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Abstract 

Background & Objective 

Alzheimer’s Disease (AD) patients at multiple stages of disease progression have a 

high prevalence of seizures. However, whether AD and epilepsy share 

pathophysiological changes remains poorly defined. In this study, we leveraged high-

throughput transcriptomic data from sporadic AD cases at different stages of cognitive 

impairment across multiple independent cohorts and brain regions to examine the role 

of epilepsy-causing genes.  

 

Methods 

Epilepsy-causing genes were manually curated, and their expression levels were 

analyzed across bulk transcriptomic data from three AD cohorts and three brain regions. 

RNA-seq data from sporadic AD and control cases from the Knight ADRC, MSBB, and 

ROSMAP cohorts were processed and analyzed under the same analytical pipeline. An 

integrative clustering approach employing machine learning and multi-omics data was 

employed to identify molecularly defined profiles with different cognitive scores.  

 

Results  

We found several epilepsy-associated genes/pathways significantly dysregulated in a 

group of AD patients with more severe cognitive impairment. We observed 15 genes 

consistently downregulated across the three cohorts, including sodium and potassium 

channels, suggesting that these genes play fundamental roles in cognitive function or 

AD progression. Notably, we found 25 of these genes dysregulated in earlier stages of 

AD and become worse with AD progression. 

 

Conclusion 

Our findings showed that epilepsy-causing genes showed changes in the early and late 

stages of AD progression, suggesting that they might be playing a role in AD 

progression. We can not establish directionality or cause-effect with our findings. 

However, changes in the epilepsy-causing genes might underlie the presence of 
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seizures in AD patients, which might be present before or concurrently with the initial 

stages of AD. 

Introduction  

Evidence from studies involving rodents and humans across various research methods 

strongly supports the idea that network dysconnectivity and hyperexcitability are 

important intrinsic features of Alzheimer's disease (AD) [1]. Seizures and epileptiform 

activity are classic manifestations of network hyperexcitability [2]. AD is associated with 

an increased risk of seizures, with up to 15–20% of patients affected. Seizures are 

associated not only with an earlier onset of cognitive decline but also with more rapid 

disease progression [2]. Specific features of epileptiform discharges are associated with 

clinical seizures in AD. Epileptiform activity and chronic hyperexcitability promote 

amyloid-β (Aβ)  plaque deposition and tau hyperphosphorylation [3].  

A recent meta-analysis identified a 1.8-fold increased risk of AD in people with epilepsy, 

while patients with AD are at a 3.1-fold higher risk of epilepsy [4]. Recent studies have 

shown an important bidirectional connection between epilepsy and AD [5–9] and 

highlighted that cognitive impairment frequently coexists with epilepsy and appears to 

be associated with multiple phenotype variables including age, gender, educational 

attainment, and the dosage of antiseizure medications [10]. The rate of dementia 

incidence among epilepsy patients has been shown to increase, particularly among the 

elderly [5,11]. This relationship has been further reported to be associated with worse 

clinical outcomes and shorter lifespans [12,13]. Furthermore, increasing evidence 

suggests that people who develop epilepsy after the age of 40, without a known cause, 

are more likely to develop AD compared to those who do not have epilepsy [5]. The 

association between AD and epilepsy, particularly mesial temporal lobe epilepsy, has 

led researchers to identify a potential new subtype of AD characterized by more 

substantial neuronal loss and a rapid decline in cognitive and clinical functions [8]. A 

causal association between AD and generalized epilepsy was observed, and this 

association was robust to sensitivity analyses. It was further validated by a significant 

association between lower CSF Aβ42 and an increased risk of generalized epilepsy [6]. 
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Previous studies have investigated the correlation between AD pathology and epilepsy 

[3,14–27] and have identified the underlying factors that have implications in this 

correlation. Aβ plaques and neurofibrillary tangles (NFTs), the two major hallmarks of 

