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ABSTRACT There is a direct relationship between the prevalence of musculoskeletal disorders of the
temporomandibular joint and orofacial disorders. A well-elaborated analysis of the jaw movements provides
relevant information for healthcare professionals to conclude their diagnosis. Different approaches have been
explored to track jaw movements such that the mastication analysis is getting less subjective; however, all
methods are still highly subjective, and the quality of the assessments depends much on the experience of
the health professional. In this paper, an accurate and non-invasive method based on a commercial low-cost
inertial sensor (MPU6050) to measure jaw movements is proposed. The jaw-movement feature values are
compared to the obtained with clinical analysis, showing no statistically significant difference between both
methods. Moreover, We propose to use unsupervised paradigm approaches to cluster mastication patterns
of healthy subjects and simulated patients with facial trauma. Two techniques were used in this paper to
instantiate the method: Kohonen’s Self-Organizing Maps and K-Means Clustering. Both algorithms have
excellent performances to process jaw-movements data, showing encouraging results and potential to bring
a full assessment of the masticatory function. The proposed method can be applied in real-time providing
relevant dynamic information for health-care professionals.

INDEX TERMS Jaw movements, mastication, inertial measurement unit, artificial intelligence, adaptive
algorithms.

I. INTRODUCTION
Chewing is primarily an unconscious semi-autonomic act,
where the dynamic structures of the stomatognathic system
move the mandible or jaw to bring the teeth into intermit-
tent contact, occluding and opening periodically. The proper
chewing pattern consists in bilateral alternating, with bilateral
power-sharing, alternating work, and relaxation with rotation
movements of the jaw, providing a complete activation of the
muscles and an orofacial equilibrium [1].

A performance analysis of the masticatory function pro-
vides relevant information for health-care professionals
to conclude their diagnosis and to plan the ideal treat-
ment [2]–[5]. Information about jaw movements during mas-
tication provides an objective basis for the diagnosis and

monitoring of the therapeutic progress of the masticatory
system [6].

Clinical methods used to evaluate characteristics and pat-
terns of mastication movements are usually of subjective
analysis, compromising its reproducibility, such that the qual-
ity assessment depends heavily on the experience, train-
ing, and practice of healthcare professionals [5]. Different
approaches have been explored to track jaw movements
using force transducers, electromyography, electromagnetic
markers, and Kinect sensors. However, these techniques are
usually expensive, limiting its use in small and medium-sized
clinics [7]–[11].

Previous works have explored MicroElectroMechanical
Systems (MEMS) to develop devices and methodologies
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to support physical exam in healthcare services [12]–[14].
Flavel et al. published a pioneer work in 2002 using MEMS
accelerometers to measure vertical movements of the human
mandible [7]. Lin et al. [6] have developed a MEMS and
explored it for mastication analysis; the reported results,
as they are presented, regarding frequency and total chewing
time, are not much useful information on chewing disorders
for a healthcare professional. Minami et al. [16], [17] pro-
posed a new method based on the standard jerk-cost test [15]
evaluating the smoothness of the jaw movement with a non-
commercial piezoelectric accelerometer.

Artificial and Computational Intelligence are fields that
develop systems able to learn specific tasks to solve a
given problem from experimental data. Unsupervised learn-
ing algorithms can recognize patterns among subjects, group-
ing similar experiences without needing feedback [18].
Intelligent algorithms are able to find patterns in complex
scenarios, usually very hard and sometimes even impossible
to be identified by humans [19]; with the possibility of a
friendly graphical representation of the data relationships.

In this work, two commercial low-cost MEMS sensors
(MPU-6050TM ) are explored to measure jaw movements;
Wavelet processing allows to obtain temporal and spatial
features such as displacement, amplitude, time-cycle and
chewing side preference. The method is a low-cost, accurate
and non-invasive tool for the acquisition of mastication fea-
tures. Obtained results are comparedwith a well-consolidated
clinical test, revealing the competitiveness of the approach.

Furthermore, we propose to use an unsupervised paradigm
approach to group mastication patterns of healthy sub-
jects and simulated patients with facial trauma performing;
two clustering techniques were employed in this paper to
instantiate the method: Kohonen’s Self-Organizing Maps
(SOM) [20] and K-Means Clustering (K-Mean) [21]. The
method shows potentiality to simplify the kinetic-functional
diagnostic, aiming at helping healthcare professionals to opti-
mize the rehabilitation.

