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Abstract 

Background: Pulmonary hyperinflammation is a key event with SARS-CoV-2 infection. Acute respiratory distress syn-
drome (ARDS) that often accompanies COVID-19 appears to have worse outcomes than ARDS from other causes. To 
date, numerous lung histological studies in cases of COVID-19 have shown extensive inflammation and injury, but the 
extent to which these are a COVID-19 specific, or are an ARDS and/or mechanical ventilation (MV) related phenom-
enon is not clear. Furthermore, while lung hyperinflammation with ARDS (COVID-19 or from other causes) has been 
well studied, there is scarce documentation of vascular inflammation in COVID-19 lungs.

Methods: Lung sections from 8 COVID-19 affected and 11 non-COVID-19 subjects, of which 8 were acute respira-
tory disease syndrome (ARDS) affected (non-COVID-19 ARDS) and 3 were from subjects with non-respiratory diseases 
(non-COVID-19 non-ARDS) were H&E stained to ascertain histopathological features. Inflammation along the vessel 
wall was also monitored by expression of NLRP3 and caspase 1.

Results: In lungs from COVID-19 affected subjects, vascular changes in the form of microthrombi in small vessels, 
arterial thrombosis, and organization were extensive as compared to lungs from non-COVID-19 (i.e., non-COVID-19 
ARDS and non-COVID-19 non-ARDS) affected subjects. The expression of NLRP3 pathway components was higher in 
lungs from COVID-19 ARDS subjects as compared to non-COVID-19 non-ARDS cases. No differences were observed 
between COVID-19 ARDS and non-COVID-19 ARDS lungs.

Conclusion: Vascular changes as well as NLRP3 inflammasome pathway activation were not different between 
COVID-19 and non-COVID-19 ARDS suggesting that these responses are not a COVID-19 specific phenomenon and 
are possibly more related to respiratory distress and associated strategies (such as MV) for treatment.
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Introduction
It has been more than two years since the pandemic 
caused by the novel SARS-CoV-2 corona virus (severe 
acute respiratory syndrome coronavirus), also known as 

COVID-19 has affected large populations globally [1, 2]. 
The virus disproportionately affects the respiratory sys-
tem and a major cause of fatality is the acute respiratory 
distress syndrome (ARDS) that accompanies the infec-
tion [3, 4]. Autopsy-based lung histological studies have 
been an invaluable tool in understanding the pathobiol-
ogy of COVID-19; indeed these have shown indications 
of inflammation, edema, coagulopathy and fibrosis [3, 
5–8].
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In the pulmonary system, COVID-19 may progress to 
acute respiratory distress syndrome (ARDS) [9, 10]; inci-
dence of ARDS with COVID-19 is about 33%. However, 
a mechanistic understanding of this progression remains 
unclear. Histological, biochemical and physiological stud-
ies of COVID-19 have shown extensive inflammation 
and injury, but the extent to which these are a COVID-
19 specific, or an ARDS related phenomenon is not clear. 
Post mortem findings in COVID-19 affected have shown 
alveolar damage, early or intermediate proliferative 
phase, and presence of thrombi and signs of inflamma-
tion in the lungs [3, 6, 8] all of which are features com-
mon to ARDS from other causes [11–13]. Furthermore, 
while lung hyperinflammation with ARDS (whether from 
COVID-19 or from other causes) has been well studied, 
there is scarce documentation of vascular inflammation 
in COVID-19 affected lungs [7, 14].

The vascular endothelium, a dynamically adapt-
able interface that is actively involved in recruitment of 
inflammatory cells, is well accepted to play a crucial role 
in regulation, progression, and amplification of inflam-
mation. Inflammatory processes involve the participation 
of inflammasomes that are multimeric platforms assem-
bled in response to pathogenic stimuli. Dysregulated 
inflammasome signaling has been well established as a 
pivotal event in hyper-inflammatory syndromes [15–17]. 
Among the inflammasomes, the NLRP3 inflammasome 
comprising of the NLRP3 subunit, ASC and caspase 1, is 
well established to be activated in response to microbial 
infection [18, 19], mechanical ventilation (MV, associated 
with ARDS management) [20] and to drive cell death [21, 
22]. It is also involved in ARDS (with or without COVID-
19), as evidenced by the detection of inflammasome sub-
units and products in the sera and lung tissue of ARDS 
[23, 24] and COVID-19 patients [25, 26].