AD,  have been frequently linked to epilepsy [3,14,15,17]. Additionally, APOE ℇ4, the 

most significant genetic risk factor for sporadic AD, was also identified as a contributing 

factor for epilepsy [28]. Brain proteomics from epilepsy and AD patients have identified 

alterations in numerous proteins that interact with tau or are regulated by tau expression 

in epilepsy [20] although the exact mechanisms remain unclear. Other common factors 

between epilepsy and AD are changes in the glutamate and glutamine cycle [21,22], 

structural or functional defects of ion channel proteins [23], neuroinflammation [24], 

locus coeruleus degeneration [25] and metabolic alterations [26,27]. However, the 

molecular changes underlying the link between AD and epilepsy remain poorly 

understood. In this study, we analyzed high-throughput transcriptomic profiles from 

multiple AD cohorts and brain regions to investigate whether shared transcriptomic 

signatures can provide novel insights into the role epilepsy-causing genes in AD. 

 

Materials and Methods  

Study cohorts  

The Knight Alzheimer Disease Research Center (Knight ADRC) 

Summary statistics from the transcriptomic data from the parietal cortex from 255 

sporadic AD participants and 23 controls were included in this study [29]. Total RNA 

was extracted from frozen parietal cortex tissue using a Tissue Lyser LT and purified 

using RNeasy Mini Kits (Qiagen). The Nanodrop 8000 (Thermo Scientific) and 

TapeStation 4200 (Agilent Technologies) were used to perform quality control of the 

RNA’s concentration, purity, and degradation. The RNA integrity number (RIN) was 

calculated using an RNA 6000 Pico assay on a Bioanalyzer 2100 and TapeStation 4200 

(Agilent Technologies). The DV200 value is defined as the percentage of nucleotides 

greater than 200nt. All cDNA libraries were prepared using a TruSeq Stranded Total 

RNA Sample Prep with Ribo-Zero Gold kit (Illumina) and sequenced on an Illumina 
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HiSeq 4000 using 2 × 151 paired-end reads at the McDonnell Genome Institute at 

Washington University in St. Louis.  

 

The Mount Sinai Brain Bank (MSBB) study 

The RNA-seq raw data from the MSBB study [30] was downloaded from the Synapse 

portal (syn3157743). Only data from the parahippocampal gyrus (PHG, BA36) were 

selected for this study. Briefly, RNA-seq libraries were prepared using the TruSeq RNA 

Sample Preparation Kit v2 (Illumina, San Diego, California, USA). The rRNAs were 

depleted using the Ribo-Zero rRNA Removal Kit (human/mouse/rat) (Illumina). Single-

end non-standard reads of 101 bp were generated by Illumina HiSeq 2500 (Illumina). 

 

The Religious Orders Study and Memory and Aging Project (ROSMAP) 

The RNA-seq raw data from the dorsolateral prefrontal cortex (DLPFC) from the 

ROSMAP Study [16] were downloaded from the Synapse portal (syn17008934). Briefly, 

RNA was extracted using Qiagen’s miRNeasy mini kit (cat. no. 217004) and the RNase-

free DNase Set (cat. no. 79254) and quantified by Nanodrop. Agilent Bioanalyzer 

evaluated quality. Library preparation was performed by poly-A selection followed by 

first strand-specific cDNA synthesis, then dUTP for second strand-specific cDNA 

synthesis, and fragmentation and Illumina adapter ligation for library construction. 

Illumina HiSeq generated paired-end read sequences with a length of 101 bp. Only No 

Cognitive Impairment (NCI) and AD with no other cause of cognitive impairment cases 

were used in this study [29]. 

 

Statistical Analysis 

RNA-seq QC, alignment, and gene expression quantification 

RNA-seq datasets from the three cohorts were processed and aligned using our in-

house RNA-seq pipeline [29]. Reference genome GRCh38 and GENCODE 33 

annotation, including the addition of ERCC spike-in annotations, were used. Before 

alignment, the quality of raw read sequences for all libraries was assessed using 

FastQC (v0.11.9) [31]. All read sequences were aligned to the human reference 

genome (GRCh38) using STAR (v.2.7.1a) [32]. Post-alignment quality was evaluated 
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using Picard tools (v.2.8.2) [33]. All samples that failed to pass the QC or were outliers 

were removed from the downstream analyses. Raw read counts for transcripts/genes 

were generated using STAR, and normalized gene expression levels were computed in 

Fragments Per Kilobase of transcript per Million mapped reads (FPKM) format as 

previously described [29]. 