II. METHODS
A. EXPERIMENTAL SETUP
The MPU6050 devices combine a 3-axis gyroscope, and
a 3-axis accelerometer on the same silicon die together
with an onboard Digital Motion ProcessorTM , which pro-
cesses complex 6-axis MotionFusion algorithms, measur-
ing angle and acceleration values in the three orthogonal
directions [22], [23]. Sensor artifacts or electrical noise
in the acquired signal are removed implementing Kalman
filters [24], [25].

As represented in Fig. 1, the sensor (MPU6050) signals
were acquired by using an Arduino UNO platform and trans-
mitted via Bluetooth to a computer, where the signals have
been processed/represented with a graphical interface (C++
and Processing) and a sample rate of 100 samples per second.

Previous works have reported that head movements are
inherent to the chewing process [26], such that measurement

FIGURE 1. Experimental Intrumentation, the kinematic signals obtained
by two MPU6050 inertial sensors were acquired with an Arduino UNO
platform and transmitted via Bluetooth (HC-06) to a personal computer.

of jaw movements during the mastication is sensitive to
redundant data information. A method to manage this artifact
is to use a relative reference frame, only sensitive to head
movements.

FIGURE 2. (a) Transverse plane and orientation/direction of the
MPU6050 sensor (not at the same scale), (b) Frontal plane: Aperture and
Laterality movements, (c) Sagittal plane.

FIGURE 3. (a) Inertial sensors configuration, Simulated Jaw movement
experiments: (b) Left, (c) Center and (d) Right. The data has been
extrapolated to 100 points for better data visualization.

As represented in Figure 2, the forehead region is estab-
lished as the origin of the reference frame (i.e. P(0,0,0)).
BothMEMS sensors are oriented in the same spatial direction
such that mandibular movements are described regarding
the Cartesian axes given by the three orthogonal versors
(i.e. x̂, ŷ and ẑ). As shown in Figure 3.a., one MEMS sensor
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is fixed on the jaw (SJ ) and another (reference sensor) to the
forehead (SR) of the subject, measuring angle and accelera-
tion values for the jaw movements concerning the reference
sensor (e.g. θx = θx(SJ ) − θx(SR)). Such configuration is
non-invasive and does not interfere with the patient functions.
For each individual sensor, the average value of the first ten
acceleration and angle samples are defined as zero values,
such that posterior measurements are relative values to zero.

B. JAW-MOVEMENT FEATURES EXTRACTION
A trained subject has been oriented to simulate the three pos-
sible jaw movements for each orthogonal axis (i.e. opening,
lateral and protrusion movements) repeating five times each
movement to allow us verifying specific features represented
in Figure 3.(b-d). All typical mastication signals are a com-
position of these orthogonal simulated movements.

The characteristics of jaw movements are extracted from
the angle signal during each chewing cycle. A Gaussian
Wavelet with a temporal size corresponding to nine samples
is used to obtain temporal features such as the interval of
each cycle, the total mastication time elapsed to complete the
process, as well as, the peak and valley values of the angular
signal. This kind of dynamic feature extraction [27] allows
determining local variations during the mastication, where
Fourier analysis or jerk-cost are not sensitive, providing a
dynamic data processing in real-time.

As represented in Figure 3.b, the amplitude of the peak-
valley value (1θY (p−v)) is related to the total vertical aperture
of the jaw. Moreover, the temporal features are the total
(1T ) and the elapsed time per Cycle (i.e. Time/Cycle, Tcycle)
of the jaw movement. Considering the X-axis (i.e. 1θX ),
the difference between peak and valley corresponds to the
coefficient of laterality and is related to the chewing side
preference, given by L = θR − θL . As shown in Figure 3.c.,
negative or positive values for the ratio of laterality mean
mastication tendency to the right or left, respectively.

The values of peak-valley amplitude of the Z-angle
(Fig. 3.d) represent part of the protrusion movement (1θZ ).
However, protrusion has not been analyzed in this study.
Table 1 summarizes all the obtained jaw movement features.

TABLE 1. Jaw-movement features and related variables.

