since the 3D-FRST method generates very high 
imbalanced training samples (i.e., CMBs against Non-CMBs) even after 
augmenting the CMB samples, this could affect the overall performance. 
The results show that the 3D-CNN does not only affect the FPavg, but it 
also reduces the overall sensitivity. Table 9 shows the overall perfor
mances of 3D-CNN on the candidates generated by 3D-FRST for both HR 
and LR data. Based on this results, larger number of candidates that 
includes larger FPs has greater possibility to be classified falsely as CMBs 
compared to lower number of candidates. Our proposed YOLO proved 
its effectiveness and feasibility compared to others with lower compu
tation cost. It only requires 0.69 s to process one subject and generate 
potential candidates. It is 13.4 and 47.9 times faster than the 3D-FRST 
when it was applied to LR and HR data, respectively. The difference of 
the processing speed for the 3D-FRST (i.e., 9.24 s for LR and 33.03 s for 
HR) is due to that LR and HR data have different input sizes. However, 
both data resolutions were resized into a same size as a requirement for 
the YOLO structure. Hence, similar processing time per subject of 0.69 s 
for YOLO was recorded for both LR and HR data. In addition, the quite 
high performances in terms of sensitivity and precision achieved by 
(Wang et al., 2019, Hong et al., 2019) could be due to the very huge 
number of the utilized microbleeds compared to other studies. (Wang 
et al., 2019) extracted 68,847 CMBs and over 56 million Non-CMBs from 
20 patients, while (Hong et al., 2019) extracted 4287 CMBs from 10 
subjects. In the FPs reduction stage, the execution time per subject was 
computed as a multiplication of the processing time of each 3D input 
patch via the 3D-CNN by the total number of false positives per subject 
(i.e., 155.5 in case of LR and 52.18 in case of HR). Finally, the proposed 
FPs reduction stage via the 3D-CNN was able to robustly reduce the FPs 
from 155.5 to 1.89 per subject for LR data and from 52.18 to 1.42 for HR 
data. The practical benefits of the proposed approach compared to the 
previous works are as follows. It requires lower computation time, deals 
with low in-plane resolution data which can be used in routine clinical 
exams, and works well with smaller dataset. Also, we make the dataset 
and code available for further investigations and developments. 

The main limitation of this study and most of the deep learning 

methods in the field of medical image analysis is the limited size of 
labeled training and testing data. This is due to that manual labeling 
process of microbleeds by expert radiologists is laborious, time- 
consuming, and subjective. In addition, the task of CMBs detection 
from brain MR images was proceeded in this work using two-stage deep 
learning architectures through different software environments. This 
could decrease the possibility of adapting the proposed work practically 
during the routine clinical exams. Thus, it may be interesting to tackle 
this issue via developing a single end-to-end deep learning object 
detection network, which can learn robust contextual features from the 
CMBs and CMB mimics altogether during the training stage. Further, 
understanding the domain shift between high and low in-plane resolu
tion by adapting the transfer learning and generating more training 
samples via the generative adversarial network could improve the effi
ciency and feasibility of CMBs detection. Also, it may be interesting in 
the future work to differentiate between microbleeds and calcifications 
within a single network. 

5. Conclusion 

In this work, we presented a new two-stage integrated deep learning 
approach for efficient CMBs detection. The detection stage via the 
regional-based YOLO endeavors to deny the background regions and 
simultaneously retrieve potential microbleeds candidates. Subse
quently, the 3D-CNN stage is developed to reduce the FPs and single out 
the accurate microbleeds. We found that training the networks using 3D 
contextual information by averaging the adjacent slices of the SWI and 
complement phase images could improve the detection performance. 
This finding matches with the clinicians who utilized the SWI image as a 
preferred clinical way of CMBs detection and phase images for further 
confirmation of challenging cases. Further, it is preferred to train and 
evaluate the network using the same data in-plane resolution, since 
using heterogeneous training led the network to decrease its detection 
capability. 

Table 9 
Comparison between the proposed deep learning two-stage approach against the latest studies in the literature on CMBs Detection.  

Reference Method Data Subjects 
/CMBs 

In-plane resolution 
(mm2)  

Performance 

Sen.* 
(%) 

FPavg  Prec. * 
(%) 

Test Time/subject 
(sec) 

Overall Sen. 
(%) 

(Dou et al., 
2016) 

1st stage: 3D-FCN 3.0 T320/1149 0.45 × 0.45  98.29  282.8  − 64.35 91.45◆ 

2nd stage: 3D-CNN  93.16  2.74  44.31 −

(Liu et al., 2019) 1st stage: 3D-FRST 1.5 T and 3.0 T220/ 
1641 

0.45 × 0.57and 0.50 ×
0.50  

99.40  276.8  − 39 95.24◆ 

2nd stage: 3D-ResNet  95.80  1.60  70.90 9 
(Chen et al., 

2019) 
1st stage: 2D-FRST 7.0 T73/2835 0.50 × 0.50  86.50  231.88  − − −

2nd stage: 3D-ResNet  94.69  11.58  71.98 −

(Kuijf et al., 
2012) 

3D-FRST 7.0 T18/66 0.35 × 0.35  71.20  17.17  13.20 900 71.20 

(Wang et al., 
2019) 

2D-DenseNet 20/68847 − 97.78  11.8◆  97.65 − 97.78 

(Hong et al., 
2019) 

2D-ResNet-50 10/4287 − 95.71  3.4◆  99.18◆ − 95.71 

Proposed Work Implemented 3D-FRST 3.0 T107/572 LR 0.80 × 0.80  80.06  946.1  − 9.24 62.59 
3D-CNN on 3D-FRST 
candidates  

78.17  4.69  41.63 0.961 

1st stage: YOLO  78.85  155.5  − 0.69 72.78 
2nd stage: 3D-CNN  91.80  1.89  67.21 0.159 
Implemented 3D-FRST 3.0 T72/188 HR 0.50 × 0.50  97.34  497.4  − 33.03 81.38 
3D-CNN on 3D-FRST 
candidates  

83.61  3.74  36.26 0.505 

1st stage: YOLO  93.62  52.18  − 0.69 88.30 
2nd stage: 3D-CNN  94.32  1.42  61.94 0.053  

* Sen. and Prec. refer to the sensitivity and precision indices, respectively. 
◆ These values are not provided in the related articles, but were computed from other results. 
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