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Abstract: Three-dimensional (3D) point cloud registration is an important step in three-dimensional
(3D) model reconstruction or 3D mapping. Currently, there are many methods for point cloud
registration, but these methods are not able to simultaneously solve the problem of both efficiency
and precision. We propose a fast method of global registration, which is based on RGB (Red, Green,
Blue) value by using the four initial point pairs (FIPP) algorithm. First, the number of different RGB
values of points in a dataset are counted and the colors in the target dataset having too few points are
discarded by using a color filter. A candidate point set in the source dataset are then generated by
comparing the similarity of colors between two datasets with color tolerance, and four point pairs are
searched from the two datasets by using an improved FIPP algorithm. Finally, a rigid transformation
matrix of global registration is calculated with total least square (TLS) and local registration with the
iterative closest point (ICP) algorithm. The proposed method (RGB-FIPP) has been validated with
two types of data, and the results show that it can effectively improve the speed of 3D point cloud
registration while maintaining high accuracy. The method is suitable for points with RGB values.

Keywords: 3D point cloud; point cloud registration; global registration; RGB; four initial point pairs;
RGB-FIPP

1. Introduction

Three-dimensional (3D) point cloud registration is very important in 3D point cloud data
processing, which can provide support for post-processing such as feature extraction, 3D modeling,
object recognition, etc. Because three-dimensional coordinate values of each point cloud data are
acquired with a scanner as the coordinate origin, the data collected at each station must be stitched
together into the same scene through point cloud registration. Given two point cloud datasets, P is the
target point cloud and Q the source point cloud. Point cloud registration is the process of looking for
an optimal rigid transformation matrix so that source point cloud Q can be transformed into Q’ and
the overlapping regions of P and Q’ are as close as possible.

In order to solve this question, Besl and McKay [1] proposed the iterative closest point (ICP)
algorithm in 1992. Based on iterative optimization, the ICP algorithm solves the transformation matrix
by using pairs of nearest 3D points in the target and source datasets as correspondences, and transforms
the original point dataset into new coordinates by using the matrix. It then repeats the above steps
until the accuracy requirements are satisfied. The ICP algorithm can achieve high registration accuracy,

Sensors 2020, 20, 138; doi:10.3390/s20010138 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8813-6601
http://dx.doi.org/10.3390/s20010138
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/1/138?type=check_update&version=3


Sensors 2020, 20, 138 2 of 25

and it is very robust. However, it has drawbacks, such as being susceptible to local minima, having a
small convergence basin, and generally requiring a high number of iteration steps until convergence
can be reached [2]. To solve this problem, many researchers have conducted studies to improve the ICP
algorithm, which include improving the method of resampling [3], devising a better way to search for
point-to-point correspondences [4], speeding up registration based on a dynamic adjustment factor [5],
and improving its registration accuracy [6]. However, there has no single method that can solve all
these problems with the ICP algorithm, although there are many ways to improve it.

Another approach to improve registration involves dividing the processing of 3D registration into
two stages: global registration (or coarse registration) and local registration (or fine registration). In
the stage of global registration, the two point cloud datasets P and Q are roughly aligned together, and,
in the second stage, a local registration based on the ICP algorithm is performed. Because after global
registration the locations of two datasets are very close, this method can avoid the disadvantages of ICP,
accelerate the convergence rate, and reduce the number of iterations when performing local registration.

Research into global registration is concentrated on three aspects: descriptors, searching strategies,
and the rigid transformation matrix. First, descriptors aim at encoding the local shape around a
point in terms of a set of numerical values. By using descriptors, the differences between every
point can be calculated, and according to a criterion a small number of points with significant
characteristics can be chosen. This can not only reduce the computation time and the number of
points to be considered, but can also find the similarity of the same points in two point cloud datasets.
In these descriptors, normal and surface curvature [7] are not robust and easily affected by noise
and neighbor radius, moment invariants [8], and spherical harmonic invariants [9], and integral
volume descriptors [10] are robust, but still sensitive to noise. The final approach is to apply object
recognition to point cloud registration, e.g., spin image (SI) [11], 3D shape context (3DSC) [12], point
signatures [13], curvature-based histograms [14], a point feature histogram (PFH) [15], a fast point
feature histogram (FPFH) [15], rotational projection statistics (RoPS) [16], a local surface patch (LSP) [17],
and tri-spin-images (TriSI) [18], signatures of geometric centroids (SGC) [19], local voxelized structure
(LoVS) [20], triple orthogonal local depth images (TOLDI) [21], rotational contour signatures (RCS) [22],
and rotational silhouette maps (RSM) [23]. However, the computational complexity of calculating
descriptors is O(kn) at best, such as in a FPFH [19], where k is the number of neighborhood points to a
given point and n is the number of points in a dataset [24].

Second, searching strategies are used to find the proper point-to-point correspondences between
two datasets. Theoretically, at least three points pairs in two datasets are needed to determine a rigid
transformation matrix. If all points in two datasets need to be searched, the cost is O(n6). For the
requirement of fast speed in global registration, this is inadvisable. There have two methods advanced
to solve this problem. The first method extracts a small number of points in order to reduce the size of
n, which still belongs to the step of calculating the descriptor. The second is to improve the searching
strategy so that the computational complexity can be reduced. Presently, the more mature methods
are random sample and consensus (RANSAC) [25], random sampling (RANSAM) [26], four-points
congruent sets (4PCS) [27], greedy initial alignment (GIA) [14], four initial point pairs (FIPP) [28], and
evolutionary computation (EC) [29]. Among these, the computational complexity of GIA and FIPP are,
respectively, O(C2·ln 2n

) and O(kC4), which are both less than that of the other methods, where k and C
are the number of neighborhood points and candidate points, respectively.

After determining the searching strategies, point-to-point correspondences between two datasets
can be determined and, finally, a rigid transformation matrix involving a three-dimensional coordinate
transformation will be solved. The traditional method of 3D coordinate transformation is least
squares (LS) [30]. In addition, the methods of total least squares (TLS) [31,32], weighted total least
squares (WTLS) [33–35], and robust weight total least squares (RWTLS) [36,37] were proposed to solve
problems such as the coefficient matrix, gross error, etc. In 3D point cloud registration, point-to-point
correspondences are determined by distances between points, so there can be no gross errors in points
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for registration because of the constraint of distances. In this paper, TLS is used to solve the rigid
transformation matrix.

Overall, the conventional steps of point cloud registration are global registration and
local registration. Global registration includes calculating descriptors, searching point-to-point
correspondences and solving a rigid transformation matrix. Local registration usually performs the
ICP algorithm. The purpose of global registration is to roughly align the two datasets together, so
as not to make the ICP fall into a local optimum during subsequent local registrations. Therefore,
global registration focuses more on speed than accuracy, because the final accuracy of registration
is determined by the results of local registration and the ICP algorithm has been proven to have a
high accuracy. In this paper, we focus on finding a fast method of global registration to improve the
efficiency of point cloud registration.

Color is the important information in a point cloud that can be obtained directly from the point
cloud dataset. Color information usually consists of three channels: red, green, and blue (referred to
as RGB). RGB value is usually expressed in two ways, i.e., integer and floating-point. In the integer
expression, the values of each channel range from 0 to 255; in floating-point, the three channels are
merged into 24-bit binary numbers. When two point clouds with color information are used for
registration, RGB values of the same points in the overlapping area are the same or similar in theory.
This provides the possibility of searching point-to-point correspondence. At the same time, RGB values
for each point are independent, and we do not need to consider the relationship between a point and its
neighbors. Therefore, if RGB value is used to describe the feature of a point instead of descriptors, the
computational complexity of extracting feature points will be reduced from kn to n, which will greatly
improve the registration efficiency. At present, there are few studies on point cloud registration based
on RGB values. Johnson [38], Druon [39], Hao [40], and Ren [41] used point cloud color information
for the ICP algorithm to accelerate the registration, but the RGB value is only an additional condition,
and the drawbacks of the ICP algorithm have yet to be solved. Yamashita [40] used RGB value to solve
the problem of underwater image registration, but the images were 2D.

