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Abstract
Background. Gliomas represent a biologically heterogeneous group of primary brain tumors with uncontrolled 
cellular proliferation and diffuse infiltration that renders them almost incurable, thereby leading to a grim prog-
nosis. Recent comprehensive genomic profiling has greatly elucidated the molecular hallmarks of gliomas, in-
cluding the mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), loss of chromosomes 1p and 19q 
(1p/19q), and epidermal growth factor receptor variant III (EGFRvIII). Detection of these molecular alterations is 
based on ex vivo analysis of surgically resected tissue specimen that sometimes is not adequate for testing and/or 
does not capture the spatial tumor heterogeneity of the neoplasm.
Methods. We developed a method for noninvasive detection of radiogenomic markers of IDH both in lower-
grade gliomas (WHO grade II and III tumors) and glioblastoma (WHO grade IV), 1p/19q in IDH-mutant lower-grade 
gliomas, and EGFRvIII in glioblastoma. Preoperative MRIs of 473 glioma patients from 3 of the studies participating 
in the ReSPOND consortium (collection I: Hospital of the University of Pennsylvania [HUP: n = 248], collection II: 
The Cancer Imaging Archive [TCIA; n = 192], and collection III: Ohio Brain Tumor Study [OBTS, n = 33]) were col-
lected. Neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk), a modular platform available for cancer imaging 
analytics and machine learning, was leveraged to extract histogram, shape, anatomical, and texture features from 
delineated tumor subregions and to integrate these features using support vector machine to generate models pre-
dictive of IDH, 1p/19q, and EGFRvIII. The models were validated using 3 configurations: (1) 70–30% training–testing 
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splits or 10-fold cross-validation within individual collections, (2) 70–30% training–testing splits within 
merged collections, and (3) training on one collection and testing on another.
Results. These models achieved a classification accuracy of 86.74% (HUP), 85.45% (TCIA), and 75.15% 
(TCIA) in identifying EGFRvIII, IDH, and 1p/19q, respectively, in configuration I. The model, when applied on 
combined data in configuration II, yielded a classification success rate of 82.50% in predicting IDH mutation 
(HUP + TCIA + OBTS). The model when trained on TCIA dataset yielded classification accuracy of 84.88% in 
predicting IDH in HUP dataset.
Conclusions. Using machine learning algorithms, high accuracy was achieved in the prediction of IDH, 
1p/19q, and EGFRvIII mutation. Neuro-CaPTk encompasses all the pipelines required to replicate these ana-
lyses in multi-institutional settings and could also be used for other radio(geno)mic analyses.

Key Points

• Radiogenomics model predicts IDH (85.45%), 1p/19q (75.15%), and EGFRvIII 
(86.74%) in gliomas.

• Pipelines provided by neuro-CaPTk can aid in therapeutic decision making on a 
patient basis.

Gliomas comprise a heterogeneous group of central nervous 
system tumors traditionally classified on a histologic basis. 
Over the past decade, with the advent of molecular profiling, 
there is a paradigm shift indicating that integrated histolog-
ical–molecular classification is superior to a purely histo-
logical classification as highlighted in the 2016 World Health 
Organization classification of gliomas,1 where the definition 
of many of these gliomas now requires molecular character-
ization for their precise diagnosis. This fundamental change 
brings new challenges, one of which is to minimize disrup-
tion of current clinical practice, therapeutic trials, and epide-
miological studies. These genomic characterizations have 
shown that mutations in the isocitrate dehydrogenase 1 and 
2 (IDH1/2) genes play a pivotal role in gliomagenesis, with 
a significant clinical and prognostic impact.2 IDH-mutant 
gliomas are sub-divided into oligodendroglial and astrocytic 
types by the status of loss of chromosomes 1p and 19q, with 
the former presenting with distinctive morphology and better 
prognosis. Another important finding of the past decade 

demonstrates the association of epidermal growth factor re-
ceptor splice variant III (EGFRvIII) with triggering of various 
oncogenic processes eventually leading to aggressive tumor 
behavior,3 thereby making EGFRvIII a possible therapeutic 
target for high-grade gliomas.4-6 Hence, the evidence of the 
mutation’s presence can have an impact on treatment deci-
sions, as well as on evaluating treatment response.