The purpose of this study is to contextualize vascu-
lar features and NLRP3 expression along the vascular 
wall in lungs of fatal cases of “COVID-19 ARDS” and 
“non-COVID-19 ARDS” (as compared to lungs from 
non-COVID-19 non-ARDS subjects) to ascertain if the 
NLRP3 inflammasome pathway is COVID-19 (SARS-
CoV-2 infection) specific or arises from respiratory dis-
tress (and associated clinical maneuvers such as MV). 
Here we document the major histological findings of 8 
postmortem examinations done on patients with clini-
cally confirmed COVID-19 and compare these to lungs 
of 11 non-COVID-19 subjects. This study contributes to 
the growing data on this topic [3, 6, 26–30].

Materials and methods
We analyzed lung tissue samples of 8 patients that died 
of COVID-19 ARDS and 11 patients that died from non-
COVID-19 complications in 2020. Of these 11, 8 were 

non-COVID-19 ARDS while 3 were non-COVID-19 
non-ARDS.

Written informed consent was obtained for postmor-
tem examination from the next of kin of these patients. 
For the COVID-19 patients, SARS-CoV-2 infection was 
confirmed by real time PCR analysis either at the time of 
hospital admission or elsewhere (as in the case of Patient 
1). All patients except patients 1 and 8 were tested with 
the Cepheid Gene Xpert RT PCR assay (Cepheid, Sunny-
vale, CA 94089). Normal reference range is not detected. 
The test done on Patient 1 was unknown. Patient 8 had 
been hospitalized at an outside hospital with confirmed 
COVID-19 infection and returned to the Hospital of the 
University of Pennsylvania at the time of readmission. 
Autopsies were done by trained personnel using personal 
protective equipment in accordance with the recom-
mendations of the University of Pennsylvania School of 
Medicine.

Multiple random sampling of postmortem lung tissue 
was used so as to adequately represent each lung. Tissues 
were fixed in formalin. Paraffin embedded sections of 3 to 
5 μm thickness were stained with hematoxylin and eosin 
(H&E). Images were captured on the Aperio Pathology 
System and visualized by ImageScope (Leica Biosystems, 
Buffalo Grove, IL). High (× 20) and low powered fields 
(× 1) were selected for evaluation. 3–4 fields were ana-
lyzed for each subject. Imaging and scoring were done 
by different observers (blinded). Scores were given based 
on image assessment by computationally deriving 10 sec-
tions (for each field) that were assessed at × 20. Hyaline 
membranes, interstitial fibrosis, atypical pneumocytes 
and pulmonary hemorrhage were assessed by a scoring 
system that depended upon the % of image area involved 
as described by us earlier [31–33]. A scale of 0–4 was 
used: 0 is absent; 1 = mild or 25% of the area; 2 = mod-
erate or 50% of the area; 3 = high or 75%; 4 = severe or 
90–100% of the image area. Scores provided are average 
of 3 fields for each subject.

Additional sections from the same samples were 
employed to assess inflammation and inflammation 
induced cell death (pyroptosis) by immunostaining for 
NLRP3 inflammasome and caspase 1 respectively. Double 
labeling of sections was also performed to immunostain 
for both NLRP3 and caspase 1. Sections were deparaffi-
nized  and hydrated followed byantibody retrieval  and 
immunostainingby  using anti-human NLRP3 monoclo-
nal antibody at 1:200 or anti-human caspase antibody 
at 1:100 (both from R&D Systems, Minneapolis, MN). 
Secondary antibody used was conjugated to Alexa 488 at 
1:200 (Life Technologies, Eugene, OR). Appropriate IgG 
controls were used to fix exposure settings (Additional 
file  1: Fig. S1). Vectashield antifade mounting medium 
used was from Vector Labs (Burlingame, CA). Images 
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were acquired by using a Nikon TMD epifluorescence 
microscope equipped a Hamamatsu ORCA-100 digital 
camera, and MetaMorph imaging software (Universal 
Imaging, West Chester, PA, USA). For double labeling of 
NLRP3 and caspase 1, monoclonal NLRP3 and polyclonal 
caspase 1 antibodies were used. Leica TCS SP8 confocal 
microscope with super-resolution imaging of green and 
red dyes (with adjusted laser power and for the individ-
ual detection channels to avoid bleed through) was used. 
Fluorescence images were acquired at λexcitation = 488 nm 
for green and λexcitation = 595 nm for red; all images were 
acquired with the same exposure and acquisition settings 
as reported previously [34–36]. Quantitation of the fluo-
rescence signal was carried out using the MetaMorph 
Imaging Software. Integrated Intensities were normalized 
to the field area as reported by us elsewhere [34]. Results 
are presented as mean ± standard deviation (SD). Group 
differences were evaluated by ANOVA followed by Tukey 
post hoc comparisons. Statistical significance for all stud-
ies was accepted as p < 0.05.