In this paper, we propose a fast method of registration based on RGB value of a point and an
improved FIPP algorithm (RGB-FIPP). The RGB-FIPP algorithm performs global registration by using
the RGB value of a point as a descriptor, the improved FIPP algorithm as the search strategy of
point-to-point correspondences, and the ICP algorithm for local registration. The results show that the
proposed method is faster and has high accuracy.

2. Searching Strategy with FIPP Algorithm

This section may be divided by subheadings. It should provide a concise and precise description of
the experimental results, their interpretation as well as the experimental conclusions that can be drawn.
The FIPP algorithm [28] is mainly used in point cloud registration. It searches the correspondences
of the point pairs for registration from two point cloud datasets within three constraints: features of
points, distances between points, and location relationships. Features of points is used to generate the
candidate point set for a given point, distances between points can match the same point pairs from
two point cloud datasets, and location relationships are used to prevent the overall point pairs from
being in the wrong direction.

Given two point cloud datasets P and Q, where P is the target dataset and Q is the source dataset,
FIPP first chooses l points from P that are evenly distributed over the dataset and then randomly
selects four points from l. The purpose of this is to ensure that those four points are in the overlap
area. Second, candidate point set C in Q of four points in P are generated, and all combinations of the
candidate point set are traversed for each of the four points. The combination, which has the smallest
difference between the distance and consistent direction, comprises the corresponding points of the
four points. If all differences between the distances in candidate points are more than threshold or if
direction is inconsistent, the current four points in l are discarded and new points are reselected until
four initial point pairs are determined. Next, based on the four initial point pairs, new points pi+j from
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P are added in turn, and the best candidate points qi+j are also chosen within the constraints of feature
and distance, until the number of point pairs satisfies point cloud registration. After that, the final
point pairs can be used to generate a rigid transformation matrix.

The reason that the number of initial point pairs is four is that the new point satisfying the distance
constraint is unique and the best candidate point is determined only by the constraints of feature and
distance, not location relationship.

As can be seen from Figure 1, if the number of initial points is 1, the new points satisfying the
distance constraint are likely to be located in any position on a sphere, where the distance between
the new points and pi is r. Likewise, the new points may be a circle or two points, respectively, if the
number is 2 or 3. Only when the number is 4 is the new point unique.
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Meanwhile, four initial points from P must be in the overlap area; otherwise, corresponding points
from Q cannot be found or the point-to-point correspondences are wrong. To ensure this, l points
selected from P are as evenly distributed as possible by setting a minimum distance d between any two
points, so the distance between any two points in the l points satisfies the following formula:√(

xpi − xp j

)2
+

(
ypi − yp j

)2
+

(
zpi − zp j

)2
> d (1)

These l points may not all be in the overlap area, but the probability of four of which being greater
and l points being distributed evenly also increases this probability.

Once four initial points in P are chosen, the key of the FIPP algorithm is the searching strategy for
the corresponding points of four initial points. At first, four corresponding candidate point sets for
four initial points from source dataset Q are constructed as follows:

C =
{
ci
∣∣∣ci =

〈
pi, qi1, qi2, qi3, · · · , qik, 1 ≤ i ≤ 4

〉 }
(2)

where k is the number of candidate points for pi. The candidate points for each point are selected by
calculating the feature similarity of all points. Only k points with the most similar characteristics are
regarded as the candidate points, which can improve the search efficiency of the corresponding points.
Figure 2 shows the results of selecting candidate points, where Figure 2b,d are candidate points of
Figure 2a,c, respectively.

The distances between any two points from four initial points in P are then calculated; meanwhile,
all combinations of candidate point set in Q are traversed. Finally, the candidate point combination
with the minimum distance differences corresponding to four points is considered to be the best
corresponding points, and the formula is as follows:√(

xpi − xp j

)2
+

(
ypi − yp j

)2
+

(
zpi − zp j

)2
−

√(
xqir − xq jr

)2
+

(
yqir − yq jr

)2
+

(
zqir − zq jr

)2
< σd, (3)

where σd is the threshold for the difference of distance. If all combinations of candidate points cannot
satisfy Equation (3), four initial points are discarded, and four new points will be reselected from
l points.
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Additionally, another constraint describing the relative position relationship between points is
used to ensure that the relative orientation of points is consistent, and it is expressed as

qir =

 true,
(
zpi > zp j ∩ zqir > zq jr

)
∪

(
zpi < zp j ∩ zqir < zq jr

)
f alse,

(
zpi > zp j ∩ zqir < zq jr

)
∪

(
zpi > zp j ∩ zqir < zq jr

) . (4)

As a rule, when a 3D scanner scans the object, the instrument is perpendicular to the ground, so
the z values of the same two points in both point datasets have a consistent relationship; that is, if
the z value of pi is greater than pj in P, then qi must also be greater than qj in Q. The FIPP algorithm
determines the four initial point pairs by traversing combinations of candidate points within the
constraints of feature similarity, the same distance, and direction consistency. Figure 3 is the process of
selecting four point pairs.
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Figure 3. The process of Initial four point pairs by using FIPP algorithm: (a) Evenly distributed l
points in target dataset (b) Initial four points from l in target dataset (c) Four corresponding points in
source dataset.

After four initial point pairs are selected, new point pairs are selected in turn. New point pi+j in P
is constrained by Equation (1), while qi+j is constrained by Equations (2) and (3), but not Equation (4),
because the distance between the new point and four initial points are unique.

3. Candidate Point Set Based on RGB Value

The FIPP algorithm has been used in point cloud registration without RGB value [28], which used
a point descriptor as the feature constraint. The results show that the accuracy of the FIPP algorithm
with a descriptor is good in five types of point cloud datasets. However, a point feature descriptor such
as a FPFH must calculate the multi-dimensional histogram of all points by using their neighborhood
points, so the computational complexity is O(kn) in the best of situations, and some are even O(k2n),
where k is the number of neighborhood points and n is the number of points in a dataset. In practice,
the time for calculating descriptors will be longer because the result is not a single value, but a multi- or
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high-dimensional histogram. In this paper, we propose a faster method of registration called RGB-FIPP,
which uses the RGB value as a point feature to generate candidate points and uses an improved FIPP
algorithm to search correspondences.

3.1. Statistics of Points of the Same Color

RGB value is the most intuitive and simplest feature in a point cloud dataset. Generally, the
same points in different datasets should have the same or similar color, so the search range of the
corresponding points can be reduced by looking for points with the same or similar color from two
datasets. In other words, attention is shifted away from a large number of points towards the different
colors, which is similar to feature point extraction.

Figure 4 shows two RGB point cloud datasets. The left-hand figure is a target dataset with
45,205 RGB points and the right-hand figure a source dataset with 53,949 RGB points. Because every
point has a RGB value, some points in a dataset may have the same color. We can count the number of
colors and classify points with the same color into the same class. Figures 5 and 6 show, respectively,
the number of different colors from the target dataset and source dataset.
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It can be seen from Figures 5 and 6 that, there are approximately 20,000 colors in the target and
source, datasets, respectively, and the number of points of the same color ranges from 1 to over 100.
However, the number of colors is still high even though it has decreased by more than half. In addition,
colors with a smaller number of points are much more numerous than those with a large number of
points. Therefore, the distribution of colors should be counted in order to understand the proportion
of colors with the same number of points.
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Table 1 shows the distribution of colors with the same number of points in two datasets. As a
general rule, colors with one point account for nearly 80% (79.34% and 78.38%) of all points, two points
account for nearly 10% (9.79% and 10.40%), and the more points with the same color, the smaller the
proportion of color. However, if the number of points of the same color is too few, these points are
probably not the same points in the two datasets, so they have little effect on registration.