Currently, available techniques to determine mo-
lecular status vital for therapeutic decisions are 
immunohistochemistry and next-generation sequencing,7 
which require tissue specimen analysis. These approaches 
are primarily limited by the sampling error, arising due to the 
spatial heterogeneity of the molecular landscape of gliomas.8 
Furthermore, longitudinal assessment of these markers over 
the course of the treatment, and hence adaptation of the treat-
ment accordingly, is not typically possible given the need for 
another invasive procedure. Some other limitations of the 
process include cases where collected tissue is inadequate for 
testing, tissue collection is not possible due to a deep-seated 

Importance of the Study

Quantitative multivariate analysis of clinically 
acquired multi-parametric MRI reveals non-
invasive in vivo imaging signatures of EGFRvIII, 
IDH and 1p/19q-codeletion in gliomas. The pro-
posed approach differs from prior literature on 
the evaluation in a larger multi-institutional co-
hort, image analytic pipelines provided as part 
of neuro-CaPTk, and the application of a unified 
machine learning model for the assessment of 
different molecular markers. The current ap-
proach also differs on the extensiveness of 
images features, beyond what is customary in 
cancer imaging literature, used to quantify the 

structural and histological characteristics of the 
tumors, relating to tumor cell density, water con-
tent, and neo-vascularization. The discovered 
markers are derivatives of clinically available 
imaging sequences, therefore, can be rendered 
as readily translatable to the clinical practice, 
thereby eliminating the need of expensive mo-
lecular testing. An assessment of these markers 
at initial presentation or recurrence of the dis-
ease may facilitate personalized treatment plan-
ning, stratification into clinical trials, repeatable 
monitoring of molecular markers, and adoption 
of targeted therapeutic approaches.
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nature of tumors, or unavailability of expensive and/or spe-
cialized molecular assays in nonacademic settings.

The emerging field of radiogenomics exploits the data 
derived from complementary imaging modalities, en-
ables noninvasive assessment of the various molecular 
features, and is increasingly used for oncologic diagnosis 
and treatment guidance. It involves the extraction of thou-
sands of diverse and complementary quantitative imaging 
phenomic (QIP) features pertaining to volume, texture, 
morphology, kinetics, connectomics, intensity histograms, 
and spatial distributions of tumors. Integrating these QIP 
features via advanced computational methods allows for 
the identification of in vivo imaging signatures of molec-
ular characteristics, enhances decision making, improves 
patient survival,9–11 and may transcend the limitations of 
one-size-fits-all treatment planning model, thereby leading 
to image-guided personalized treatment planning.

Despite increasing radiogenomics-based research12 and 
development of diagnostic and predictive biomarkers12–14 de-
veloped from these QIP signatures, they have yet not been 
adopted in routine clinical practice, in part due to their increas-
ingly complex nature. Thus, there is a need for user-friendly 
software solutions, which can provide a bridge between novel 
radiogenomic research tools and their clinical applications, 
thereby enabling translation of cutting-edge research into 
practical and clinically useful diagnostic and predictive indices. 
Here we present one such imaging analytics suite, named 
neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk), a 
general purpose tool spanning radiomics, radiogenomics, 
connectomics, and other research areas. Neuro-CaPTk is one 
component of CaPTk, which encompasses analytics suites for 
other oncologic conditions as well. Neuro-CaPTk is a modular 
platform, with components spanning image processing, seg-
mentation, feature extraction, and machine learning (ML) that 
can be combined with the typical quantification, analysis, and 
reporting workflow of a neuroradiologist.

In this article, considering the relevant importance of 
IDH both in lower-grade gliomas and glioblastoma, 1p/19q 
in IDH-mutant lower-grade gliomas, and EGFRvIII in glio-
blastoma, we developed radiogenomic markers of IDH, 
1p/19q, and EGFRvIII in the respective histologic categories. 
We present our results on a multi-institutional research 
study conducted by leveraging the QIP and ML routines 
provided by neuro-CaPTk to build imaging signatures of 
the aforementioned molecular markers. The contribution 
of our study arises from the evaluation in a larger multi-
institutional cohort (n  =  473), image analytic pipelines 
provided as part of neuro-CaPTk, and the assessment of dif-
ferent molecular markers using a unified ML model. An as-
sessment of these markers at the initial presentation of the 
disease or at the time of recurrence may facilitate personal-
ized treatment planning, enrollment of patients into clinical 
trials, and adoption of targeted therapeutic approaches.

