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Since 1927 and until recently, most models describing the spread of disease have been of compartmental
type, based on the assumption that populations are homogeneous and well-mixed. Recent models have
utilised agent-based models and complex networks to explicitly study heterogeneous interaction patterns,
but this leads to an increasing computational complexity. Compartmental models are appealing because of
their simplicity, but their parameters, especially the transmission rate, are complex and depend on a number
of factors, which makes it hard to predict how a change of a single environmental, demographic, or
epidemiological factor will affect the population. Therefore, in this contribution we propose a middle
ground, utilising crowd-behaviour research to improve compartmental models in crowded situations. We
show how both the rate of infection as well as the walking speed depend on the local crowd density around an
infected individual. The combined effect is that the rate of infection at a population scale has an analytically
tractable non-linear dependency on crowd density. We model the spread of a hypothetical disease in a
corridor and compare our new model with a typical compartmental model, which highlights the regime in
which current models may not produce credible results.

uring its history, humanity has repeatedly encountered major epidemics such as the Plague (Black Death)

in the 14™ century, the Spanish Flu in 1918 or more recently the Swine Flu (2009), to mention only a few.

Some of these epidemics severely affect the global population, such as the Plague that in only six years
caused the death of almost one third of the European population.

One of the first analytical approaches to study and model the systemic nature of the spread of an infectious
disease, was Kermack and McKendrick” who proposed what would later be modified and defined as an SIR model,
that divided a population into three compartments; (i) susceptible, S; (ii) infectious, I; and (iii) recovered/
removed, R, and devised a set of differential equations to model the transition rates from each of these states
to the others. This seminal work would lead to the onset of a new field of Mathematical Epidemiology. By
introducing also an (iv) exposed class, E, the model becomes what is called an SEIR model**:

§S= —2IS/N

E=JIS/N —KkE

. (1)
I=kE—al

R=al

where S + E + I + R = N (population size).
To make this model more practical for different population sizes, we will now normalise the model according to
s = 8/N, e = EIN, i = I/N, and r = R/N which results in Eq. (2):

§=—Ais

e=Jlis—ke

. . (2)
i=ke—uai

r=oi
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where £ is the per-capita transmission rate, o is the constant recovery
rate (thus, the mean infectious period is 1/o) and 1/k is the mean
exposed period.

The SEIR model is based on the following four main assumptions:

1. The population size N is constant.

There is no heterogeneity, i.e. the impact of individual charac-
teristics such as age, sex and behaviour are neglected.

3. Theintroduction of an exposed class means that individuals are
not immediately able to infect others upon contracting the
disease themselves

4. The population is well-mixed. This means that each individual
has the same probability of contracting the disease.

Therefore, such an approach will neglect the importance of het-
erogeneity in the social interaction and mobility patterns of indivi-
duals. The validity of the ‘well-mixed” assumption is particularly
problematic. Recent Statistical Physics approaches however, have
incorporated such elements into disease-spreading models" using
transport networks as a proxy of human mobility, which has resulted
in higher fidelity in predictions of disease outbreaks.

A growing body of literature on detailed studies of crowd beha-
viour in crowded places have revealed a number of insights into non-
linear, dynamic, adaptive and self-organised crowd behaviour that
seriously question the validity of the well-mixed assumption in the
original SIR model, even if network effects are taken into account to
achieve some degree of heterogeneity.

Since the beginning of the 21* century, mathematical epidemi-
ology has found in the use of complex networks a new and more
precise way to tackle the problem; where individuals are represented
by nodes and their interactions by links. Moreover the nodes have a
certain connectivity distribution i.e. the probability P(k) that a node
is connected to k other nodes. This connectivity is typically either
exponential (in case of exponential networks) or power-law (in case
of scale-free networks). An important result was obtained in Ref. 14
where it as shown that exponential networks show an epidemic
threshold that separates an infected phase from a healthy one, while
the behaviour of scale-free networks depends on the power-law
exponent and may or may not represent the epidemic threshold.

Extensive research has been focused on the study of epidemics
through network theory. However, while contemporary network
science approaches”'*'® to modelling the spread of disease has greatly
improved the modelling accuracy at large scales, there is still limited
understanding of the effect of crowd behaviour that come into play in
densely crowded and confined spaces such as transport hubs, mass
gatherings, and city centres.

In recent years the study of human interaction and mobility has
provided some important insights that are needed to increase the
realism of epidemic models, mostly at large scales'. In particular,
sensors such as mobile phone tracking, WiFi/Bluetooth devices, and
CCTV are used to acquire important information of how people
move in their daily lives as well as during mass gatherings or other
crowded events.

On an even smaller scale, interesting experiments are being carried
on in small and crowded environments (conference halls, hospital
wards, museums etc) by using wearable sensors (such as RFID
devices) that are capable of sensing face-to-face interaction of indi-
viduals'’"*°. These studies have shown the importance of heterogen-
eity and dynamic contact patterns in shaping the dynamics of the
infection, by the use of simulations, temporal networks and contact
matrices. However, we still lack an analytical instrument that allows
us to find a common design and evaluation strategy of the problem in
general cases.

Therefore, in this contribution, we propose a way in which insights
into crowd behaviour can be used to improve prevailing compart-
mental models (well known for their simplicity). A microscopic
foundation is particularly important to evaluate potential epidemio-

logical implications of designs or operational plans for one-off events
where we do not have the luxury of existing data that can be analysed
and used as a basis for an epidemiological model. For recurring
events, our study will provide an important analytical toolkit that
can be used to study the epidemiological implications of changing
one of the crowd-related design or operational parameters, and keep-
ing everything else constant.