 

Molecular profiling using an integrative clustering approach  

AD molecular profiles were identified using iClusterBayes [34] , iClusterPlus R package 

(v1.22.0), [35]. Differential expression (DE) analyses were performed to compare cases 

in each AD profile to the control cases and the cases in other profiles using DESeq2 R 

package (v.1.22.2) [36]. All models were adjusted by sex, age at death, and the 

percentage of astrocytes and neurons. Only genes with expression > 0.5 CPM (count 

per million) in at least 25% of samples in either group being compared were retained for 

downstream analyses. All genes with FDR < 0.05 were considered differentially 

expressed genes (DEGs) [29]. This study only focuses on the DEGs between the worse 

cognitive profile and other sporadic AD cases in each cohort.   

 

Pathways enrichment Analysis  

Pathway analyses were performed using the EnrichR R package (v3.0) [180], using 

dysregulated genes to compare the worse cognitive profile of the sporadic AD cases 

across the three cohorts.  

 

Brain Cell proportion based on single-cell transcriptomics  

The estimated cellular population structure from gene expression data was computed 

using the CellMix R package (v1.6.2) [37]. The gene panel (marker genes expressed 

highly in specific cell types) and the machine learning model[38].  

 

Results 
Dysregulated epilepsy-causing genes in the multi-omics profile associated with 

synaptic plasticity dysfunction in AD 
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We have recently identified a subtype of AD cluster associated with significant 

dysregulation of synapse-related genes and pathways (from now on referred to as 

“synaptic plasticity dysfunction or SPD”). This subtype has clinical and 

neuropathological features correlates including significantly higher clinical dementia 

rating (CDR) at death, shorter survival after symptom onset, more severe 

neurodegeneration and astrogliosis, and decreased levels of metabolomic, suggesting 

an association with more severe cognitive profiles  [29]. Here, we extended these 

analyses to study the correlation between the SPD profile and epilepsy-causing genes 

using transcriptomic profiles from AD patients (Table 1). We combined a list of 105 

genes shown by the Epilepsy Foundation (https://www.epilepsy.com/causes/genetic) 

and Wang et al., 2017 [39] . We integrated it with the multi-omics integration analyses 

we performed previously [29]. 

 

In our previous work [29], we performed multiple differential gene expression analyses 

(see Material and Methods) to compare cases in the SPD to other AD cases (from now 

on referred to as “sporadic AD or sAD”, Fig. 1a-c) as well as to the control cases in 

each AD cohort. We focused our analyses on the epilepsy-causing genes dysregulated 

between the SPD and the sAD profile. We first intersected the list of these genes with 

the list of dysregulated genes between the SPD and sAD profile in the three cohorts 

(Fig. 1d). Out of the 105 epilepsy-associated genes we selected, 45 (43%) were 

significantly dysregulated in the Knight ADRC SPD, 67 (64%) in the MSBB profile, and 

41 (39%) in the ROSMAP profile (Fig. 1d). We then extracted the shared set of 

dysregulated genes across the three cohorts which included 16 epilepsy-associated 

genes (Fig. 1d and Table 2). Interestingly, 15 genes were consistently downregulated 

across the three cohorts, and only one gene (CERS1) was upregulated (Fig. 1e-g). 

Using RNA-seq data from human induced pluripotent stem cells (iPSC)-derived 

neurons, microglia, macrophages, and astrocytes (see Material and Methods), we 

observed that many of these genes were highly expressed in iPSC-derived neurons 

(Fig. 2a). These results were consistent with human brain gene expression generated 

from single-nuclei RNA-seq data from the parietal cortex of 67 Knight ADRC 

participants [40] (Fig 2b). Nine of these genes (ARHGEF9, GABRA1, GABRB3, 
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GABRG2, GRIN2A, HCN1, NECAP1, SCN1A, SCN8A) were mainly synaptic genes. 