Table 1. The distribution of colors with the same number of points in two datasets.

The Number of
Points in the
Same Color

The Number of Colors
with the Same Number of

Points in Target Dataset

The Ratio of Colors with
the Same Number of

Points in Target Dataset

The Number of Colors
with the Same Number of
Points in Source Dataset

The Ratio of Colors with
the Same Number of

Points in Source Dataset

1 15,772 79.34% 17,100 78.38%
2 1946 9.79% 2268 10.40%
3 621 3.12% 751 3.44%
4 290 1.46% 395 1.81%
5 196 0.99% 215 0.99%
6 146 0.73% 149 0.68%
7 115 0.58% 106 0.49%
8 76 0.38% 102 0.47%
9 57 0.29% 75 0.34%

10 68 0.34% 74 0.34%
10 < n ≤ 20 317 1.59% 338 1.55%
20 < n ≤ 30 137 0.69% 117 0.54%

n > 30 139 0.70% 128 0.59%

3.2. Color Filtering

The FIPP algorithm must search point-to-point correspondences within the constraint of feature,
and now that constraint will be replaced by RGB value. With these two motivations, colors with a
small number of points must be filtered by setting a threshold, and the formula is

RGBi =

{
true, NRGBi > σn

f alse, NRGBi ≤ σn
(5)

where RGBi is the RGB value of the ith color, NRGBi the number of points for which the RGB value
is RGBi in a point cloud dataset, and σn the threshold used to remove color with a small number
of points. If NRGBi is greater than σn, the color is retained, as well as all points with that color, and
vice versa. The purpose of this is to reduce the number considered when searching point-to-point
correspondences in the two datasets. Figures 7 and 8 are the statistics of points with the same color
from two datasets after filtering.
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From Figures 7 and 8, it can be seen that the number of types of colors are greatly reduced after
filtering, to 2162 and 2450, respectively.

3.3. Points of the Same Color from Two Datasets

Based on the discussion in the preceding subsection, the corresponding points of the same color
from two datasets can be confirmed, and the formula is

pi = true∩ q j = true, RGBpi = RGBq j

pi = f alse, RGBpi ,
{
RGBq

∣∣∣q = 1, 2 · · ·m
}

q j = f alse, RGBq j ,
{
RGBp

∣∣∣p = 1, 2 · · ·n
} (6)

where pi and qj are, respectively, the ith and jth points in the target and source datasets, RGBpi and
RGBq j are the RGB values of points pi and qj, respectively, RGBp and RGBq are the values of the pth and
qth colors in the two datasets, respectively, and m and n are the number of types of colors in the two
datasets. Only when the RGB values of points pi and qj are equal can point-to-point correspondences be
built. Figure 9 shows a comparison of the points from two datasets with the same color correspondence.

In Figure 9, the blue lines indicate the number of points of the same color in the target dataset and
the red lines indicate that of the source dataset. In terms of the number of colors, it is decreased by
approximately half because some colors in the two datasets are not the same. In terms of the number
of points of the same color, there are large differences in the same color from the two datasets. In some
colors, the number of points in the target dataset is far greater than in the source dataset, while being
far less in others. The reason for this is that the two datasets were acquired twice and there was a slight
deviation in color between the two images.
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3.4. Candidate Points Set with RGB Value Tolerance

However, point-to-point correspondence is very critical in FIPP. It may obtain the incorrect result if
the number of points of the same color in both the target and source datasets varies widely. Meanwhile,
point-to-point correspondences in the two datasets are searched with FIPP by considering points
from the source dataset as the candidate set of points of the same color from the target dataset. Thus,
if the number of candidate points is too small, it is very difficult to determine the point-to-point
correspondences. One solution is to set a color tolerance to points in the source dataset, while leaving
the points in the target dataset unchanged. In this way, the number of candidate points is increased to
improve the possibility of point-to-point correspondence. The formulas are

RGBqi

{
∈ RGB j,

∣∣∣RGBqi −RGB j
∣∣∣ ≤ σc

< RGB j,
∣∣∣RGBqi −RGB j

∣∣∣ > σc
(7)

RGBqi

{
∈ RGB j,

∣∣∣Rqi −R j
∣∣∣ ≤ σ∩ ∣∣∣Gqi −G j

∣∣∣ ≤ σ∩ ∣∣∣Bqi − B j
∣∣∣ ≤ σc

< RGB j,
∣∣∣Rqi −R j

∣∣∣ > σ∪ ∣∣∣Gqi −G j
∣∣∣ > σ∪ ∣∣∣Bqi − B j

∣∣∣ > σc
(8)

where Formulas (7) and (8) are applied to the case in which the values of color belong to the types of
floating-point and RGB integers, respectively. RGBqi is the color value of point qi in the source dataset,
RGBj the jth color in the source dataset, σc the threshold for color tolerance, and Rqi , Gqi , and Bqi are
the values of R, G, and B, respectively, of point qi. When the type of color is floating-point, the point
qi belongs to the jth color if the absolute value of the difference between RGBqi and RGBj is less than
σc, and vice versa. Similarly, when the type of color is integer with a R, G, and B value, the point qi
belongs to the jth color if all absolute values are less than σc. Figure 10 shows a comparison of the
points from two datasets with the same color correspondence using color tolerance.
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The types of colors in Figure 10 are slightly more in number than those in Figure 9. This is because
corresponding points in color for some points in the target dataset, which have none of the same colors
as in the source dataset, can be found by setting the threshold for color tolerance. Additionally, the
number of points with the same color in the source dataset has been increased, while the number in
the target dataset remains the same. In this way, the possibility that a point in the target dataset can
be searched for the corresponding point from the source dataset is increased. In order to apply RGB
value to the FIPP algorithm to implement point cloud registration, the formula of target points and
candidate points set with the same color is improved as follows: Cp =

{
cpi

∣∣∣cpi =
〈
RGBi, pi1, pi2, pi3, · · · , pik, 1 ≤ k ≤ m

〉 }
Cq =

{
cqi

∣∣∣cqi =
〈
RGBi, qi1, qi2, qi3, · · · , qil, 1 ≤ l ≤ n

〉 } (9)

where Cp and Cq are point sets with the same color in the target and source datasets, cpi and cqi are
point sets both with ith color, pik and qil are the kth and lth points in their respective set, respectively,
and k and l are the number of points in each respective set. Different from the situation of only one
point from the target dataset and several points from the source dataset in the candidate point set,
where the descriptor is regarded as the feature of a point, the candidate points sets both consist of
more than one point from the two datasets when RGB value serves as the feature of a point. Figure 11
represents the different candidate point sets before and after using color tolerance.
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In Figure 11b, the points in the target dataset and the candidate point of the same color are both 
displayed in red. It can be seen that there are few points in the same location without color tolerance 
between the two datasets, and after using color tolerance the number of candidate points increases 
as do the same points. Furthermore, when searching point-to-point correspondence using the FIPP 
algorithm, the possibility of success in finding point pairs becomes higher with more candidate 
points. Nevertheless, more candidate points may increase the time to search point pairs because FIPP 
is implemented by traversing all combinations of candidate points. Therefore, it is very important to 
choose a reasonable threshold for color tolerance. 

Unlike descriptors, RGB value regarded as the feature of point is obtained without considering 
neighborhood points of each point; therefore, the computational complexity is O(n) in the stage of 
building the candidate point set, which is far less than that for descriptors. It is worth mentioning 
that, when using FIPP to search point-to-point correspondence, time of RGB will be greater than that 
of descriptors because most descriptors represented by high-dimensional histograms that can 

Figure 11. The different results of candidate points extraction before and after using color tolerance:
(a) Points with a given color from target dataset (b) Candidate points with the same color from source
dataset before using color tolerance (c) Candidate points with the same color from source dataset after
using color tolerance.