Materials and Methods

Software, Hardware, and Pipeline Overview

Neuro-CaPTk (www.cbica.upenn.edu/captk) has a 3-tier 
architecture (Figure 1). The first tier provides basic image 

preprocessing tasks such as image input–output (cur-
rently NIfTI and DICOM are supported), registration, and 
smoothing. The second level comprises various general 
purpose routines including feature extraction, feature se-
lection, and ML. These routines are not only used within 
neuro-CaPTk for specialized tasks but are also available to 
the community as the basis for customized analysis pipe-
lines. In particular, this level targets extraction of various 
features capturing different aspects of local, regional, 
and global imaging patterns, resulting in an extensive 
QIP panel which is compliant with the Image Biomarker 
Standardization Initiative (IBSI),15 selection of features to 
highlight smaller, meaningful feature sets from the larger 
ones, and finally, use of ML to build predictive and diag-
nostic models. The third level of neuro-CaPTk focuses on 
the integration of these features via ML algorithms pro-
vided within neuro-CaPTk toward specific goals, such 
as precision diagnostics,14 response assessment,16 and 
predictive models of survival13 (more details are given in 
Supplementary Section S1). Every specialized application 
within neuro-CaPTk is also available via the command line 
interface (CLI). These CLI applications can be called directly 
making them available as components within a larger 
pipeline or for efficient batch processing of large number 
of images. Neuro-CaPTk currently supports the visualiza-
tion and image analysis of most of the important imaging 
sequences including structural magnetic resonance im-
aging (MRI), such as native (T1) and contrast-enhanced 
T1-weighted (T1-Gd), T2-weighted (T2), T2 fluid-attenuated 
inversion recovery (FLAIR), and advanced MRI such as 
dynamic susceptibility contrast MRI (DSC-MRI), dynamic 
contrast-enhanced MRI (DCE-MRI), and diffusion tensor 
imaging (DTI). In this study, neuro-CaPTk (commit hash 
4f9688e) was used from the GitHub repository (https://
github.com/CBICA/CaPTk).

Neuro-CaPTk is written in C++ using community-
validated, open-source third-party libraries like the Insight 
ToolKit (www.itk.org), Visualization ToolKit (www.vtk.org), 
OpenCV (opencv.org), and Qt (www.qt.io; Supplementary 
Figure S1) and is fully cross-platform. The architecture 
and object-oriented development approach of neuro-
CaPTk makes it easy to integrate new applications at the 
source level or as an external binary. Neuro-CaPTk ex-
tends to a cloud-based service to offer all the available 
algorithms through the public Image Processing Portal, 
which allows users to perform analyses using integrated 
algorithms, without any software installation, while using 
the high-performance computing resources of Center for 
Biomedical Image Computing and Analytics.

Study Population

In this particular study, we utilized retrospective data 
with available preoperative MRI (T1, T2, T1-Gd, T2-FLAIR) 
from patients diagnosed with gliomas from 3 collections, 
all being part of the ReSPOND consortium17 (collection 
1 [n  =  248]: Hospital of the University of Pennsylvania 
[HUP]; collection 2 [n = 192]: The Cancer Imaging Archive 
[TCIA]; collection 3 [n = 33]: Ohio Brain Tumor Study18,19; 
Table 1). Data from collection 1 also had advanced MRI, 
including DSC-MRI and diffusion-weighted imaging 

http://www.cbica.upenn.edu/captk
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa128#supplementary-data
https://github.com/CBICA/CaPTk
https://github.com/CBICA/CaPTk
http://www.itk.org
http://www.vtk.org
http://opencv.org
http://www.qt.io
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa128#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa128#supplementary-data
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(DWI), available. All MRIs of each patient were pre-
processed using a series of image processing routines 
as detailed in “Image Preprocessing Operations Using 
Neuro-CaPTk” section. Molecular classification for the 
collections is described in Supplementary Section S2. All 
experiments were approved by the Institutional Review 
Board (IRB) of the HUP (approval no: 706564) and were 
carried out in accordance with the guidelines and regu-
lations of the approved IRB and IRB approvals from each 
participating institution.

Image Preprocessing Operations Using 
Neuro-CaPTk

Preprocessing of MRI data involved various steps 
(Supplementary Figure S2), including (1) intensity noise 
reduction,20 (2) magnetic field inhomogeneity correction,21 
(3) affine co-registration (6 degrees of freedom)22 between 
T1-Gd and the rest of the imaging sequences of each pa-
tient, and (4) skull stripping23 followed by manual revision 
when appropriate. Segmentation of tumors was carried 
out to identify tumorous subregions, that is, enhancing 
tumor (ET), nonenhancing portion of the tumor core (NC), 
and peritumoral edema/infiltrative tumor (ED),24–26 and 
neuro-CaPTk was used to manually annotate seed-points 
required for the initialization of segmentation process.24,25

Various derivative volumes such as peak height (PH), 
percent signal recovery (PSR), and an automatically 

extracted proxy to relative cerebral blood volume 
(ap-rCBV) (Supplementary Figure S4) were extracted from 
DSC-MRI scans using the routines provided by neuro-
CaPTk. CaPTk also provides functionality to appropriately 
align DSC-MRI signals acquired across different institu-
tions (Supplementary Figure S3). In addition, fractional an-
isotropy (FA), radial diffusivity (RAD), axial diffusivity (AX), 
and apparent diffusion coefficient (trace [TR]) were derived 
from DWI scans (Supplementary Figure S4).