Results
Patient demographics and clinical information are sum-
marized in Table  1, and histological characteristics in 
Table  2. COVID-19 patients were 4 men and 4 women, 
with a mean age of 71.8 years (SD 13.9); non-COVID-19 
patients comprising of non-COVID-19 ARDS and 

non-COVID-19 non-ARDS were 7 men and 4 women, 
with a mean age of 64 (SD 10.7). Lung sections from 
all COVID-19 ARDS and non-COVID ARDS patients 
showed diffuse alveolar damage including hyaline mem-
branes, intra-alveolar fibrin deposition, and thickening of 
the alveolar-capillary membrane. All sections from lungs 
of COVID-19 ARDS, non-COVID-19 ARDS subjects 
stained positively for the NLRP3 inflammasome associ-
ated markers that were assessed by fluorescence imaging.

Upon light microscopic examination, the lungs of all 
COVID-19 ARDS patients showed extensive alteration 
of lung microstructure (Fig.  1A, B). A closer inspection 
of COVID-19 lungs revealed fibrin exudation into alveo-
lar space, extensive thrombi and fibroblastic prolifera-
tion, hyaline membrane, fibrin deposition and early and 
advanced proliferative phase of diffuse alveolar damage 
(Fig.  1B). Thrombi and microthrombi were identified 
in sections from 7 of the 8 patients (Fig.  1C). Vascular 
changes were extensive, with microthrombi in small ves-
sels and arterial thrombosis and organization. Micro-
thrombi were also observed in alveolar septa. Thrombi 
and microthrombi were found in > 75–80% of the fields 
imaged. Histological findings are detailed in the legends 
of Fig. 1 and in Table 2.

In contrast, the lungs from non-COVID ARDS, showed 
less thrombi and fibrin exudation (Fig.  2A, B). While 
higher magnification showed certain key features of lung 

Table 1 Patient numbers 1–8 were COVID-19 positive

Patient numbers 9–19 were non-COVID-19. Of these * denote non COVID-19 ARDS. The rest were (Patient numbers 9, 16, 19) were non-COVID-19 non-ARDS. B, W and 
U denote black, white and unknown respectively

Patient Gender Age Race Known medical history Substance abuse 
(smoking/alcohol)

1 Female 61 W Asthma and stroke Non- smoking

2 Female 63 W Breast cancer and therapy related acute leukemia Smoking

3 Female 73 W COPD Smoking and Alcohol

4 Female 94 W COPD, Coronary Artery Disease and Siogrens disease Not known

5 Male 50 B Myeloproliferative disorder and Pulmonary/portal hypertension Not known

6 Male 72 B Dementia, diabetes and hypertension Not known

7 Male 74 B Pulmonary Embolsim and deep vein thrombosis and hypertension Not known

8 Male 85 U Cerebral Vascular disease Not known

9 Male 63 W Heart Transplant Not known

10.* Female 59 B Emphysema Not known

11.* Male 81 B Emphysema Not known

12.* Male 40 B Bronchopneumonia Not known

13.* Female 62 W Diffuse alveolar damage; chronic lung disease Not known

14.* Male 72 B End stage lung disease Not known

15.* Female 68 W Diffuse alveolar damage; COPD and renal cell carcinoma Not known

16 Female 69 B Breast Cancer, Mild edema in lung Not known

17.* Male 77 U Diffuse alveolar damage and COPD Not known

18.* Male 73 B Aspiration pneumonia; diabetes Not known

19 Male 57 W Sarcoid Not known
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Table 2 Pulmonary pathological features from autopsy cases of COVID-19 ARDS (patient no 1–8), non-COVID-19 ARDS (10–15, 17–19) 
and non-COVID-19 non-ARDS (9, 16, 19)