Table 2 shows the different epileptic phenotypes in each of the 16 genes involved. For 

instance, CERS1 was shown to be involved in progressive myoclonic epilepsies (PME) 

[41,42], a group of heterogeneous disorders characterized by myoclonus, epileptic 

seizures, and progressive neurologic deterioration, which may include cognitive decline 

and ataxia [43]. This may indicate the correlation between the cognitive profile of AD 

and epilepsy since people with PME show a decline in cognitive function over time. We 

observed that nine genes: UBA5, ARHGEF9, GABRB3, SCN8A, HCN1, SLC25A12, 

NECAP1, FGF12, GABRA1, were involved in the Early infantile epileptic 

encephalopathy (EIEE) phenotype. These results suggest that the SPD of AD involved 

multiple epilepsy-causing genes with multiple epilepsy phenotypes. 

 

Intersection between SPD cluster in AD and epilepsy-related pathways  

We performed multiple biological pathway analyses and identified epilepsy-related 

pathways, including Glutamatergic synapse, Dopaminergic synapse, and GABAergic 

synapse (Fig 3a), all involved in various neurological and psychiatric disorders [44–49]. 

These pathways include genes encoding glutamate and GABA  receptors (GRIN2A, 

SLC1A2, PLCB1, GRIN2B, SCN1A, GABRB3, GABRA1, and GABRG2) (Fig 3b). 

Additionally, we identified the Nicotine addiction pathway, which includes the genes 

GABRB3, GABRA1, GRIN2A, GRIN2B, and GABRG2 (Fig 3b). Growing evidence 

shows that patients with epilepsy smoke at high, which may lead to an increase in 

seizure frequency [50–52]. Another significant pathway is circadian entrainment due to 

two glutamate ionotropic receptors (GRIN2A, GRIN2B (Fig 3b). Increasing evidence 

shows the interaction between epilepsy and circadian rhythms [53]. 

 

Next, we looked at the Gene Ontology (GO) biological process pathways and observed 

that many were related to synaptic transmission, regulation, and glutamate signaling 

pathways (Fig 3c). These pathways were enriched in synaptic genes (Fig 3d). The 

sodium ion transport pathway is another significant one (Fig 3c). Many genetic 

mutations within genes that encode sodium channels have been identified in patients 

with epilepsy [54]. One of the top GO molecular function pathways identified were 
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channel activity pathways (Fig 3e), including voltage-gated sodium channel activity, 

GABA-gated chloride ion channel activity, ligand-gated anion channel activity, 

glutamate-gated calcium ion channel activity, chloride channel activity, which are 

implicated in the pathogenesis of epilepsy [54–58]. The top GO cellular component 

pathways were related to channel/receptor complex and synaptic membrane-related 

pathways (Fig 3g-h). Altogether, these results show that the SPD cluster of AD is 

significantly enriched in epilepsy-related pathways.  

 

Epilepsy-causing gene dysregulation at multiple stages of AD 

We selected the epilepsy-associated genes dysregulated in the SPD cluster and 

examined the effect size differences between the early-AD vs. control and the late-AD 

vs. control among the ROSMAP cohort (Fig 4a-b). Interestingly, we observed a 

concordant change of epilepsy-causing gene dysregulation in early and late AD 

compared to controls; however, the effect was more pronounced at later stages (Fig 4b, 

R2
adj = 0.94, p = 1.1x10-15, slope=1.2). This was consistent among 25 epilepsy genes 

including 23 down-regulated genes (ARHGEF9, CACNB4, CDKL5, FGF12, GABRA1, 

GABRB3, GABRG2, GRIN2A, GUF1, HCN1, KCNQ3, MEF2C, NECAP1, NHLRC1, 

PPT1, PRICKLE1, SCARB2, SCN1A, SCN2A, SCN8A, ST3GAL5, STRADA, UBA5) 

and two up-regulated genes (CERS1 and WWOX) (Fig 4b). WWOX is associated with 

epileptic encephalopathy (EE) [59–63] (aka WOREE syndrome or WWOX-related 

epileptic encephalopathy), a severe type of epilepsy associated with severe cognitive 

and behavioral impairment starting in infancy and early childhood. Similarly, 

homozygous mutations in the CERS1 gene have been linked to progressive myoclonic 

epilepsies Type 8 [41,42]. Three genes, GABRG2, HCN1, and PRICKLE1, had the most 

robust effect size (< -0.3 in both stages) among down-regulated genes (Fig 4b). 