Feature Extraction

The preprocessed images were passed through the QIP 
feature extraction panel of neuro-CaPTk, which is de-
signed based on an extensive panel of features compliant 
with the IBSI15 and is continuously evolving and serving 
as a general purpose toolkit for the community to quan-
tify data characteristics. Relevant QIP features were com-
puted for each patient from the 3 tumor subregions (ET, 
NC, and ED) and from all modalities, to capture phenotypic 
characteristics of various molecular markers. The extracted 
features include (1) multi-parametric imaging signals of 
different co-registered protocols/modalities; (2) volumetric 
measurements of different tumor subregions; (3) textural 
features (eg, from gray-level co-occurrence matrix,27 gray-
level run-length matrix,28 gray-level size zone matrix,28,29 
neighborhood gray-tone difference matrix,30 and local bi-
nary patterns31), quantifying characteristics of the local 
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Figure 1. Detailed overview of the processing flow of neuro-CaPTk. The first tier (2, 3) provides basic image preprocessing routines. The second 
tier (4, 5) provides functionalities such as feature extraction and machine learning routines to integrate extensive QIP panel of features into algo-
rithmically complex predictive and prognostic indices of interest. The third tier (6) provides specialized diagnostic and predictive models, leading to 
treatment planning and precision diagnosis, prediction of clinical outcome of interest, and noninvasive detection of molecular markers of tumors.
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micro-architecture of tissue; (4) intensity distributions, 
reflecting various imaging signal distributions within the 
region of interest, the shapes of which convey functional 
and anatomical changes induced by the tumor; and (5) 
spatial distribution of tumor within an anatomical site of 
interest.32 Supplementary Table S1 (.csv file) provides a de-
tailed list of parameter values and can be directly used as 
input to neuro-CaPTk to extract the same set of features.

Feature Synthesis and ML

A comprehensive set of QIP features extracted from var-
ious tumor subregions, including ET, NC, and ED, as de-
tailed in “Feature Extraction” section, was integrated via 
ML modules provided by neuro-CaPTk to find the feature 
combination most predictive of molecular markers. The ML 
module in neuro-CaPTk is enabling users either to develop 
their own model on a given feature set and corresponding 
label set (in several well-known configurations such as 
k-fold, split-train-test) or to apply their existing model on a 
feature set to infer class information.

To confirm the robustness, accuracy, and generalizability 
of our method, while avoiding optimistically biased esti-
mates of performance, we tested multiple configurations 
for the assessment of molecular markers in single- (config-
uration I) and multi-collection (configurations II and III) data.

Configuration I (single-collection data)

Here, the cohort of patients for IDH and 1p/19q molecular 
markers was randomly partitioned into discovery and 
replication (3:2 ratio) subsets. The ML model was trained 
on the discovery subset and validated on the replication 
subset. Split-train-test was not possible in EGFRvIII owing 
to the small number of EGFRvIII mutants compared to 
EGFRvIII wild types; therefore, we only applied 10-fold 
cross-validation for the detection of EGFRvIII in the HUP 
dataset. The IDH, 1p/19q, and EGFRvIII models were evalu-
ated on lower-grade gliomas and glioblastoma, lower-
grade gliomas, and glioblastoma, respectively.

Configuration II (multi-collection data: combined data 
from collections 1, 2, and 3)

This configuration was designed for an integrated cohort 
of 311 patients from the 3 collections having IDH status 
available. Discovery and replication subsets were selected 
the same way as in configuration I.

Configuration III (multi-collection data: collection 1 as 
discovery and collection 2 as replication)

This configuration was also specifically applied for the de-
tection of IDH, wherein a model was trained on TCIA and 
then tested on HUP dataset.

In all the configurations, a Support Vector Machine (SVM) 
classifier with linear kernel was used to predict the molec-
ular markers. The cost function of SVM was optimized on 

the discovery subset (9 fold in case of EGFRvIII) via 5-fold 
cross-validated grid search. To fit the SVM model, feature 
selection was performed using SVM forward feature se-
lection on the discovery subset. The models trained on 
the discovery subset were then applied on the replication 
subsets in all the configurations, and the predicted scores 
were used for a receiver operating characteristic (ROC) 
analysis to measure the performance of the models.