A scale of 0–4 was used for each subject: 0 is absent; 1 = mild or 25% of the field area; 2 = moderate or 50% of the field area; 3 = high or 75%; 4 = severe or 90–100% of 
the image area. Scores provided are mean of 3–4 fields for each subject

Patient No Hyaline 
Membranes

Interstitial 
Fibrosis

Atypical 
pneumocytes

Pulmonary 
hemorrhage

Trombi/
Microthrombi

Morphological aspects

1 4 4 4 3 2 Proliferative phase of diffuse alveolar damage, thrombi/
microthrombi

2 3 3 4 3 3 Emphysematous change, microthrombi, alveolar septal 
thickening, thrombi/microthrombi

3 4 4 4 3 3 Pulmonary edema, alveolar septal thickening

4 4 4 4 4 3 Proliferative phase of diffuse alveolar damage, pulmonary 
hemorrhage, thrombi/microthrombi

5 4 4 4 3 3 Diffuse alveolar damage, Advanced proliferative phase, 
thrombi/microthrombi

6 4 4 4 4 3 Advanced proliferative phase, pulmonary hemorrhage, 
thrombi/microthrombi

7 4 4 4 4 3 Exudative phase diffuse alveolar damage, hemorrhage, 
thrombi/microthrombi

8 4 4 4 4 3 Advanced proliferative phase, hemorrhage, thrombi/micro-
thrombi

9 2 3 2 2 1 Edema

10 3 3 4 3 1 Diffuse alveolar damage, hemorrhage in some regions

11 4 4 4 1 1 Edema, hemorrhage, microthrombi, features of fibroblastic 
phase

12 4 4 4 3 2 Edema, exudates in lung parenchyma, fibrotic regions, 
interstitial inflammation and microthrombi

13 4 4 4 4 1 Diffuse alveolar damage
Pulmonary edema, alveolar septal thickening

14 4 4 4 3 1 Epithelial cell denudation, alveolar collapse

15 4 4 4 2 2 Edema, exudates in lung parenchyma, hemorrhage, 
thrombi/microthrombi

16 1 1 1 1 1 Minor edema in some alveoli

17 3 2 2 3 2 Fibroblast proliferation, microthrombi

18 4 4 4 4 2 interstitial and intra-alveolar fibroblast proliferation, micro-
thrombi

19 2 2 2 1 1 Edema

(see figure on next page.)
Fig. 1 Hematoxylin and eosin-stained sections staining from representative regions of the lung parenchyma of post-mortem lung tissue of 8 
COVID-19 patients (Patient 1 to 8). A All patients show extensive alteration of lung microstructure in the form of alveolar damage, fibrin exudation 
into alveolar space, thrombi and fibroblastic proliferation. The septa are thickened and there is presence of hyaline membranes and dense infiltrates. 
Scale bar is 3 mm. 1: patient 1- Alveolar damage with collagen deposition and exudative pattern of damage, 2. patient 2- Large thrombi and smaller 
caliber arteries showing fibrin thrombi (arrows), 3. patient 3-Alveolar damage pattern arising from fibroblastic proliferations, 4 and 5. patient 4 
and 5- Exudate in the entire lung, 6. patient 6-Necrosis with blood and exudate in the lung parenchyma, 7. patient 7-Hemorrhagic infarction of 
lung tissue adjacent to a pulmonary artery with thrombotic material, 8. patient 8-Pulmonary hemorrhage with blood and fibrin exudation into 
the parenchyma. B H and E staining at higher magnification to show representative areas of extensive diffuse alveolar damage, microthrombi 
and edema in regions of the lungs from various COVID-19 ARDS samples. I. Fibroblastic proliferation, II. Plugged airway due to remodeling, 
III. Coagulation necrosis with blood in the lung tissue, IV. Proliferative phase of diffuse alveolar damage, V. Patchy distribution of damage, VI. 
Proteinaceous exudates in alveolar spaces, VII. Blood and fibrin exudation into parenchyma, VIII. Proteinaceous exudates in alveolar spaces, IX. 
Endotheliitis of small vessel < 100 μm with infiltration of the vessel wall by lymphocytes (arrow shows infiltrated cells). C Thrombi and microthrombi 
were identified in lung sections of 7 of the 8 patients. Images of vessels were chosen to emphasize the microthrombi. Box is magnified in the right 
panel. Arrow shows microthrombi on alveolar septa
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injury such as diffuse alveolar damage, thickening of the 
alveolar-capillary membrane, fibroblastic proliferation, 
the presence of hyaline membranes, edema and prolifera-
tive phase of diffuse alveolar damage, there was overall 
an intact structure and less alveolar infiltration or hem-
orrhage (Fig. 2 B). Thrombi were present in < 40% of the 