Mutations in the GABRG2 gene have been linked to multiple epilepsy syndromes, 

including simple febrile seizures (FS), childhood absence epilepsy (CAE), generalized 

epilepsy with febrile seizures plus (GEFS+), and Dravet syndrome (DS) [64]. Previous 

studies have shown that mutations in HCN1 can cause epilepsy through multiple HCN1 

channel mechanisms, including loss-of-function (LOF) and gain-of-function (GOF) [65–
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67]. Similarly, previous work has identified mutations in the PRICKLE1 gene associated 

with autosomal recessive progressive myoclonus epilepsy-ataxia syndrome [68,69]. 

 

Discussion 

The present study analyzed high-throughput transcriptomic data from sporadic AD 

cases and other AD cases with more severe cognitive profiles (SPD profile) across 

multiple AD cohorts and brain regions. We aimed to examine the relationship between 

molecularly defined profiles of AD and epilepsy-causing genes. Our findings corroborate 

the epilepsy-AD connection. In addition, we observed that these epilepsy-causing genes 

are mainly downregulated in AD earlier stages and correlate with AD progression. 

These results may indicate that epilepsy-causing genes are associated with both the 

onset and progression of AD, which could suggest that epileptic mechanisms might be 

present before or concurrently with the initial stages of AD. However, it remains 

uncertain which disorder precedes the other.  

 

We found several epilepsy-causing genes/pathways dysregulated in the AD SPD 

profile, 16 of which were shared across the three cohorts of AD. Interestingly, 15 were 

consistently downregulated across the three cohorts, indicating that these genes 

probably encode proteins that present fundamental roles in cognitive function. We 

observed nine synaptic genes (ARHGEF9, GABRA1, GABRB3, GABRG2, GRIN2A, 

HCN1, NECAP1, SCN1A, SCN8A) highly expressed in iPSC-derived neurons, which 

may indicate synaptic dysfunction for both AD and epilepsy. ARHGEF9 is a post-

synaptic gene known to play a role in GABAergic synapses [70], and exhibits significant 

clinical heterogeneity, with epilepsy being a typical clinical phenotype [71–73]. 

GABRA1, GABRB3, and GABRG2 are genes that encode GABAA receptor subunits. 

Disrupted GABAergic neurotransmission has been found in AD [74], and impaired 

GABAergic transmission might lead to the development of seizures in the early stages 

of AD through hippocampal hyperexcitability and an imbalance between excitation and 

inhibition [75]. We also identified GRIN2A, a gene encoding for the GluN2A subunit of 

the NMDA receptors [76]. Mutations in GRIN2A have been reported to be associated 

with multiple neurodevelopmental disorders, including epilepsy-aphasia spectrum 
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(EAS), developmental delay (DD), and intellectual disability (ID) [76–78]. GRIN2A is 

downregulated in AD samples [79]. These results suggest that GRIN2A may have 

protective roles, and its downregulation could contribute to the AD-epilepsy connection. 

 

The decreased expression of HCN1 was shown to be associated with epilepsy [80], 

visual function [81,82] and learning and memory [83,84]. NECAP1 isa gene that 

encodes for a protein involved in clathrin-mediated endocytosis  ]85[ ,playing a 

fundamental role in the early stages of this process. It is critical for synaptic vesicle 

recycling, a key process in neurotransmission [86,87]. The loss of function of NECAP1 

results in severe infantile epileptic encephalopathy [85,88–90]. SCN1A and SCN8A  

encode two of the four voltage-gated sodium channels (VGSCs) primarily expressed in 

the central nervous system. Beyond their well-known association with epilepsy [91,92], 

SCN1A and SCN8A have also been frequently associated with ID and cognitive 

impairment [93–96], even in the absence of seizures [97,98]. Clinical screening of a 

family with Dravet Syndrome (DS) recently found an SCN1A missense mutation [99]. 