Similarly to the Jaw-Tracking report given by Electrog-
nathography [28], it is possible to create a Sagittal and a
Frontal scans of angle variations. As shown in Figures 4 (a)
and (b), the patterns of the angular dependence θy vs. θx and
θz vs. θx of the aforementioned simulated movements show
opening and protrusion movements composing the sagittal
plane, this kind of graphs should be more convenient for

FIGURE 4. Patterns of the angular dependence of the same movements
represented in Figures 2 (b-d). Sagittal scan: (a) θy vs. θx , (b) θz vs. θx ;
Frontal scan (c) θx vs. θy .

a visual comparison between cycle movements. Moreover,
the patterns of the angular dependence θx vs. θy distinguish
lateral movements, both simulated movements (left and right)
are easily identified in Figure 4.c.

C. CLINICAL EXPERIMENTS-VALIDATION TEST
Ethics Committee in Research of the University of Pernam-
buco approved this research, CAAE - 37408714.3.0000.5192.
The volunteers, conveniently aged 18-35 years, were selected
in the local community. After signing the consent form,
60 participants, 30 Males and 30 Females, were included in
the study after a previous examination, as long as they were
healthy (i.e. have no diagnosed dysfunction).

The evaluation of the temporomandibular joints during
the mastication was carried out based on the analysis of
all the chewed food. The chewing movement data has been
collected with the proposed method and a video camera,
simultaneously and compared with the clinical assessment.
We recorded the experiment with a camera (D3100 Nikon) to
check the information acquired in the clinical evaluation that
has been validated in the literature [29].

Although our system is not sensitive to head or bodymove-
ments, the subjects have been oriented to sit on a wooden
chair with their back against the backrest during the test.
To perform the mastication function, we offered three differ-
ent types of food in the following order: bread recently baked,
apple and cookie (soft texture). The foods have been selected
according to their different consistency, easy acceptance by
volunteers and based on the literature [30], [31]. The subjects
were oriented to masticate as many times as they usually do
and then to swallow.We offered each food twice in a standard-
ized order and amount. The guidance and time to place the
sensors took approximately 4 minutes; the evaluation time,
however, varied according to the number of cycles of each
voluntary before ingesting the food.

The mastication data is processed with a statistical anal-
ysis to compare our proposed tool with the established

2100310 VOLUME 6, 2018



C. V. Lucena et al.: Mastication Evaluation With Unsupervised Learning

clinical evaluation. In particular, the Kolmogorov-Smirnov
test and the paired Student’s t-test are implemented to verify
whether the samples followed the normal distribution and
whether the means of the two groups are statistically different
from each other, respectively, what would imply a significant
discrepancy between both methods. Moreover, McNemar test
was used to compare nominal data (left or right). The statis-
tical significance considered is p<0.05.

D. DATA PROCESSING - UNSUPERVISED LEARNING
1) SELF-ORGANIZING MAP - SOM
The SOM technique transforms a multi-dimensional space
and its plotted points into a two-dimensional space, preserv-
ing the similarity between the data encoded into the distances
between them [20].

During the training process, a given input data vector
is presented to SOM, and the most similar output neuron
(i.e., the closest) is select as the winner or best match
unit (BMU). Neurons activated by a particular stimulus tend
to trigger more strongly neurons that are in their immediate
neighborhood than ones farther away. Due to this behavior,
a kind of topological map is formed by neurons that are
triggered whenever a particular type of stimulus or signal is
perceived, which enables the clustering of similar patterns.

In Kohonen’s original proposition of SOM, the Euclidean
distance corresponds to the similarity criterion and the winner
neuron is the one with the smallest distance [20]. Consider-
ing this process, the self-organization aims to minimize the
distance, adjusting the BMU weights and its neighborhood
toward the input vector using the following rule:

wij(t + 1) = wij(t)+ α(t)hci(t)[x(t)− wij(t)], (1)

where, wij is the weight j of neuron i, α(t) is the learning
rate and hci(t) is the neighborhood radius function centered
on winner neuron c with respect to neuron i. Typically, both
learning rate and neighborhood radius are functions, which
decrease with time, facilitating the system convergence.