fields (Fig. 2C). In terms of structure, the non-COVID-19 
non-ARDS lungs (9, 16 and 19, see Table  1) were rela-
tively intact and showed almost no thrombi (Fig.  2B 
and C, lower panel). Histological findings are detailed in 
Table 2.

500 μm 100 μm
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Fig. 1 continued

Fig. 2 A. Hematoxylin and Eosin-stained sections staining from representative regions of the lung parenchyma of post-mortem lung tissue of 8 
non-COVID-19 ARDS (patient numbers 10–15, 17,18) and 3 non-COVID-19 non-ARDS (patient numbers 9,16,19) patients. Scale bar is 3 mm. B H and 
E staining at higher magnification: Diffuse alveolar damage, microthrombi and edema were observed. Arrows show proteinaceous exudate in the 
airspaces. Scale bar is 200 microns. C Vascular structures in lungs from non-COVID-19 sources. Arrows show thrombi in vessels. About 40% of the 
fields from non-COVID ARDS showed thrombi. Very few microthrombi were observed in non-COVID non-ARDS lungs. Scale bar is 100 microns

(See figure on next page.)



Page 7 of 13Paul et al. Respiratory Research           (2022) 23:25  

3mm

9 10 11 12

13 14 15 16

17 18 19

N
on

-
DIV

O
C

-
S

D
RA

91
N
on

-
DIV

O
C

-
non

91
-

S
D

RA

200µm

N
on

-
DIV

O
C

-1
9
no

n-
S

D
RA

N
on

-
DIV

O
C

-
S

D
RA

91 100 µm

A

B

C

Fig. 2 (See legend on previous page.)



Page 8 of 13Paul et al. Respiratory Research           (2022) 23:25 

We next assessed the expression of the NLRP3 
subunit and its downstream effector caspase 1 in all 
samples. In lungs from COVID-19 ARDS and non-
COVID-19 ARDS subjects, intense expression of 
the NLRP3 and caspase 1 was observed as visualized 
from the green-fluorescent signal, as shown in Fig. 3A 
and B (two upper and middle panels). For COVID-19 
affected subjects, fluorescence around the vessel walls 
implied NLRP3 expression along the endothelial layer 
(Fig. 3A, two upper panels). The effector enzyme, cas-
pase 1 was widely distributed throughout the lungs 
and was not limited to the vascular structures (Fig. 3B, 
two upper panels). Non-COVID-19 ARDS lungs 
showed a similar staining pattern (Fig. 3A and B, two 
middle panels). Indeed, NLRP3 and caspase 1 expres-
sion were not significantly different from COVID-
19 lungs (Fig.  3C). Non-COVID non-ARDS lungs 
(Patient 9,16 and 19, see Table 1) showed significantly 
lower NLRP3 and caspase 1 expressions as compared 
to the two other cohorts (COVID-19 ARDS and non-
COVID-19 ARDS) (Figs.  3A, B lower two panels and 
Fig.  3C). Lungs from COVID-19 ARDS subjects co-
labeled for NLRP3 and caspase 1, showed colocali-
zation (yellow) along the vessel wall. In these lungs, 
caspase 1 expression was high throughout the tissue, 
but NLRP3 expression was visualized along the vascu-
lar structures (Fig. 3D).

Discussion
COVID-19 has been described largely as a respiratory 
disease; indeed, the respiratory tract and alveoli are 
amongst the primary sites of infection. However, it is 
also an inflammatory disease where release of inflamma-
tory cytokines is the cause of organ injury and damage. 
The endothelium is the converging site of the inflamma-
tion as its activation (expression of adhesion molecules 
and cytokines) leads to immune cell recruitment; thus, 
it is reasonable to conclude that COVID-19 is poten-
tially a vascular disease that has its origins in “endothelial 
inflammation” signaling [14, 37, 38].