Years later, one family member, initially diagnosed with generalized epilepsy without ID, 

was diagnosed with AD, and a neuropathological examination confirmed the AD 

diagnosis by identifying NFT and Aβ pathology [99]. These findings align with our 

findings and suggest  the connection between AD and DS patients, which often face 

early mortality and cognitive deficits.  

 

We also identified KCNQ3, which encodes for the voltage-gated potassium channel 

subfamily Q member 3. Mutations in KCNQ3 are associated with various forms of 

epilepsy, including benign familial neonatal epilepsy, infantile epilepsy, and epileptic 

encephalopathy with ID and cortical visual impairment [100–103]. Moreover, we 

identified UBA5, PPT1, SLC25A12, MEF2C, and FGF12, all of which have been 

reported to play a role in epilepsy and AD [104–125]. Notably, we found downregulation 

of MEF2C, which maintains proper physiological processes in multiple brain cell types 

[117].  
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Interestingly, CERS1 was the only gene upregulated in the SPD cluster, which encodes 

Ceramide Synthase 1, an enzyme involved in ceramide biosynthesis [126]. It catalyzes 

the synthesis of C18 ceramide and is expressed in many tissues, predominantly in the 

CNS [126,127]. CERS1 deficiency causes Progressive Myoclonic Epilepsy [41,42]. 

Increased cerebrospinal fluid levels and plasma C18 ceramide are associated with 

elevated AD markers, worse disease progression, and inflammation [128–130]. The 

decreasing plasma ceramide C18 concentration is also associated with improved 

cognitive performance [131]. Moreover, chronic insulin resistance, another feature of AD 

[132], increases ceramide production, further impairing insulin signaling and creating a 

vicious cycle with significant implications for AD [133]. CERS1 is regulated by the 

PI3K/AKT signaling pathway [134], which is dysregulatedin AD [135]. Interestingly, 

disturbed insulin signaling, particularly the PI3K/AKT pathway, has also been proposed 

in epilepsy [19,136,137]. Hence, alterations in the regulation of CERS1 and its function 

in producing ceramide emphasize the potential importance of ceramide metabolism in 

both epilepsy and AD. 

 

We found larger effect sizes in epilepsy-causing genes at later AD stages which indicate 

that AD patients are at an increased risk for seizures in advanced disease stages [138]. 

Corroborating our findings, a recent study reported that subclinical epileptiform activity 

(SEA) increased in the AD continuum compared to controls, with its presence 

correlating with AD progression [139]. In these AD cases, SEA was associated with 

more severe visuospatial and attention impairments [139].  

 

In a recent study, ~90% of proteins altered in the hippocampus of epilepsy patients 

were also significantly changed in advanced AD [20]. Most of synapse and 

mitochondrial proteins were altered in the same direction in both conditions; many 

ribosomal proteins were changed in opposite directions [20]. Interestingly, some 

proteins reported by the authors overlap with the findings in our study, including SCN2A 

decreased in epilepsy and AD [20]. SLC25A22, another SLC25 mitochondrial carrier 

family member, was reduced in both disorders [20], aligning with the downregulation of 

SLC25A12 observed in our study. SCN2A, one of the four VGSCs primarily expressed 
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in the CNS, was decreased in their research [20], along with the downregulation of 

SCN1A and SCN8A observed here. These findings highlight common molecular 

pathways and potential therapeutic targets shared between epilepsy and AD, 

particularly in synaptic and mitochondrial function. 

 

Although dysregulated epilepsy-causing genes might be unleashing AD pathogenesis, 

AD pathology may be triggering seizures along with disease onset. Thus, the 

dysregulation of epilepsy-associated genes could occur after AD pathology initiates. 

These two hypotheses underscore the complexity of the relationship between epilepsy 

and AD. A third and more plausible hypothesis is that the interrelation between the two 

suggests that either condition could precede the other, and the onset may vary between 

individuals. 

 

Conclusion 

The intricate interaction between epilepsy and AD reveals a two-way relationship 

influenced by common genetic pathways and overlapping pathophysiological 

mechanisms. Our study shows that epilepsy-causing genes are disrupted in AD, 

particularly in later stages, indicating a potential role in the progression of the disease. 