2) K-MEANS
K-Means clustering is a method of vector quantization for
cluster analysis in data mining [21]. The K-Means technique
is not able to present the data in a space with a smaller dimen-
sionality than the number of features in the data. Another
aspect of K-means is the mandatory request of class number
prior to clustering operation.

Therefore, an algorithm to represent the data provided by
K-means is proposed for a visualization in polar coordinates.
The algorithm works following the next steps:

• Identification of the group’s centroids extract by
K-means;

• Identification of the regular group by the user
(i.e. Therapist), based on the literature;

• Attribution of indices from 0 to n and 0 to m to samples
of regular and injured patients, respectively.Where n and
m are the number of samples to each group;

• The Point Pj(x, y) of each index i of group j on a bi-
dimensional space are defined by:

Pij(x, y) =
(
dij cos

(
i
2π
n

)
, dij sin

(
i
2π
n

))
(2)

where dij is the Euclidian sample distance i of the group
j to the centroid of the regular group, measured on the
hyper-dimensional space.

III. RESULTS AND DISCUSSION
A. VALIDATION OF THE INERTIAL SENSOR-BASED
SYSTEM TO TRACK JAW MOVEMENTS
In the following subsections, the results of the comparison
of the performed tests to compare clinical and the method
proposed are presented (Tool). We have examined the total
number of mastication cycles, total mastication time, and
chewing side preference. For all analysis, a parametric statis-
tic test has been utilized, considering that our sample follows
a normal distribution.

1) NUMBER OF MASTICATION CYCLES
As aforementioned, a paired t-test has been performed to ver-
ify possible differences between the number of mastication
cycles obtained with both evaluation methods (the proposed
technique and clinical examination) for the tested food.

TABLE 2. Distribution of the total number of masticatory cycles.

The t-test results are summarized in Table 2 corresponding
to the Female and Male groups, respectively. In addition to
the t-test comparison, the tables contain detailed features,
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such as central tendency (i.e. mean and median) and statisti-
cal dispersion values (i.e. minimum, maximum and standard
deviation).

Regarding the female group, the p-values are greater than
the significance level, indicating an insignificant statistical
difference between both applied methods. On the other hand,
it is possible to see that the central tendency and the statistical
dispersion values of such comparison are quite similar.

Similarly to the female group, the p-values obtained from
the analysis of the male group, are also greater than the
significance level. Therefore, the results confirm the accep-
tance of the null hypothesis that the samples are statistically
equivalent.

2) TOTAL MASTICATION TIME
In the case of the mastication time to eat each food, the t-test
demonstrates that there is no significant difference between
the analyzed groups. The p-values obtained in the test are
0.968, 0.142 and 0.143 for Bread, Apple, and Cookie, respec-
tively. Analogously in the case of theMale group, the p-values
are 0.810, 0.935 and 0.851 for Bread, Apple, and Cookie,
respectively.

TABLE 3. Distribution of the masticatory total time.

Table 3 shows the results of the mastication time to eat
Bread, Apple, and Cookies for Male and Female groups.

The average times to eat the tested foods, measured by both
techniques, are similar for the two groups of volunteers. The
dispersion values indicated a higher data variability in the
male group that the obtained for the female group.

3) CHEWING-SIDE PREFERENCE
As mentioned in the Jaw-movement feature extraction
numeral, a negative or positive laterality coefficient indicates
a right or left side preference, respectively, showing the ten-
dency of a person to use a preferential side to masticate.
Such behavior usually is related to a dental injury, a muscle
imbalance or postural disorders.

TABLE 4. Comparison of the chewing-side preference - Male group.
McNemar’s Test [32].

Table 4 contains the comparisons between the findings of
lateral preference test for Bread, Apple, and Cookie in the
male group respectively. The variable referring to the Chew-
ing Side Preference (CSP) was analyzed using McNemar test
since this is a nonparametric, nominal (right or left), and
dependent variable. The percentage rates consist in a more
understandable representation of the absolute values.

The p-values resulting from the male group analyzed with
different foods, for the two different techniques were 0.388,
0.344 and 0.754. From these values, it is possible to see
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that there is no statistically significant difference for the CSP
when compared to the values obtained from the technical and
clinical analysis. In this case, the null hypothesis, which states
that there is no significant difference between the technique
and the clinical analysis, has been accepted in the three cases
above as the p-value in each case was greater than 0.05.