In Figure 11b, the points in the target dataset and the candidate point of the same color are both
displayed in red. It can be seen that there are few points in the same location without color tolerance
between the two datasets, and after using color tolerance the number of candidate points increases
as do the same points. Furthermore, when searching point-to-point correspondence using the FIPP
algorithm, the possibility of success in finding point pairs becomes higher with more candidate points.
Nevertheless, more candidate points may increase the time to search point pairs because FIPP is
implemented by traversing all combinations of candidate points. Therefore, it is very important to
choose a reasonable threshold for color tolerance.

Unlike descriptors, RGB value regarded as the feature of point is obtained without considering
neighborhood points of each point; therefore, the computational complexity is O(n) in the stage of
building the candidate point set, which is far less than that for descriptors. It is worth mentioning
that, when using FIPP to search point-to-point correspondence, time of RGB will be greater than
that of descriptors because most descriptors represented by high-dimensional histograms that can
distinguish subtle differences of points result in fewer candidate points. Therefore, it is very critical to
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set the proper threshold σc in Formulas (7) and (8). In Section 5, we will discuss the influence of σc

on registration.

4. RGB Point Cloud Registration

When a candidate points set with color tolerance is defined, the FIPP algorithm can be performed
to look for point-to-point correspondence between two point cloud datasets. After this, a rigid
transformation matrix can be obtained with point-to-point correspondence as to global registration, and
then point cloud registration is accomplished by local registration. In this section, the FIPP algorithm
is improved for searching strategy with RGB value, a rigid transformation matrix of global registration
is calculated TLS, and local registration is calculated by the ICP algorithm. The complete 3D point
cloud registration flow chart is presented in Figure 12.
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4.1. Improvement of FIPP Algorithm in 3D RGB Point Cloud Registration

When the FIPP Algorithm is applied to point cloud registration by using FPFH, candidate points
are generated with the similarity of FPFH, and then point-to-point correspondences are searched.
FPFH is a high-dimensional descriptor, so it is able to distinguish subtle differences between points
from a point cloud dataset. RGB value is only a number that has a low degree of differentiation, so
registration accuracy with RGB value is lower than with FPFH. However, RGB value only applies to
global registration, which focuses more on efficiency, and the accuracy can be guaranteed in the local
registration. In FIPP, four initial point pairs are searched at first, and on this basis new point pairs are
constantly being generated until the number is satisfied. The purpose of adding new point pairs is
to improve the accuracy. However, if RGB value is used in FIPP, new point pairs do not make any
contribution to the improvement of registration accuracy.

A new point pair is verified by calculating three constraints and the total computational complexity
of new point pairs is k·nl·nc, where k denotes the number times of successfully finding a correct point
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in P that have the same point in Q, nl is the number of point pairs that needs to be added, and nc is the
number of candidate points. When FPFH is used in FIPP, k is small because FPFH has a high degree
of differentiation on points, and it is highly probable that the candidate points in Q of a given point
in P contain the same point, so the time for searching new point pairs is not very long. While RGB
value is used in FIPP, k may be greatly increased as well as search time because of the low degree of
differentiation in RGB.

From the above discussion, new point pairs not only cannot improve registration accuracy, but can
also increase runtime; meanwhile, in global registration, runtime and efficiency are of greater concern.
In this way, new point pairs are not necessary, and in this paper the FIPP algorithm is simplified to
only search for four initial point pairs in order to improve efficiency.

4.2. Rigid Transformation Matrix of Global Registration

After four initial point pairs are determined, a rigid transformation matrix can be calculated with
these point pairs for global registration. There are many ways to calculate a rigid transformation
matrix, mainly including LS, TLS, WTLS, and RWTLS. In this paper, point pairs for local registration
are chosen by FIPP, which are determined by the distances between points, so there is no gross error in
point pairs. Therefore, TLS can solve the problem. Because the algorithm of TLS is very mature, the
principle of TLS is not described in this paper.

4.3. Local Registration with ICP

Two point cloud datasets are roughly aligned together after global registration; however, local
registration is also required in order to align two datasets accurately. In this paper, local registration is
performed with the ICP algorithm, which aligns two datasets accurately through iteration; the steps
are as follows:

1. Search the nearest point in target dataset P for every point in source dataset Q, and constitute
point-to-point correspondence;

2. Generate a rigid transformation matrix by using point-to-point correspondence, and transform
the source dataset into a new dataset with the matrix;

3. Determine whether the value of RMS(P*,Q*) is less than a threshold (see Equation (10)); if greater,
go back to step 1 and continue; otherwise, proceed to the end:

RMS(P∗, Q∗) =

√√
1
n

n∑
i=1

(
‖pi − q j‖

)2
< σ, (1 ≤ j ≤ m) (10)

where pi is the nearest point in the target dataset of qj in the source dataset, m and n are the number of
P and Q, respectively, and σ is the threshold for minimum distance between the two datasets.

Despite the ICP algorithm having some drawbacks, such as local minima and high computational
complexity, etc., it can eliminate defects and achieve a high precision of registration after
global registration.

4.4. Evaluations of Registration Results

Evaluations of registration results include two aspects: efficiency and accuracy. In terms of
efficiency, runtime is an important indicator. By analyzing the different runtimes with different
parameters, the law of efficiency can be revealed. In addition, by comparing runtimes between
RGB-FIPP and FIPP, the advantages of the algorithm’s efficiency can be verified. By running the
RGB-FIPP algorithm continuously several times, its stability can be tested. In addition, the entire
runtime with RGB-FIPP consists of several parts: generating candidate points with RGB value,
searching point-to-point correspondences with improved FIPP, and performing local registration with
ICP. Runtime for each of these parts will be determined separately in order to determine the specific
advantages of the algorithm.
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Regarding accuracy, the method of using RGB value to find point-to-point correspondences is less
accurate than FIPP because RGB is only a value, while FPFH is a high-dimensional histogram that
has a higher level of distinction. However, in RGB-FIPP, global registration is not the end. After this,
a local registration will be performed, so the accuracy of RGB-FIPP should be evaluated after local
registration. Meanwhile, because local registration is performed with the ICP algorithm, its accuracy
depends on that of the ICP algorithm. Currently, the ICP algorithm has been proven to be one of the
most accurate methods, so the accuracy of RGB-FIPP will no longer be discussed in this paper.

5. Experimental Results and Analysis

In this section, we illustrate the process of point cloud registration, which includes the results
of four initial point pairs, global registration with RGB value by using the improved FIPP algorithm,
and local registration by using the ICP algorithm. We also discuss the influence of parameters and the
comparison of runtime between RGB-FIPP and other methods.

5.1. Test Data

To verify the results of the proposed method, in this study we use six sets of point cloud
datasets, which name are SuperMario, Doll, Duck, Frog, Peterrabbit and Squirrel. All of datasets were
downloaded from the SHOT website (http://www.vision.deis.unibo.it/research/80-shot). Among them,
SuperMario datasets were acquired with Space time Stereo and the others with Kinect sensor. Figure 13
shows the six datasets used for the experiment and their original location.
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Figure 13. The original datasets: (a) SuperMario; (b) Doll; (c) Duck; (d) Frog; (e) Peterrabit; (f) Squirrel.

In six sets of datasets, SuperMario have the largest numbers of points which are both more than
40,000. The smallest number is the squirrel datasets which have about 8000 points. The rest of datasets
are somewhere in between, about 10,000 to 20,000. The nearest distances between points fall in two
types. SuperMario datasets have a nearest distance of 8 cm. Other datasets, which were acquired with
Kinect sensor, have the distances of 0.14 to 0.2 cm. The detailed information is shown in Table 2.

Table 2. The comparison of six datasets.