Results and Application

Imaging Signatures of IDH, 1p/19q, and EGFRvIII

The evaluation of the models in configuration I  yielded 
an accuracy of 86.74% (sensitivity  =  84.91%, speci-
ficity  =  87.50%, balanced accuracy [BAC]  =  86.20%) in 
identifying EGFRvIII mutants in collection 1. Furthermore, 
the model demonstrated accuracies of 85.45% (sen-
sitivity  =  82.80%, specificity  =  87.68%, BAC  =  85.24%) 
and 75.15% (sensitivity  =  81.49%, specificity  =  73.96%, 
BAC = 77.73%) in identifying IDH and 1p/19q mutations, re-
spectively, in collection 2 (Table 2).

In configuration II, the proposed model when applied on 
the combined data of all the institutions for the prediction 
of IDH in split-train-test setting yielded a classification ac-
curacy of 82.50% (sensitivity = 70.43%, specificity = 88.32%, 
BAC  =  79.37%). In configuration III, the cross-validated 
classification success rate of 84.88% (sensitivity = 60.00%, 
specificity = 91.43%, BAC = 75.71%) was obtained in the de-
tection of IDH mutation status when a model trained on all 
the patients of collection 2 was applied on collection 1.

ROC analysis was also used to illustrate the performance 
of the developed imaging signatures on an individual pa-
tient basis (Figure  2). The ROC curves were created by 
plotting the sensitivity against the false-positive rate (ie, 
1-specificity) at various thresholds.

Important Phenotypic Characteristics of Various 
Molecular Markers

Considering the distinctive characteristics of different mo-
lecular markers and toward gaining an understanding 
about the biological processes associated with these dis-
tinctive characteristics, we sought to analyze each indi-
vidual feature that we used to develop our ML predictive 
model. The effect size measure33 of important features is 
given in Figure 3.

EGFRvIII mutants presented imaging markers of neo-
angiogenesis and cellular density, mainly represented 
by the elevated mean PH and mean rCBV value within 
ET, and decreased values of trace within NC. In the ab-
sence of advanced imaging for IDH analysis, the top-
ranked features were T1-Gd and T1 intensity signals, both 
reduced in NC region, and texture features in NC region. 
Moreover, the features predictive of 1p/19q codeletion 
mainly represented features of spatial heterogeneity of 
all images in the ET region, all elevated in the 1p/19q-
codeleted category.

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa128#supplementary-data
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Spatial Distribution of the Tumors in the Brain

Next, we created probabilistic atlases of tumor spatial dis-
tribution on a large cohort of glioma patients as a function 
of molecular markers, after taking into consideration mass 
effects properties from biophysical tumor growth models34 
and deformable registration of tumor brain scans to a 
standardized anatomical atlas.24,25 We investigated whether 
the tumors pertaining to a particular molecular marker are 
distributed across all the regions or whether the under-
lying biological characteristics of these regions give rise 
to different mutational status. The IDH-mutant tumors had 
a clear predilection for the frontal lobe, especially on the 
left hemisphere. The IDH-mutant 1p/19q-codeleted tumors 
when compared with IDH-mutant 1p/19q-noncodeleted tu-
mors were more frequently appearing in the frontal lobe. 
EGFRvIII-mutant tumors seemed to have a focused pref-
erence for frontal and parietal regions, and EGFRvIII-wild 
type tumors more frequently appearing in the temporal 
lobe. Occipital, brain stem, CC fornix, and temporal lobe 
were relatively less involved in the molecular markers 
under consideration (Figure 4).

Discussion

This study investigated the use of in vivo MRI phenomic 
signatures leveraging ML for the prediction of molecular 
markers in glioma patients, aiming to offer advanced im-
aging biomarkers for clinical decision making and per-
sonalized treatment planning. Some important aspects 
that make our study unique compared to previously re-
ported studies on prediction of molecular markers are 
the evaluation of radiogenomic markers in larger multi-
institutional data, one unified model used to predict all 
the molecular markers, and an accompanying software 
tool (neuro-CaPTk) that encompasses all the pipelines 
required to replicate these analysis in multi-institutional 
settings. Most importantly, our results were derived via 
the utilization of neuro-CaPTk used to (1) extract rich 
clinically and biologically relevant features from MRI; 
(2) integrate imaging features via rigorous statistical 
and computational methodologies; and (3) train new 
ML models.