Our inspection of lung autopsies of the 8 COVID-19 
patients showed macro and microthrombi in almost 
all fields imaged (7 out of 8 subjects showed extensive 
microthrombi/thrombi in all lung sections), indicat-
ing coagulation pathology. For non-COVID-19 ARDS 
lungs, about 40% of the sections showed microthrombi. 
Very few thrombi were observed in the sections of non-
COVID-19 non-ARDS lungs. As coagulation is closely 
linked to endothelial inflammation signaling, the pres-
ence of pulmonary thrombi with COVID-19, as observed 
here and reported elsewhere [39], indicates endothelial 
inflammation which can increases leukocyte infiltra-
tion and alter coagulation control driving a procoagulant 
direction [40].

A pivotal molecule that drives endothelial inflamma-
tion and injury is the NLRP3 inflammasome. It is a mul-
tiprotein complex comprised of three basic components: 
(1) A sensor such as a NOD-like receptor (NLR) (2) the 
adaptor protein apoptosis-associated speck-like protein 
containing a caspase-recruitment domain (ASC) and 
(3) the inflammatory cysteine aspartase caspase 1. The 
assembly of this complex leads to release of caspase 1 
which then exerts its catalytic activity on the pro-inflam-
matory cytokine (IL-1β) that after their release perpetu-
ate cell death, specifically inflammation induced cell 
death or pyroptosis [21, 22].

While a recent report showed high levels of NLRP3 
inflammasome and caspase 1 expression in lungs with 
fatal COVID [26], the status of the NLRP3 inflamma-
some on the pulmonary vascular wall in COVID-19 
is not known. Our data showed expression of NLRP3 
and caspase 1 along the vascular wall with COVID-
19 ARDS and non-COVID-19 ARDS (Fig.  3A–C). 
COVID-19 ARDS and non-COVID-19 ARDS samples 
showed comparable expressions of NLRP3 and caspase 
1. We also observed that while both NLRP3 and cas-
pase-1 were highly expressed along the vascular wall in 
COVID-19 ARDS samples, there was extensive colo-
calization of these two moieties. (Fig. 3D). As caspase 
1 is the downstream effector of NLRP3, colocalization 

(See figure on next page.)
Fig. 3 Inflammasome in the lungs of patients with COVID-19 ARDS, non-COVID-19 ARDS and non-COVID-19 non-ARDS. Representative images 
of the immunofluorescence in lung sections stained with anti-NLRP3 and Caspase 1. A The NLRP3 subunit (green) along the walls of arterioles 
(arrow). Upper panels: COVID-19 ARDS lungs. Middle Panels: Lungs from non-COVID-19 ARDS subjects. Lower Panels: Lungs from non-COVID-19 
non-ARDS subjects, without respiratory disease. B Caspase staining (green). Upper panels: Upper panels: COVID-19 ARDS lungs. Middle Panels: 
Lungs from non-COVID-19 ARDS subjects. Lower Panels: Lungs from non-COVID 19 non-ARDS subjects, without respiratory disease. C Quantitation 
of the fluorescence intensity of the images using MetaMorph Imaging Program. *p < 0.01 as compared to non-COVID non-ARDS lungs. Results are 
presented as mean ± standard deviation (SD). Group differences were evaluated by ANOVA followed by Tukey post hoc comparisons. Statistical 
significance was accepted as p < 0.05. D NLRP3 (green) and caspase 1 (red) in lung sections of patients with COVID-19. Arrows show colocalization 
(yellow) in regions along the vascular wall
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indicates activation of the NLRP3 inflammasome 
in the vessel wall. Caspase 1 can potentially drive 
endothelial cell injury via pyroptosis. This conflu-
ence of vascular injury, thrombosis and dysregulated 
inflammation seems to support a pivotal role for the 
pulmonary endothelium in severe and fatal COVID-19.

Increased NLRP3 is, of course, associated with various 
inflammatory lung pathologies and aberrant activation 
of NLRP3 inflammasome contributes to ARDS induced 
lung inflammation and injury [23, 24, 41]. This is because 
chemotactic signals associated with microbial attack and/
or stretch signaling associated with MV (a standard ther-
apy to maintain adequate gas exchange during ARDS) 
activate the NLRP3 inflammasome in alveolar mac-
rophages [20, 42]. Caspase 1 which has been reported to 
show an increase with ARDS [43] and MV [44] and has 
recently been found to increase with COVID-19 [26]. 
Thus, the fact that both the COVID-19 ARDS and non-
COVID-19 ARDS lung autopsies in this study showed 
high NLRP3 and caspase 1 expression (as compared to 
non-COVID-19 non-ARDS lungs) seems to suggest that 
the activation of NLRP3 inflammasome pathway is more 
related to ARDS (and associated MV) and may not be a 
COVID-19 related phenomenon alone.