TABLE 5. Comparison of the chewing-side preference - Female group.
McNemar’s Test [32].

As the CSP for the male group, we performed
McNemar test [32] analogously for females. Table 5 presents
the results of the tests with bread, apple, and cookie. The
p-values were 0.302, 0.289 and 0.114, respectively. Such
result indicates no statistically significant difference between
the techniques. Considering the number of episodes of lateral-
ity, the occurrence of the predominance to the right is superior
to all food types, for the two groups (male and female) and
both techniques.

In conclusion, the results show no statistically signifi-
cant difference between the proposed analysis and traditional

clinical evaluation. However, the validation, comparing it
with the gold-standard method, is also necessary since both
methods add a compatible bias related to their use and to the
interference in the movement pattern. Such result indicates
that our system could provide objective information regarding
such evaluation, without adding necessarily any extra bias.

B. MASTICATION EVALUATION BASED
ON UNSUPERVISED LEARNING
For the mastication evaluation analysis, the experiments
compare acceleration mastication values of healthy subjects
and simulated subjects with Jaw pathologies. In particular,
the simulation corresponds to patients with facial trauma
performing masticatory movements.

Different configurations have been explored to gauge the
SOM’s and K-means’ performances. Initially, Normal and
Dysfunctional jaw mastication movements have been clus-
tered using SOM with various iterations. Posteriorly, explor-
ing the most efficient number of iterations, it is possible to
compare the behavior for different foods within each group
(Intra-Group). This experiment has been performed with both
algorithms.

The dynamic behavior of masticatory movements has been
analyzed with the following SOM settings: Neurons grid
dimension: 20×20, 30×30, and 50×50; Convergence rate:
1.0 and 2.0; Learning rate: 0.1.

1) SOM-NUMBER OF ITERATIONS
Normal and Disfunctional jaw mastication movements have
been clustered using SOM with various iterations. Figure 5
shows the results using SOM for the Female Group, chew-
ing Bread (a-c), Apple (d-f), and Cookie (g-i). Exploring
500 (a, d, and g), 1000 (b, e, and h) and 2000 (c, f, and i)
iterations.

As shown in Figure 5, it is possible to notice a clear
separation between theNormal andNon-normal groups. Such
performance represents a high efficiency of SOM to cluster
subjects according to masticatory features. Therefore, for the
following subsections, SOM with 500 interactions has been
used as default setting.

Figure 6 shows the Male (a, b, c) and Female (d, e, f)
individuals, normal and non-normal, chewing bread (a, d),
apple (b, e) and cookie (c, f) clustered by a SOM algorithm
with 500 iterations. It can be clearly noticed that the approach
is able to detect the difference among normal and non-normal
subjects for both genders.

2) K-MEANS - POLAR REPRESENTATION
For the K-Means experiment, two clusters and
500 interactions have been selected.

The polar-based 2-dimensional mapping of the K-Means
clustering algorithm for both gender groups is represented
in Figure 7. Individuals with normal mastication (filled
points) are inside the circular area (filled circle) for all cases,
while the non-normal ones (simulated pathologies) are out-
side the circle (non-filled circles).

VOLUME 6, 2018 2100310



C. V. Lucena et al.: Mastication Evaluation With Unsupervised Learning

FIGURE 5. SOM clusters - Bread (a-c), Apple (d-f), and Cookie (g-i) - Female - Normal (4) x Disfunction (©) - Iterations: 500, 1000,
and 2000.

On the other hand, comparing both gender groups, it is
possible to see that the normality area of the Female group
is smaller than the Male group one. Such difference cor-
roborates the comparison results described previously in the
Validation test numeral, where the samples of the Female
group showed less variation than Male patterns. Therefore,
considering the previously reported standard deviation val-
ues, a smaller normality area would be expected.

Trials with Bread (for both gender groups) show the small-
est normality area, indicating an attractive option for the
evaluation. For instance, considering that such region is more
restrict, it may correspond to a challenging goal and, possibly,
a more efficient rehabilitation goal.

The mentioned results show that both SOM and
K-Means approaches can visually differentiate normal from
non-normal mastication patterns for different subjects.
However, both methods have advantages and drawbacks.