Distinctive Characteristics of Radiomic 
Signatures

In this study, we designed multivariate radiomic signa-
tures based on multi-parametric MRI for prediction of dif-
ferent molecular markers, including IDH, 1p/19q, as well 
as EGFRvIII. The main findings of the obtained radiomic 
signatures indicate that the set of features summarizing 
EGFRvIII mutants reflected lower TR and PSR, and higher 
ap-rCBV, PH, and FA compared to EGFRvIII-wild type tu-
mors, consistent with prior studies.35,36 Radial and axial 
diffusivity measures showed similar trends as trace. In the 
previous study,35 however, a smaller cohort of 129 patients 
(compared to 213 patients in this study) was used, and the 
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Spatial Distribution of the Tumors in the Brain

Next, we created probabilistic atlases of tumor spatial dis-
tribution on a large cohort of glioma patients as a function 
of molecular markers, after taking into consideration mass 
effects properties from biophysical tumor growth models34 
and deformable registration of tumor brain scans to a 
standardized anatomical atlas.24,25 We investigated whether 
the tumors pertaining to a particular molecular marker are 
distributed across all the regions or whether the under-
lying biological characteristics of these regions give rise 
to different mutational status. The IDH-mutant tumors had 
a clear predilection for the frontal lobe, especially on the 
left hemisphere. The IDH-mutant 1p/19q-codeleted tumors 
when compared with IDH-mutant 1p/19q-noncodeleted tu-
mors were more frequently appearing in the frontal lobe. 
EGFRvIII-mutant tumors seemed to have a focused pref-
erence for frontal and parietal regions, and EGFRvIII-wild 
type tumors more frequently appearing in the temporal 
lobe. Occipital, brain stem, CC fornix, and temporal lobe 
were relatively less involved in the molecular markers 
under consideration (Figure 4).

Discussion

This study investigated the use of in vivo MRI phenomic 
signatures leveraging ML for the prediction of molecular 
markers in glioma patients, aiming to offer advanced im-
aging biomarkers for clinical decision making and per-
sonalized treatment planning. Some important aspects 
that make our study unique compared to previously re-
ported studies on prediction of molecular markers are 
the evaluation of radiogenomic markers in larger multi-
institutional data, one unified model used to predict all 
the molecular markers, and an accompanying software 
tool (neuro-CaPTk) that encompasses all the pipelines 
required to replicate these analysis in multi-institutional 
settings. Most importantly, our results were derived via 
the utilization of neuro-CaPTk used to (1) extract rich 
clinically and biologically relevant features from MRI; 
(2) integrate imaging features via rigorous statistical 
and computational methodologies; and (3) train new 
ML models.

Distinctive Characteristics of Radiomic 
Signatures

In this study, we designed multivariate radiomic signa-
tures based on multi-parametric MRI for prediction of dif-
ferent molecular markers, including IDH, 1p/19q, as well 
as EGFRvIII. The main findings of the obtained radiomic 
signatures indicate that the set of features summarizing 
EGFRvIII mutants reflected lower TR and PSR, and higher 
ap-rCBV, PH, and FA compared to EGFRvIII-wild type tu-
mors, consistent with prior studies.35,36 Radial and axial 
diffusivity measures showed similar trends as trace. In the 
previous study,35 however, a smaller cohort of 129 patients 
(compared to 213 patients in this study) was used, and the 

previous study relied on intensity, spatial location, and his-
togram binning-based features, without exploring the po-
tential of advanced texture features. On the other hand, the 
current approach is based on 3 dimensional texture analysis 
for quantifying characteristics of the local micro-architecture 
of tissue, thereby capturing the entire tumor heterogeneity.

In the absence of advanced imaging modalities for the 
prediction of IDH and 1p/19q status, the algorithm mainly 
relied on features extracted from basic structural MRI mo-
dalities. Specifically, IDH mutants showed lower T1-Gd and 
T1 intensity signal in NC region, and higher homogeneity 
and lower entropy as reflected by the gray-level co-occur-
rence matrix-based texture features. In the case of IDH-
mutant 1p/19q cases, the “entropy” and “non-uniformity” 
measures that both refer to the randomness in the region 
of interest were higher in the 1p/19q-codeleted group than 
in the 1p/19q-noncodeleted group, indicating that the tu-
mors in the former group contained more regions with high 
gray levels, suggestive of higher radiologic heterogeneity.37 
Other important features for accurate prediction of 1p/19q 
codeletion status were the location of the tumor, the features 
of the T2-weighted histogram, and other texture features. 
An important finding is that detection of IDH-mutants was 
more accurate in 1p/19q-codeleted tumors (5/5) compared 
to 1p/19q-noncodeleted tumors (18/22). Another interesting 
observation is that the spatial distribution of the tumors was 
one of the most distinctive feature of the molecular markers 
under investigation, therefore highlighting the importance 
of assessing spatial characteristics of tumors in a reference 

atlas template. Importantly, individual assessment of these 
features was not sufficient enough to identify the molecular 
markers (Figures 3 and 4); however, appropriate integration 
yielded sufficient accuracy for identifying the markers on an 
individual patient basis, thereby emphasizing the value of 
multivariate radiogenomic approaches.