Dataset Sensor Points Number of Target Dataset Points Number of Source Dataset Nearest Neighbor

SuperMario Stereo 41,702 44,276 8 cm
Doll Kinect 13,609 14,083 0.2 cm
Duck Kinect 25,109 26,905 0.15 cm
Frog Kinect 26,623 23,656 0.15 cm

Peterrabbit Kinect 13,944 13,357 0.15 cm
Squirrel Kinect 8353 7331 0.14 cm

http://www.vision.deis.unibo.it/research/80-shot
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5.2. Experimental Processes and Results

5.2.1. Color Filtering

Table 3 shows the numbers of original colors and filtered colors for different datasets by using
Equation (5). The two SuperMario datasets have 20,485 and 21,306 kinds of RGB values in the target
and source datasets, respectively. After color filtering by setting σn to 10, the numbers of remaining
colors are 593 and 583, which are only about 3% of the original. For other datasets, the values of σn are
all set to 2. The numbers of filtered colors are between about 2% and 5% of the original color. Among
them, the Duck dataset has the most remaining colors and the Squirrel the least. This indicates that the
color discriminations of the five types of datasets with Kinect are different. The duck dataset is the
most colorful, and the squirrel the least.

Table 3. The Comparison of color before and after filtering of six datasets.

Dataset
Color Number Number of Filtered Colors

Target Dataset Source Dataset Target Dataset (%) Source Dataset (%)

SuperMario 20,485 21,306 593 (2.89%) 583 (2.74%)
Doll 9950 10,515 415 (4.17%) 420 (3.99%)
Duck 18,277 19,810 966 (5.29%) 970 (4.90%)
Frog 18,160 16,311 648 (3.57%) 510 (3.13%)

Peterrabbit 10,052 10,319 388 (3.86%) 486 (4.71%)
Squirrel 5716 6391 142 (2.48%) 197 (3.08%)

The filtered colors and their candidate points will participate in the implementation of the
improved FIPP algorithm in order to choose four points pairs. Take the SuperMario datasets as an
example, the numbers of the filtered colors are 593 and 583. When the color tolerance is used to
generate the candidate points set, 593 colors in target dataset all have candidate points that range from
13 to 119. Therefore, the improved FIPP algorithm will be executed in theses 593 colors and their
candidate points.

5.2.2. Selection of Four Points Pairs

Figure 14 shows the results of searching four point-to-point correspondences in six datasets. The
red points are the four points pairs obtained by using the improved FIPP with RGB value, and other
colors are the original RGB values.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 25 

 

5.2. Experimental Processes and Results 

5.2.1. Color Filtering 

Table 3 shows the numbers of original colors and filtered colors for different datasets by using 
Equation (5). The two SuperMario datasets have 20,485 and 21,306 kinds of RGB values in the target 
and source datasets, respectively. After color filtering by setting σn to 10, the numbers of remaining 
colors are 593 and 583, which are only about 3% of the original. For other datasets, the values of σn 
are all set to 2. The numbers of filtered colors are between about 2% and 5% of the original color. 
Among them, the Duck dataset has the most remaining colors and the Squirrel the least. This indicates 
that the color discriminations of the five types of datasets with Kinect are different. The duck dataset 
is the most colorful, and the squirrel the least. 

Table 3. The Comparison of color before and after filtering of six datasets. 

Dataset 
Color Number Number of Filtered Colors 

Target Dataset Source Dataset Target Dataset (%) Source Dataset (%) 
SuperMario 20,485 21,306 593 (2.89%) 583 (2.74%) 

Doll 9950 10,515 415 (4.17%) 420 (3.99%) 
Duck 18,277 19,810 966 (5.29%) 970 (4.90%) 
Frog 18,160 16,311 648 (3.57%) 510 (3.13%) 

Peterrabbit 10,052 10,319 388 (3.86%) 486 (4.71%) 
Squirrel 5716 6391 142 (2.48%) 197 (3.08%) 

The filtered colors and their candidate points will participate in the implementation of the 
improved FIPP algorithm in order to choose four points pairs. Take the SuperMario datasets as an 
example, the numbers of the filtered colors are 593 and 583. When the color tolerance is used to 
generate the candidate points set, 593 colors in target dataset all have candidate points that range 
from 13 to 119. Therefore, the improved FIPP algorithm will be executed in theses 593 colors and their 
candidate points. 

5.2.2. Selection of Four Points Pairs 

Figure 14 shows the results of searching four point-to-point correspondences in six datasets. The 
red points are the four points pairs obtained by using the improved FIPP with RGB value, and other 
colors are the original RGB values. 

 
Figure 14. 3D RGB information with four initial points: (a) Target dataset of SuperMario; (b) Source 
dataset of SuperMario; (c) Target dataset of Doll; (d) Source dataset of Doll; (e) Target dataset of Duck; 
(f) Source dataset of Duck; (g) Target dataset of Frog; (h) Source dataset of Frog; (i) Target dataset of 
Peterrabit; (j) Source dataset of Peterrabit; (k) Target dataset of Squirrel; (l) Source dataset of Squirrel. 

Figure 14. 3D RGB information with four initial points: (a) Target dataset of SuperMario; (b) Source
dataset of SuperMario; (c) Target dataset of Doll; (d) Source dataset of Doll; (e) Target dataset of Duck;
(f) Source dataset of Duck; (g) Target dataset of Frog; (h) Source dataset of Frog; (i) Target dataset of
Peterrabit; (j) Source dataset of Peterrabit; (k) Target dataset of Squirrel; (l) Source dataset of Squirrel.
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From Figure 14, the point-to-point correspondences in six datasets are accurate generally, and
all four points are scattered on the datasets. This is because that in the improved FIPP algorithm,
there is a distance constraint when generating random points and the four points pairs are generated
by Equations (1)–(4). Once the four points pairs are generated, the rigid transformation matrix can
be solved.

5.2.3. Global Registration

Figure 15 displays the results of global registration, where the red points are the target datasets
and the blue are the source. In every sub-figure, the left are the front view and the right are the side
view after global registration. The two datasets are all roughly aligned after global registration.
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From the result, the precision of registration is relatively low because color, as the descriptor of
the point in this article, is not as accurate as other high-dimensional descriptors. However, the method
proposed in this paper focuses on the efficiency of registration, and the ICP algorithm will be used
to perform the local registration after the global registration. The result of the ICP is the final result,
which has been proven to have very high accuracy. The efficiency of the RGB-FIPP will be discussed in
Sections 5.3 and 5.4.

5.2.4. Local Registration

Figure 16 shows the results of local registration using the ICP algorithm. The position of the two
datasets from the front and side views after local registration is shown on the left and right in every
sub-figure. After local registration, the two datasets are precisely aligned. In Figure 16, the red and
blue points are the target and source datasets, respectively. From the results, the local registration has
higher accuracy than the global registration.
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5.2.5. Accuracy

As mentioned earlier, the final accuracy of registration is determined by the results of ICP, so
only the accuracy of ICP is discussed in this section. In general, RMS is used to evaluate ICP accuracy.
However, the nearest distances of the six experimental datasets are different. In order to compare the
accuracy of the six datasets uniformly, we use relative RMS for accuracy analysis. Relative RMS is the
ratio of RMS to the nearest distance. The formula is as follows:

rRMS =
RMS

d
(11)

where rRMS is the relative RMS and d is the nearest distance. Table 4 shows the accuracy of six datasets
after the ICP. Except for SuperMario and Squirrel datasets, the relative RMS of the others are 2 to
4 times nearest neighbors. SuperMario has a more than 5 times nearest neighbor, because the datasets
have many noises, clutters, occlusions, etc. These points have no point-to-point correspondence in
another dataset. The relative RMS of Squirrel is more than 9 times. By observation, the shape of the
squirrel is similar to that of a sphere. When the ICP algorithm is used for spherical objects, overlapping
two spherical objects as a whole takes precedence over finding the right place. This is the shortcoming
of the ICP algorithm.