The SOM method presents multi-dimensional individ-
uals in a 2-dimensional space, preserving its differences
and similarities through their distances. On the other hand,
the polar-based 2-dimensional visualization K-Means does

not gauge the differences between individuals (exploring the
gap between them), instead of this, it represents the dis-
tance between each mastication and the centroid of a reg-
ular chewing pattern, which is the center of the normality
region.

In the case of K-Means, it is much more intuitive to eval-
uate how problematic is the mastication of a given subject
and, consequently, it is possible to track the evolution during
a therapy process. For instance, as can be seen in Figure 7.c
there are individuals with different non-normal situations,
showing several levels of non-normality. This effect may
be explored to track a patient evolution achieved during its
rehabilitation, such that on the occasion that the distance
from the normality area was reduced, the therapy has been
successfully applied.

Unlike the K-Means method, it is not possible to track
evolutions of an individual during therapy, as represented
in Figure 6.c.; SOM method shows only the separation
between the normal and non-normal mastication patterns.
According to the performed tests, we noticed that both SOM
and K-means were able to group the different subjects even
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FIGURE 6. SOM clusters with bread, apple, and cookie at the same time - Male (a,b,c)/Female (d,e,f) - Iterations: 500, 1000,
and 2000.

FIGURE 7. K-Means clusters - Bread/Apple/Cookie - Male (a-c) x Female (d-f) - Normal x Disfunction.

with a reduced number of iterations and a robust grid of
neurons, elapsed time: 58.25 ± 2.16 and 55.38 ± 3.25 sec-
onds, respectively. By increasing the number of iterations and

neurons, the outcomes persisted, not justifying, thus,
the inherent rise of the data processing time and computa-
tional cost.
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FIGURE 8. Assessment report.

C. MASTICATION EVALUATION ASSESSMENT REPORT
Summarizing the mastication analysis method of this work,
we propose an assessment report represented in Figure 8.
The synthesized and intuitive description may be relevant
to diagnose several dysfunctions. The put-forward report
style brings an overview of the acquired data, including the
results of SOM and K-means clustering, as well as, the Jaw-
Movement features (i.e.Number ofMasticatory Cycles, Total
Mastication Time, Time/Cycle, Chewing-side Preference and
Vertical Range).

Therapist and Patient may eventually notice an unbalanced
pattern during the evaluation for each kinematic feature, com-
paring its results with the previously obtained by subjects
with normal mastication. The use of such information as a
feedback during the rehabilitation is arguably very useful.
Therefore, in case a patient’s data are within the green region
of a specific kinematic feature, it means that it belongs to the
normality group for this feature. Moreover, the closer is the
patient’s result to the center of the green area, the healthier is
his Jaw mastication features.

On the other side, in the horizontal bars of the assessment
report, the normality reference is the center of the green area,
but the border of such areas corresponds to a tolerance degree
of normality deviation, which varies for each feature. Further-
more, this report allows either the comparison of a subject
within a group witsh similar anthropometric features or even
of the patient’s current state with his condition in previous
evaluations.

IV. CONCLUSION
Jaw-tracking using MEMs sensors has shown to bring more
kinematic features of the mastication for the health-care pro-
fessional, such as minimum, median, and maximum cycle
time chewing side preference values, as well as, the mini-
mum, median, and maximum range of motion. The discom-
fort to chew food during the experiments, when referred,

is compatible to the one experienced with the traditional
evaluation methods, which adds an inevitable bias to the
examination. In future works, in order to minimize such bias,
we will validate this novel approach with a wireless system
in patients during rehabilitation. Furthermore, the proposed
method can be easily implemented as a small-size, low-cost
and high-performance system, such that a wearable device
can be applied in small ambulatories and not only be limited
to laboratory environments.

Based on our experiments, SOM and K-Means, unsuper-
vised learning algorithms, have presented excellent perfor-
mance to process Jaw-movements data, showing encouraging
results and potential to bring a full assessment of the masti-
catory function. In particular, K-Means provides the concept
of normality area, which is a new feedback for the therapist,
allowing to track the mastication rehabilitation performance.
To enable the use of our approach as real-time feedback, our
algorithm must be improved since it groups the data based on
a predetermined sample.
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