Multiple recent studies have attempted to correlate T2–
FLAIR mismatch with IDH and 1p/19q codeletion status in 
lower-grade gliomas.38,39 For example, MRIs of 125 lower-
grade gliomas from the TCIA dataset were evaluated by 
2 independent neuroradiologists to assess for the pres-
ence/absence of T2–FLAIR mismatch sign.38 All 15 cases 
declared positive by the readers for the T2–FLAIR mis-
match sign were IDH-mutant 1p/19q-noncodeleted tumors. 
Extending upon this initial work, Foltyn et al.39 evaluated 
MRI scans of 408 glioma patients (113 low-grade and 295 
glioblastomas) for the presence of T2–FLAIR mismatch 
sign by 2 independent reviewers. The T2–FLAIR mismatch 
sign was present in 12 low-grade gliomas, all of them 
being IDH-mutant 1p/19q-noncodeleted tumors, and 
was not found in any of the glioblastoma patients. These 
studies confirmed the high specificity of the T2–FLAIR 
mismatch sign for noninvasive detection of IDH-mutant 
1p/19q-noncodeleted gliomas; however, sensitivity is 
low and applicability is limited to low-grade gliomas and 
glioblastomas. Moreover, the readers in these studies 
assessed all metrics in a qualitative and binary manner, 
and the inter-reader agreement was also low. The au-
thors suggested that translation of this biomarker into 
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Figure 2. ROC curves of different experiments. Configuration I: A–C, configuration II: D, and configuration III: E.
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a clinically applicable quantifiable prognostic measure 
would require extensive validation on larger datasets.39 
In contrast, our study introduces simple and automated 
image-based assessment of molecular markers which ap-
pears to be highly accurate (IDH: specificity = 87.68%, sen-
sitivity = 82.80%; 1p/19q-codeletion: specificity = 73.96%, 
sensitivity = 81.49%) of underlying molecular status.

Texture analysis is becoming a significant contributor to image 
quantification for more accurate, reliable, and objective medical 

diagnoses. It enables the quantification of image characteristics 
that are imperceptible to visual assessment, such as gray-level 
patterns, pixel interrelationships, and description of the variation 
in intensity within a specific area. When compared with various 
existing radiogenomic studies, our approach was based on 3-di-
mensional volumetric/texture analysis, thereby capturing the 
entire tumor heterogeneity, instead of either traditional image 
analysis without exploring the potential of advanced texture fea-
tures,35,40 or texture analysis on a slice-by-slice basis, thereby 
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Figure 3. Effect sizes of the features used in the detection of (A) IDH, (B) 1p/19q, and (C) EGFRvIII. Red and blue colors indicate higher values of 
effect size, while red colors indicating features having higher values in category of interest (IDH-mutant, EGFRvIII-mutant, and 1p/19q-codeleted) 
and blue colors indicating features having higher values in the other category. Effect sizes in IDH category are shown for collection 2. GLCM = gray-
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not capturing the tumor heterogeneity in its entirety,41,42 or even 
on a limited number of slices, that is, 3 continuous MRI slices per 
subject used for the detection of 1p/19q status.43

In recent years, several deep learning (DL)-based 
approaches have gained popularity in the field of 
radiogenomics.44,45 Even though these methods have 
shown promise in the detection of IDH and 1p/19q status 
of gliomas,44,45 they tend to suffer with the problem of 
huge computational complexity. Also, these methods 
have a very large number of parameters and are therefore 
notorious for overfitting the data and suffering from poor 
reproducibility. Additional studies testing reproducibility 
of DL methods on multi-institutional data should be per-
formed, before we can conclude that these methods are as 
promising as preliminary studies indicate. Furthermore, 
like conventional methods,41,42 some of the existing 
DL-based methods have also been applied to individual 

image slices, thereby, leading to underestimating the 
global texture within the tumor.45,46 Our method, on the 
other hand, captures complete heterogeneity of the tumor 
and provides almost similar performance on totally un-
seen test datasets with much lesser complexity and lesser 
chances of overfitting, therefore, we did settle with a 
standard pipeline of radiomic feature extraction, SVM for-
ward feature selection, and classification.