These findings highlight the possibility that mechanisms involved in epilepsy may 

precede or co-occur with early AD pathology. At the same time, changes associated 

with AD may also worsen neuronal hyperexcitability and lead to seizures. The reduced 

transcript levels of synaptic genes such as ARHGEF9, GABRA1, GABRB3, and others 

indicate their crucial roles in cognitive function and potential association with epilepsy 

and AD. These findings support previous research linking disturbed GABAergic and 

glutamatergic neurotransmission to AD development and suggest that changes in these 

pathways contribute to the observed decline in cognitive function. Additionally, 

identifying down-regulated genes such as SCN1A, SCN8A, and HCN1 emphasizes their 

dual roles in controlling neuronal excitability and synaptic function, implicating them in 

the progression of epilepsy and AD. Our results highlight the importance of genetic 

findings in the clinical context and indicate that AD patients with epilepsy tend to 

experience more severe cognitive impairments and faster disease progression. This 
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supports clinical observations of increased seizure susceptibility in different stages of 

AD, particularly in advanced phases. It underscores the importance of early detection 

and management of epilepsy in AD patients. In addition, the shared genetic pathways 

between epilepsy and AD suggest potential therapeutic targets that could benefit both 

conditions. This highlights the necessity for integrated treatment strategies. Our findings 

contribute to a deeper understanding of the connection between epilepsy and AD, 

although the exact order in which they overlap remains unclear. We believe that the 

development of epilepsy and AD may vary among individuals, underscoring the 

importance of personalized approaches, particularly leveraging genetic technology. The 

comprehension of these mechanisms will facilitate the development of targeted 

treatments addressing shared genetic vulnerabilities, thereby potentially improving 

outcomes for individuals affected by both epilepsy and AD. The results of the 

Levetiracetam for Alzheimer’s Disease-Associated Network Hyperexcitability (LEV-AD) 

trial provide a hint that stratification based on the epileptiform phenotype in AD could be 

crucial, particularly for developing targeted therapies to reduce network 

hyperexcitability. 
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Tables 
 
Table 1. Demographic characteristics of AD and control cases. 

         AD Control 

Study N Tissuea Female 
(%) 

Age 
(mean,sd) 

APOE 
ℇ4+ (%) 

Female 
(%) 

Age 
(mean,sd) 

APOE 
ℇ4+ (%) 

Knight ADRC 278 PC 60 83.8(8.6) 58.04 73.9 88.6(8.8) 0 

MSBB 217 BM36 67.1 84.4(6.7) 19.29 66.6 80.6(8.3) 18.5 

  BM10 67 84.2(6.8) 20.73 69.7 81.3(7.0) 15.1 

  BM22 62.9 83.6(6.9) 23.38 70 81(8.0) 16.6 

  BM44 66.6 84.3(6.7) 20.92 64.2 80.5(8.3) 17.8 

ROSMAP 237 DLPFC 70.8 90.7(5.9) 39.58 53.7 84.1(6.8) 10.7 
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Table 2.  Summary of the statistical information for the shared epilepsy genes  
 

Gene 
Knight ADRC MSBB ROSMAP Directionality 

of change Phenotype 
FC* FDR FC FDR FC FDR 

CERS1 0.27 1.1e-03 0.67 3.7e-06 0.18 4.8e-02 Up Progressive myoclonic epilepsies (PME) [39,41,42] 

UBA5 -0.16 1.6e-04 -0.56 1.1e-12 -0.14 4.7e-02 Down 
Early infantile epileptic encephalopathy (EIEE) [140–

142] 

KCNQ3 -0.23 4.8e-02 -0.38 5.5e-06 -0.35 3.0e-07 
Down Benign familial neonatal seizures (BFNS) 

[101,143,144] 

PPT1 -0.24 4.9e-04 -0.41 3.5e-08 -0.11 3.7e-02 Down Neuronal ceroid lipofuscinosis [109,111,145] 

ARHGEF9 -0.25 9.4e-04 -0.34 1.5e-05 -0.18 4.2e-04 Down EIEE [146] 