Table 4. Accuracy analysis of six experimental datasets.

Dataset RMS (m) Nearest Neighbor (cm) Relative RMS

SuperMario 0.4422 8 5.5275
Doll 0.0049 0.2 2.4500
Duck 0.0058 0.15 3.8667
Frog 0.0041 0.15 2.7333

Peterrabbit 0.0039 0.15 2.6000
Squirrel 0.0129 0.14 9.2143

Overall, the ICP algorithm can achieve high accuracy in point cloud registration [42]. In this paper,
the traditional ICP algorithm is used for experiments. In fact, there are many ways to improve the
ICP algorithm. If the improved ICP algorithms are used in the method of this paper, the registration
accuracy will be higher.
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5.3. Influence of Parameters

When RGB values are used in global registration, there are two important parameters that may
affect the results, i.e., color filter threshold σn and color tolerance threshold σc. In order to determine the
influence of these two parameters on the results, we performed two sets of experiments for both σn and
σc. In the first set of experiments, the values of σn were set evenly at a constant interval while keeping
σc unchanged. In the other set of experiments, the values of σn were set to three fixed values and σc

to regular values from small to large. We choose two datasets with different acquisition techniques
for experiments, namely SuperMario (Stereo) and Doll (Kinect). The experiments were performed
10 times in succession for each parameter value and the runtime was recorded for comparison.

5.3.1. Color Filter

In this set of experiments, σn is evenly set from 8 to 20 at intervals of 2 for Stereo and from 1 to 4 at
an interval of 1 for Kinect, while keeping σc constant. Figure 17 shows the results for Stereo and Kinect,
and different numbers in the legend represent different values of σn.
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From Figure 17, it is obvious that runtime decreases as σn increases for both Stereo and Kinect,
and when σn is small, the runtime is very long, while it will be reduced quickly and begins to stabilize
as σn is added to a certain value. From the difference, we can see that the runtime for Stereo is higher
than that of Kinect results from the distinction of colors in Stereo being less than that in Kinect, and
because the Stereo dataset has a significant amount of occlusion, clutter, and outliers. In addition,
when σn is greater than 10, the runtime for Stereo tends to be stable, while for a stable Kinect runtime
this value is 2. This occurs because the number of points in Stereo is greater than in Kinect, and thus a
larger value of σn should be set to filter out more points to stabilize the runtime. It is important to note
that larger values of σn are not better, because when σn is too large the number of remaining colors
after filtering may be too small to generate four initial point pairs. For example, if σn is more than 4 in
the Kinect datasets, four initial point pairs cannot be found.

5.3.2. Color Tolerance

In another set of experiments, the color tolerance σc was set to regular values, while σn was set
to three different values. The principle of setting values of σn is based on the runtime being stable
in the first set of experiments. Here, σn was set to 10, 12, and 14 for Stereo and to 2, 3, and 4 for
Kinect. Additionally, in this paper, the type of original point cloud datasets used in the experiments is
floating-point and the values were saved with the power of E, so the values of σc were set according to
the power series of E, ranging from E-46 to E-38. Similarly, if the type of data is integer denoted by R,
G, and B, σc can be evenly set to a constant interval. Tables 5–7 indicate the runtimes of 10 experiments,
and the average time and standard deviation in the Stereo datasets when the σn values are 10, 12, and
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14, respectively. Figure 18 display the runtimes of 10 experiments in the Kinect datasets when the σn

values are 2, 3, and 4, respectively.

Table 5. The time with the different color tolerance when σn is 10 in Stereo datasets.

Serial Number of Experiments E-46 E-45 E-44 E-43 E-42 E-41 E-40 E-39 E-38

1th Time 18.7 18.1 19.0 19.9 18.7 18.7 16.8 16.8 16.7
2th Time 16.9 14.4 17.3 16.7 17.5 20.3 17.0 16.9 16.9
3th time 27.2 15.8 18.7 18.7 17.2 20.6 17.3 16.9 16.9
4th Time 15.7 20.9 17.3 17.2 18.7 16.9 17.0 16.9 16.8
5th Time 15.0 16.9 18.2 19.7 17.4 17.2 17.4 20.8 16.7
6th Time 20.8 21.6 17.3 17.7 19.1 17.0 17.1 16.8 16.9
7th Time 15.1 19.1 17.0 18.4 17.6 17.1 16.7 16.9 16.7
8th Time 15.2 22.5 20.0 19.3 17.6 17.2 22.1 20.3 16.8
9th Time 15.0 16.0 18.6 18.4 17.5 17.5 21.3 16.8 16.8
10th Time 16.4 16.3 18.4 17.5 19.5 17.5 17.8 16.9 16.8

Average 17.60 18.16 18.18 18.18 18.08 18.00 18.05 17.60 16.80

Standard deviation 3.67 2.62 0.91 1.02 0.79 1.32 1.86 1.48 0.08

Table 6. The time with the different color tolerance when σn is 12 in Stereo datasets.

Serial Number of Experiments E-46 E-45 E-44 E-43 E-42 E-41 E-40 E-39 E-38

1th Time 18.2 16.7 17.8 20.7 16.5 17.1 17.2 16.4 16.5
2th Time 17.9 18.1 17.4 21.3 16.6 16.5 17.1 17.3 16.3
3th time 15.2 14.9 17.9 18.4 17.0 16.6 16.5 16.4 16.3
4th Time 16.5 17.2 15.9 19.0 16.3 16.6 17.3 16.4 16.3
5th Time 19.7 25.6 17.2 20.6 18.0 16.6 16.8 16.3 16.6
6th Time 18.1 16.1 21.3 16.0 16.4 18.0 16.9 16.4 16.4
7th Time 17.0 21.9 18.8 16.9 15.9 16.8 17.2 16.5 16.3
8th Time 18.3 14.5 16.7 17.3 17.1 16.9 16.3 16.3 16.3
9th Time 19.9 16.1 16.4 19.5 19.0 17.2 17.5 16.3 16.4
10th Time 14.8 20.4 19.6 19.5 16.3 16.9 16.8 16.2 16.5

Average 17.56 18.15 17.90 18.92 16.91 16.92 16.96 16.45 16.39

Standard deviation 1.61 3.32 1.54 1.67 0.89 0.42 0.35 0.29 0.10

Table 7. The time with the different color tolerance when σn is 14 in Stereo datasets.

Serial Number of Experiments E-46 E-45 E-44 E-43 E-42 E-41 E-40 E-39 E-38

1th Time 25.4 14.6 18.0 22.3 17.1 18.3 16.8 18.7 15.9
2th Time 14.3 15.8 19.3 22.0 17.1 16.9 16.8 18.8 16.0
3th time 21.0 14.4 17.2 16.3 16.3 18.3 16.1 16.2 15.9
4th Time 16.7 17.8 21.8 18.4 19.2 17.1 16.1 16.1 16.0
5th Time 15.7 14.3 16.4 18.8 19.1 16.9 16.7 16.1 16.0
6th Time 14.4 18.1 19.8 17.5 20.4 17.1 16.8 18.5 15.8
7th Time 15.5 24.8 19.3 20.2 16.9 17.3 17.7 16.2 16.0
8th Time 22.2 16.9 18.4 17.1 17.4 18.4 17.0 16.1 15.9
9th Time 15.1 18.4 17.3 17.0 16.7 16.7 17.2 16.1 15.9
10th Time 15.3 18.0 17.5 26.7 18.1 17.1 16.8 16.1 16.1

Average 17.56 17.31 18.50 19.63 17.83 17.41 16.80 16.89 15.95

Standard deviation 3.67 2.93 1.51 3.07 1.26 0.62 0.45 1.17 0.08

We can see from Tables 5–7 that the difference in runtime for the Stereo datasets, most of which is
between 15 and 20 s, is not significant with different values of both σn and σc. However, there are some
nuances worth mentioning. When σc increases, although some runtimes increase and some decrease,
the overall trend of runtime is a decrease and runtime is the lowest with maximum σc. Furthermore, it
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is slightly obvious that the standard deviation decreases as σc increases. This indicates that the larger
the value of σc, the more stable the global registration.