Clinical Relevance

Evaluation of molecular markers is currently typically done 
by analyzing tissue specimens, generally obtained from a 
single location within the tumor, via molecular based as-
says. This process has the following 2 limitations in determi-
nation of EGFRvIII status: (1) these molecular based assays 
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destroy the tissue and invariably capture molecular markers 
using a small fraction of the tumor, thereby underestimating 
tumor heterogeneity and leading to sampling error; (2) re-
peated evaluation during treatment is not possible, due to 
invasiveness of the procedure, thereby limiting the measure-
ment of temporal heterogeneity. In addition, the analysis of 
tissue specimens has some inherent limitations, applicable 
to all the molecular markers, such as limited tissue in case 
of inoperable and deep-seated tumors and in post-surgery 
follow-ups, or unavailability of expensive and/or specialized 
molecular assays in low-resource settings. Measures pro-
vided by imaging-based methods can therefore be critical 
in these cases. Our radiogenomic predictors could enable 
characterization of disease heterogeneity across the entire 
landscape of the tissue specimen and could be performed 
for a fraction of the price incurred in molecular testing. These 
predictors could also be helpful in cases where surgeons 
need to know the status of different molecular markers even 
before the resection, such as in case of neoadjuvant targeted 
therapies47 and the therapies that include intraoperative ap-
plication of genotype-specific injections.48,49

While the current method focuses on noninvasive assess-
ment of 3 molecular markers, IDH, 1p/19q, and EGFRvIII, 
the same method could also be used for assessment of 
other markers in general. Furthermore, the proposed sig-
nature can be evaluated to recurrent gliomas, with the goal 
of assessing molecular markers over the course of the 
treatment. This would help in noninvasive assessment of 
dynamic changes in the markers as response to targeted 
therapies (EGFRvIII in this case) and would in turn allow for 
tailoring the adopted therapeutic approaches.

The main contributions of our study arise from the eval-
uation of the pipeline in a larger multi-institutional cohort 
(n = 473), the assessment of different molecular markers using 
a unified ML model, and extraction of physiological (intensity 
and texture features) and anatomical properties of tumors 
beyond what is customary in cancer imaging literature. The 
imaging-based signatures proposed in this work are deriva-
tives of MRI sequences that are acquired routinely according 
to current standard practice for gliomas, therefore, can be ren-
dered as readily translatable to the clinical practice. Most im-
portantly, the unique aspect of our study that makes it distinct 
among all the existing radiogenomic studies is the availability 
of the imaging-based pipelines used in this study via neuro-
CaPTk that facilitates the prediction of the molecular markers 
shown in this study, as well as other markers. Neuro-CaPTk 
may be used in different facilities for the purposes of research, 
diagnosis, and education and may also be particularly useful 
for collecting “second opinions” on challenging cases.

Limitations and Future Work

Our study has several limitations. Some of the ML models 
developed here have been built on small populations (such 
as 1p/19q), therefore, may not generalize well on new unseen 
populations of diverse background than those represented 
by the provided data. We expect the performance to improve 
as we increase the number of subjects and add more multi-
institutional data in the training process. One more limitation 
of our study is that we used retrospective multi-institutional 
data; a prospective dataset comparing our methods to 
standard histopathological review would lend further validity 

and confidence to our ML models. Future work would in-
clude the creation and validation of ML models through the 
neuro-CaPTk application for various other molecular char-
acterizations, including transcriptomic subtypes,50 as well 
as detection of other distinct molecular markers (eg, PTEN, 
TP53, and ATRX). Moreover, enthusiastically taking on the 
evolving field of integrated diagnostics, we aim to provide 
comprehensive diagnostic modules integrating radiology, 
pathology, and clinical markers in neuro-CaPTk.

Conclusions

Our results imply that imaging signatures developed 
using radiomic models could predict molecular markers in 
gliomas. These predictions may contribute to the upfront 
assessment of molecular markers in neuro-oncological 
conditions for patients with inadequate tissue/inoperable 
tumors and earlier stratification of patients into clinical 
trials prior to acquisition of tissue-based molecular testing 
results. The extensibility of the radiogenomic modules in-
corporated in neuro-CaPTk, coupled with the flexibility 
afforded by programmatic construction of pipelines, facili-
tates the design of comprehensive analyses across a wide 
range of research studies and sites.
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and confidence to our ML models. Future work would in-
clude the creation and validation of ML models through the 
neuro-CaPTk application for various other molecular char-
acterizations, including transcriptomic subtypes,50 as well 
as detection of other distinct molecular markers (eg, PTEN, 
TP53, and ATRX). Moreover, enthusiastically taking on the 
evolving field of integrated diagnostics, we aim to provide 
comprehensive diagnostic modules integrating radiology, 
pathology, and clinical markers in neuro-CaPTk.

Conclusions

Our results imply that imaging signatures developed 
using radiomic models could predict molecular markers in 
gliomas. These predictions may contribute to the upfront 
assessment of molecular markers in neuro-oncological 
conditions for patients with inadequate tissue/inoperable 
tumors and earlier stratification of patients into clinical 
trials prior to acquisition of tissue-based molecular testing 
results. The extensibility of the radiogenomic modules in-
corporated in neuro-CaPTk, coupled with the flexibility 
afforded by programmatic construction of pipelines, facili-
tates the design of comprehensive analyses across a wide 
range of research studies and sites.
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