There is some speculation on the mechanisms by which 
inflammasome activation occurs upon SARS-CoV-2 
infection. There are several possibilities of NLRP3 acti-
vation with COVID-19. One possibility is the binding 
of SARS-CoV-2 spike protein to angiotensin-converting 
enzyme 2 (ACE2) directly and subsequent activation 
of NLPR3 inflammasome via altered membrane polar-
ity [45]. Another possibility could be via interaction of 
damage associated molecular patterns (DAMPs that are 
released post microbial infection and MV [20, 46, 47] and 
members of the complement cascade with the SARS-
CoV-2 virus [48]. However, from our data it seems likely 
that it is ARDS and MV (stretch from MV is known to 
activate the inflammasome [42]) associated with COVID-
19 that drives the NLRP3 pathway (Fig. 4A). Once acti-
vated around the vascular wall (endothelial layer), the 
NLRP3 inflammasome would lead to release of caspase 

1 and interleukin-1β that would facilitate pyroptosis (cell 
death) of the endothelium (Fig. 4B).

To the best of our knowledge, this is the first study on 
NLRP3 expression in the vascular structures in lungs of 
fatal cases of COVID-19. The origin of several events 
that exacerbate inflammation and injury with COVID-
19 (such as immune cell aggregation and extravasation, 
edema, formation of thrombi and leukopenia) possibly 
lies in pulmonary endothelial inflammasome activation 
and pyroptotic cell death. Therefore, NLRP3 inhibitors 
have been suggested for as a potential treatment strat-
egy and are currently being explored for management of 
moderate COVID-19 symptoms (NCT04540120).

A major drawback of this study is the low statistical 
power owing to the small sample size. Moreover, paraf-
fin based post-mortem samples offer a snapshot of the 
disease and cannot recreate the evolving disease process. 
Histology is also impacted with the effects of clinical care 
and treatment as comorbidities, ventilation and medi-
cation pose as challenges in interpretation of results. 
Nevertheless, despite these caveats this study identifies 
vascular endothelial NLRP3 inflammation, and docu-
ments thrombi and altered vascular structures in the 
lungs of fatal COVID-19 patients.

Conclusions
Taken together, our data show that NLRP3 inflamma-
some pathway activation was not different between 
COVID-19 and non-COVID-19 ARDS suggesting that 
this pathway is not COVID-19 specific and is possibly 
more related to respiratory distress. However, the fact 
that there is a role for NLRP3 inflammasome pathway 
with SARS-CoV-2 infection indicates that a potential 
usage of antagonists or blockers of the NLRP3 pathway in 
COVID-19 inflammation regulation and control. Overall, 
this report adds to the growing list of studies on COVID-
19 associated pulmonary pathology that highlight the 
importance of vascular endothelial inflammation in pro-
gression to severe and fatal disease.

Fig. 4 A ARDS (and mechanical ventilation) associated with COVID-19 seems to be largely responsible for activation of the NLRP3 inflammasome. 
This pathway seems to be ARDS related and not COVID-19 (SARS CoV2 virus infection) specific. B Overview of SARS-CoV-2 entry, infection and 
endothelial inflammation and cell death. As is well established, oral nasopharyngeal entry of SARS-CoV-2 is followed by its binding to the alveolar 
epithelium. The infected pneumocytes secrete cytokine and chemokines, which attract neutrophils to the alveolar space, leading to a possible 
breach of the alveolar wall. Meanwhile, endothelial cells overexpress NLRP3 as we observed in the autopsies (either by infection, or via increased 
amounts of chemokines and cytokines). The NLRP3 pathway drives endothelial pyroptosis. This leads to breakdown of the endothelial-alveolar 
barrier and causes interstitial and alveolar space flooding. Endothelial cell death and debris activate coagulation cascades that promotes thrombi 
formation

(See figure on next page.)
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