GABRB3 -0.25 2.5e-02 -0.43 1.5e-06 -0.28 1.7e-05 
Down 

Childhood absence epilepsy (CAE) [147,148]/EIEE 
[149] 

SCN8A -0.25 4.1e-02 -0.3 2.6e-04 -0.23 8.6e-04 Down 
Benign familial infantile seizures (BFIS) [150]/EIEE 

[151] 

HCN1 -0.3 3.2e-02 -0.75 1.0e-10 -0.46 3.2e-07 Down EIEE [65] 

SLC25A12 -0.37 8.6e-06 -0.66 6.2e-11 -0.42 1.4e-09 Down EIEE [152,153] 

NECAP1 -0.4 4.3e-08 -0.83 1.0e-15 -0.34 1.4e-09 Down EIEE [89] 

SCN1A -0.4 2.9e-03 -0.62 2.5e-05 -0.34 3.3e-05 Down 
Dravet syndrome (DS)/Familial febrile seizures (FFS)/ 

Generalized epilepsy with febrile seizures plus 
(GEFS+) [154,155] 

GRIN2A -0.41 5.2e-04 -0.58 1.4e-08 -0.29 6.0e-05 Down Focal epilepsy and speech disorder (FESD) [156,157] 

MEF2C -0.44 2.0e-04 -0.66 1.3e-09 -0.22 6.3e-04 Down  Mental retardation [158] 

FGF12 -0.57 1.7e-06 -0.85 2.7e-14 -0.38 8.6e-07 Down EIEE [159,160] 

GABRA1 -0.68 2.5e-05 -0.93 1.2e-11 -0.23 1.5e-02 
Down 

EIEE/CAE/Juvenile myoclonic epilepsy (JME) [161–
163] 

GABRG2 -0.69 6.0e-06 -0.82 5.1e-11 -0.53 1.8e-08 Down FFS/GEFS+/CAE [64,164] 
* FC is the Fold Change in Log2 scale.     
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Figures Legends  
 
Fig. 1: Dysregulated epilepsy-causing genes in the multi-omics profile 
associated with synaptic plasticity dysfunction (SPD) in AD. (a) Volcano plot showing 
the up-and downregulated genes identified between cases in the SPD profile vs other sporadic 
AD cases in the Knight ASRC cohort. (b and c) Same as “a” but in the MSBB and ROSMAP 
cohorts. (c) same as “a” and “b” but for ROSMAP cohort. (d) Venn diagrams depicting the 
number of dysregulated epilepsy-causing genes in each cohort as well as the overlap between 
them in three cohorts. (e) Heatmap of the expression profiles of the common epilepsy-causing 
genes from the knight ADRC cohort. (f and g) Same for “e” but from the MSBB and ROSMAP 
cohorts.  
 
Fig. 2: Dysregulated epilepsy-causing genes in the SPD profile are highly 
expressed in neurons. (a) The RNA-seq expression of the dysregulated epilepsy-
causing genes in human induced pluripotent stem cells (iPSC)-derived neurons. (b) The 
effect size of the overepxression of each of the dysregulated epilepsy-causing gene in a 
speicfic cell type relative to other cell types computed from single-nuclei data from the 
Knight ADRC participants. “N” indicates that no data was available for CERS1 in the 
single-nuclei data.    
 
Fig. 3: Intersection between SPD profile in AD and epilepsy-related pathways. (a) 
Barplot showing the top 20 KEGG pathways. (b) Circle plot showing the epilepsy-
causing genes invovled in each pathway. (c,d,e,f,g, and h) Same as “a” and “b” but for 
GO biological process, GO molecular function, and GO cellular component respectively.   
 
Fig. 4: Epilepsy-causing gene are dysregulated at multiple stages of AD. (a) Venn 
diagrams showing the number of SPD dysregulated epilepsy-causing genes between 
early-AD vs control and late-AD vs control in the ROSMAP cohort, as well as the 
number of the common ones among the two comparisons. (b) Scatterplot showing the 
correlation of effect size between early-AD and late-AD for common SPD epilepsy-
causing genes in the ROSMAP cohort.       
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