Sensors 2020, 20, x FOR PEER REVIEW 19 of 25 

 

Furthermore, it is slightly obvious that the standard deviation decreases as σc increases. This indicates 
that the larger the value of σc, the more stable the global registration. 

  
(a) (b) 

 
(c) 

Figure 18. The time with the different color tolerance in Doll dataset: (a) σn = 2; (b) σn = 3; (c) σn = 4. 

Figures 18 indicate the trend of runtime with σn and σc values in the Kinect datasets, and the 
regularity is stronger than in the Stereo datasets. As σc increases, runtime generally decreases. 
Moreover, when σc is small, runtime is very different; that is, the maximum can reach tens of seconds 
or even more than 100 s while the minimum is less than 5 s. However, runtime is gradually stabilized 
with σc, and once stabilized the runtimes are almost the same. In addition, with increasing of σn, 
convergence speed becomes increasingly faster. 

Comparing the results of the two sets of experiments, likewise, the stability of runtimes all 
increased with increasing σc. The difference is that the runtime in Kinect will drop and eventually 
stabilize with σc, while the change in Stereo is not significant. Considering that the color 
discrimination of Kinect datasets is greater than that of Stereo, while the number of points is less, the 
number of candidate points to a given point is also less; therefore, more time is required to search 
point-to-point correspondence. Furthermore, if σc is increased to a certain size, the number of 
candidate points will be sufficient for searching point-to-point correspondence, and thus the time 
will decrease. It is also important to note that a larger value of σc is not better either, because larger 
values of σn result in greater registration. 

5.4. Efficiency Comparison 

5.4.1. Comparison with Descriptors 

In order to verity the efficiency of method proposed in this paper, we compare the efficiency of 
RGB-FIPP with FPFH and SHOT, because FPFH and SHOT achieve the best computational 
performance [24]. We used the same computer to execute the three methods without any accelerated 
processing of the programs. At the same time, the parameters of FIPP were the same in all methods, 
except for the improvement described in this paper, and σn values were set to 10 and 4 in the Stereo 
and Kinect datasets, respectively and the σc values were both set to E-42. Because the ICP algorithm 

Figure 18. The time with the different color tolerance in Doll dataset: (a) σn = 2; (b) σn = 3; (c) σn = 4.

Figure 18 indicate the trend of runtime with σn and σc values in the Kinect datasets, and the
regularity is stronger than in the Stereo datasets. As σc increases, runtime generally decreases.
Moreover, when σc is small, runtime is very different; that is, the maximum can reach tens of seconds
or even more than 100 s while the minimum is less than 5 s. However, runtime is gradually stabilized
with σc, and once stabilized the runtimes are almost the same. In addition, with increasing of σn,
convergence speed becomes increasingly faster.

Comparing the results of the two sets of experiments, likewise, the stability of runtimes all
increased with increasing σc. The difference is that the runtime in Kinect will drop and eventually
stabilize with σc, while the change in Stereo is not significant. Considering that the color discrimination
of Kinect datasets is greater than that of Stereo, while the number of points is less, the number of
candidate points to a given point is also less; therefore, more time is required to search point-to-point
correspondence. Furthermore, if σc is increased to a certain size, the number of candidate points will
be sufficient for searching point-to-point correspondence, and thus the time will decrease. It is also
important to note that a larger value of σc is not better either, because larger values of σn result in
greater registration.

5.4. Efficiency Comparison

5.4.1. Comparison with Descriptors

In order to verity the efficiency of method proposed in this paper, we compare the efficiency
of RGB-FIPP with FPFH and SHOT, because FPFH and SHOT achieve the best computational
performance [24]. We used the same computer to execute the three methods without any accelerated
processing of the programs. At the same time, the parameters of FIPP were the same in all methods,
except for the improvement described in this paper, and σn values were set to 10 and 4 in the Stereo
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and Kinect datasets, respectively and the σc values were both set to E-42. Because the ICP algorithm
is used to perform local registration after global registration, which can achieve high accuracy, only
the computational efficiency of the three methods is used for comparison. Experiments were done in
six groups, three of which were used to compare SuperMario datasets and three for Doll. Figure 19
indicate the results for Stereo and Kinect, respectively.
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As can be seen from Figure 19, the runtimes of using FPFH and SHOT are both higher than
RGB-FIPP for the two datasets. In the SuperMario experiments, the runtime of FPFH ranges from
130 to 210 s, and the runtime of SHOT from 186 to 209 s. Overall, the average time of FPFH is 155 s,
which is better than SHOT’s 197 s. However, the runtime of RGB ranges from 53 to 63 s, which is
much smaller than FPFH and SHOT. For Doll datasets, the runtime of FPFH ranges from 35 to 38 s and
that of SHOT ranges from 46 to 49 s. The time of RGB ranges from 15 to 17 s. Similarly, the results of
RGB-FIPP are better than FPFH and FPFH are better than SHOT. In addition, when using SuperMario
datasets, FPFH and SHOT are unstable. This is because the SuperMario datasets have a lot of occlusion
and dispersion. RGB-FIPP results are very stable in both datasets. These results illustrate that the
proposed method is much faster and more stable than FPFH.

Moreover, to understand the differences in detail, the registration process was split into several
parts. In the RGB-FIPP method, the process includes RGB value statistics (including color filtering, RGB
tolerance, and candidate points set), searching point-to-point correspondence, and ICP registration. In
the method FPFH and SHOT, the process includes calculation of FPFH and searching point-to-point
correspondence. Tables 8 and 9 present the comparisons of the two datasets.

Table 8. Comparison of run time in SuperMario datasets.

Experiment Number
RGB-FIPP FPFH SHOT

RGB Value Points Pairs ICP FPFH Value Point Pairs SHOT Value Point Pairs

1th time 13.1 3.3 48 120 17.54 172 14.32
2th time 13.1 3.3 55 121 11.28 178 8.56
3th time 13.1 3.3 47 121 12.26 183 15.36
4th time 13.3 3.3 48 121 56.31 175 16.21
5th time 13.6 3.4 50 120 36.10 171 24.56
6th time 13.4 3.3 50 121 41.23 176 32.91
7th time 13.5 3.4 54 121 9.25 176 13.40
8th time 13.6 3.4 55 121 81.89 174 37.56
9th time 13.6 3.4 50 121 27.78 175 27.78
10th time 13.6 3.4 56 121 48.61 176 18.61

Average time 13.39 3.35 51.3 120.8 34.225 176 20.927

As can be seen from Tables 8 and 9, the calculation times for three descriptors are all very stable as
a whole, however, the times of calculating RGB value are much less than the other two. The runtimes
of searching point-to-point correspondence using FPFH and SHOT in SuperMario datasets are very
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unstable, ranging from 11 to 81 s and from 8 to 31 s, respectively. In addition, the runtimes of searching
point-to-point correspondence with RGB value are all far less than FPFH and SHOT, because RGB-FIPP
only searches for four points pairs. It is worth mentioning that this step of RGB-FIPP is less accurate
than the other two methods, but it can be compensated by the subsequent ICP algorithm. Even if
the time for ICP is added, the total time by RGB is still less than the others. The average total time
of the RGB-FIPP method is 15.5 s, which is better than 36.4 s of FPFH and 48.2 s of SHOT. Thus, 3D
point cloud registration using the method proposed in this paper can achieve both faster speed and
high accuracy.

Table 9. Comparison of run time in Doll datasets.

Experiment Number
RGB-FIPP FPFH SHOT

RGB Value Points Pairs ICP FPFH Value Point Pairs SHOT Value Point Pairs

1th time 1.98 0.47 14 34 3.69 46.58 2.10
2th time 1.99 0.51 12 33 2.13 45.65 2.38
3th time 1.99 0.5 13 34 3.15 44.99 2.91
4th time 1.97 0.93 12 34 2.06 45.77 1.89
5th time 1.99 0.65 14 34 2.29 44.41 3.01
6th time 1.99 0.53 13 33 3.39 46.25 2.59
7th time 1.99 0.6 13 34 2.03 46.09 3.20
8th time 1.97 0.58 13 34 3.75 46.51 3.18
9th time 1.99 0.55 12 34 1.77 45.48 1.95
10th time 1.99 0.49 14 33 3.21 45.04 2.04

Average time 1.985 0.581 13 33.7 2.747 45.68 2.53

In addition to the real runtime comparison of RGB-FIPP with FPFH and SHOT, Table 10 shows
the comparison of RGB and main descriptors in terms of computational complexity and dimensions,
including Spin Image (SI), 3D Shape Context (3DSC), Unique Shape Context (USC), Rotational Projection
Statistics (RoPS), Tri-Spin-Image (TriSI), Local Surface Patch (LSP), Point Feature Histogram (PFH),
FPFH, Signature of Histogram of Orientations (SHOT).

Table 10. Comparison of computational complexity of descriptors.

Descriptor Computational Complexity Dimension

SI O(kn) 225(d2)
3DSC O(kn) 1980(d3)
LSP O(kn) 578(d2)
USC O(kn) 1980(d3)
RoPS O(3kn) 135(5 d3)
TriSI O(3kn) 675(3 d2)
PFH O(k2n) 125(d3)

FPFH O(kn) 33(3d)
SHOT O(kn) 352(d4)

RGB-FIPP O(n) 3

In terms of computational complexity, PFH has the highest complexity which is O(k2n). RoPS and
TriSI are both O(3kn) because they are counted separately in three directions. All other descriptors are
O(kn), except RGB-FIPP is O(n). In terms of the dimensions represented by the value of the descriptor,
3DSC and USC have the highest dimensions, which are both 1980. Besides RGB-FIPP, FPFH has the
lowest dimension at 33. The other descriptors have dimensional values in between. It can be seen that
the computational complexity of the common descriptors is optimally O(kn), and the dimension of the
value ranges from tens to hundreds. However, the complexity of RGB-FIPP is O(n) and the dimension
is 3. Therefore, the computational complexity of RGB-FIPP is the lowest, and it is the fastest.
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5.4.2. Comparison with Other Registration Algorithms

Table 11 shows a comparison of computational complexity between RGB-FIPP and other
registration algorithms.

Table 11. Comparison computational complexity between different registration algorithms.

Computational Complexity Descriptor

RANSAC n3 N
RANSAM n2 N

GIA kn + C2·ln 2m Y
4PCS n2 N

EC nk N
FIPP kn + k’C4 Y

RGB-FIPP n + k’C4 Y

A RANSAC-based method is used to find three points in a target dataset and its corresponding
points in a source dataset by traversing all points, in order to find the best transformation. The
computational complexity of RANSAC is n3, and it is only usable with a small number of datasets.
RANSAM reduces the number of traversed points to two, and transformation is determined by two
points and their normal, so its complexity is n2. GIA extracts feature points with an integral invariants
volume (IID) descriptor and looks for correspondences using a branch-and-bound algorithm, so the
complexity is kn + C2·ln2

m
, where k is the number of neighbor points, and C and m are the number of

candidate and feature points, respectively. Although 4PCS must find four points, three of the four
are close to each other, so the complexity is n2. EC is a searching strategy based on computational
models of evolutionary processes, in which the complexity with nk is determined by the number of
evolutions, where k is usually greater than 2. The complexity of FIPP and RGB-FIPP is kn + k’C4 and
n + k’C4, respectively, where k’ is the times of finding four initial point pairs, and C is the number of
candidate points. Since there is no need to consider neighborhoods, the complexity of RGB-FIPP is the
lowest, followed by FIPP and GIA due to the very small value of C, and then RANSAM and 4PCS,
with RANSAC and EC being the highest.

In terms of accuracy, there is no proper experimental comparison for all the methods. Diez [43]
compared the 4PCS and RANSAC methods with huge point clouds, and indicated that 4PCS is more
accurate than any other RANSAC-based method. Santamaria [29] proved the accuracy of EC in
outperforming the ICP algorithm, but its computational times are very expensive. However, the
result of global registration is not the end, and subsequent implementation of local registration is still
required. Even if the accuracy of global registration is slightly lower, the ICP algorithm used in local
registration can achieve a high accuracy because a threshold that can satisfy the precision requirement
is used to control whether the iteration is terminated. Therefore, the RGB-FIPP method is not only very
fast, but can also meet the accuracy requirement.

6. Discussion

The determination of candidate point set is based on the RGB value, and parameters of color filter
σn and color tolerance σc both have an important effect on global registration. Parameter σn determines
the number of colors involved in searching point-to-point correspondence. Generally, the larger the
value of σn, the less the number of colors. Although the number is getting smaller with σn, the average
number of points with the same color is more, which increases the possibility of the same points with
the same color from two datasets and improves registration efficiency. However, there is an upper limit
for σn. Once the value of σn is more than a specific value registration will fail because the number of
the same points with the same color is not enough to generate a rigid transformation matrix. Therefore,
when the runtime drops to a lower value and will not change much anymore with the increase of σn,
the value of σn is the best, for example 10 in Stereo and 4 in Kinect.
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Parameter σc determines the number of candidate points with the same color. The larger the
value of σc, the greater the likelihood of the same points. Nevertheless, the specific impact on global
registration depends on the distinction of color. If the distinction is small, the number of candidate
points with the same color is so much that can find enough point pairs to registration without a larger
value of σc. In this situation, the value of σc has little effect on run time, and vice versa, that can be
seen in Table 5, Table 6, Table 7 and Figure 18. Moreover, despite the influence of σc depends on the
distinction of color of the point cloud, there have the same rule that stability of registration is getting
higher and higher with the increase of σc. However, the increase in stability of runtime also sacrifices
the accuracy. So, the choice of the value of σc should follow the principle of balance between runtime
and accuracy. And here, the values are both set to E-42.

Moreover, FIPP was improved for searching point-to-point correspondence with RGB value.
The improved FIPP can reduce the time of searching correspondence. Although the registration
accuracy is sacrificed because it is rough to regard RGB as the descriptor, fortunately this defect can be
compensated by local registration using the ICP algorithm.

Overall, the RGB-FIPP method for 3D point cloud registration proposed in this paper has a very
fast speed and high accuracy. It should be noted that this method requires that 3D point cloud data
have RGB values, while the distinction of color has a great influence on the operational efficiency of
the algorithm. If the 3D point cloud data do not have RGB values, RGB-FIPP cannot be used for point
cloud registration.

7. Conclusions

In this paper, we presented a fast method for 3D point cloud registration by using RGB value of
the point, which is called RGB-FIPP. Color information instead of traditional descriptors to express the
characteristics of points and it reduces the computational complexity of computing descriptor from
O(kn) to O(n). And then, an improved FIPP algorithm is used to search point-to-point correspondences
for global registration. Finally, the ICP algorithm is used to perform the local registration. Using
color value of the points greatly improves the efficiency of the entire registration, meanwhile, the ICP
algorithm ensures the final accuracy. On the whole, the method in this paper improves efficiency while
ensuring accuracy. For future work, we plan to combine detectors or descriptors with RGB values in
registration in order to improve the descriptiveness of a 3D point.
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