By analysing a tractable scenario—people moving in a corridor-
and building an SEI model, we focus our attention at one of the most
elusive parameters of mathematical epidemiology: the contact rate.
We will study how contact rate depends on crowd behaviour, and
most importantly, the crowd density.

Results

We recognise that human mobility in crowded places exhibit a rich
set of complex, adaptive and self-organised behaviours®. Therefore,
we propose a bottom-up modelling approach to the spread of disease
in crowded places, starting with a simple but analytically tractable
special case, that can later be extended to take a richer set of crowd
behaviours and more complex environments into account.

Traditional SEIR model in a corridor. Before we introduce our new
methodology taking crowd behaviour into account, let us start by
implementing the traditional SEIR model in a corridor with unidi-
rectional crowd flow. The length of the corridor is L metres, the width
is w metres and the corridor has periodic boundary conditions (see
Fig. 1). In this environment, 1% of the population is infected at time
0. Adding to the previous SEIR model assumptions, we also have the
following corridor-specific assumptions:

5. Periodic boundary conditions (and thus, a constant population
size N) is assumed in the corridor.

6. The time scale (i.e. maximum simulated time) is smaller than the
recovery time and exposed time (i.e. only the exposed and sus-
ceptible classes will be affected within simulated time). This also
means that we will not take secondary infections into account.

Now, since we aim to improve rather than to replace current mod-
els, we will put our model into prevailing terminology, and thus, each
of the individuals in our model can take any of the states (i) suscept-
ible, s; (ii) infectious, #; and (iii) exposed, e, which represents indivi-
duals that have become infected after contact with an infected person
but who are not yet infectious due to the relatively short duration of
our simulation, for this same reason the compartment r is not pre-
sent. We will thus obtain the normalised SEI model described by
Eq. (3).

§=—JAis
e=JAis (3)
i=0

where iy = 0.01 (and s + e + i = 1 since we do not have the ¥

compartment anymore).

Improved density-dependent SEIR model. Since we want to take
crowd behaviour explicitly into account, we will now propose an
improved model where A4 will depend on the spatio-temporal
distribution of the crowd density.

Earlier work''™"* has studied distances that large droplets are car-
ried; (i) 6 m away by exhaled air at a velocity of 50 m/s (sneezing); (ii)
2 m away at a velocity of 10 m/s (coughing); and (iii) 1 m away ata
velocity of 1 m/s (breathing).

We will build on these findings and therefore replace the earlier
assumption 4 (i.e. ‘The population is well mixed’) with the following:
Infections can only happen within an R-metre radius of an infected
individual. The final new assumption that the new model will be
based on is:
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Figure 1 | Illustration of corridor with periodic boundary conditions,
length L metres and width w metres. The small black circle shows a single
infected individual, the larger dashed circle shows the radius R of infection,
the smaller grey circles show individuals within the radius of possible
infection, and the small white circles show individuals that are currently
outside the reach of possible infection.

7. The mixing rate (i.e. the arrival rate of new pedestrians) around
infected individuals due to variable walking speeds is much
higher than the rate of infection, which means that we do not
need to take local saturation effects into account.

In previous work*, the per-capita transmission rate 4 has been
defined as a constant, reflecting the average number of contacts
within a population. Such an approach can lead to accurate out-
break predictions only if 4 is calibrated to specific cases, but it
does not incorporate the effect of crowd behaviour which can
lead to characteristically different contact rates in different scen-
arios. We also assume that the mixing rate (i.e. the rate of arrival
of new pedestrians) around infected individuals due to variable
walking speeds is much higher than the rate of infection (which
means that we do not need to take local saturation effects into
account).

In our case, each infected individual can only reach n other indi-
viduals within a 1-metre radius (see Fig. 1).

In reality, this number n(f) is time dependent, n(t) = p(f)nR?, since
it depends on the local density p(f) (1/m?) of the crowd surrounding
each infected individual, multiplied by the area 7R> where an infec-
tion can take place.

Taking time-dependent crowd behaviour into account would
make our model (Eq. (3)) too complicated for practical purposes.
Therefore, we will re-formulate crowd-dynamic theory into a
statistical description that we can later incorporate into our
existing model (Eq. (3)). To do so, we will start with a previously
discovered Eulerian description® of the crowd density distri-
bution p*, and re-formulate this into a Lagrangian description
p' that will better capture the effect that pedestrians spend longer
time in crowded areas due to their lower walking speed in such
areas.

We know from Ref. 8 that if a random location is picked some-
where within an open space with area A (m?*) and the average density
o (of the whole space) is p=N/A (m_z), the local density p (m™)
can be described by a Gamma distribution, according to Eq. (4).

B 4 s
(p;A;B)= ——p~ e P 4
p’(p; A; B) )’ ¢ (4)
where A=3u=3p=3N/(Lw), g is the global density of the whole
corridor, and B = 3.

Moreover, if a random pedestrian i (in our case an infected indi-
vidual) is picked at a random time ¢, the local density p around that
individual i will follow the distribution described by Egs. (5) and (6).
ps(p;A;B) 1 meux
— v X | (lp))dp ()

(v(p))

Pmax Jo

(e A —
P(p;A;B)=
Normalisation factor
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Figure 2 | Probability-density of the spatial distribution p* of the local
crowd density p in a space with an average crowd density
0=N/A=2.5 m 2 as an example, compared with the (spatio-)temporal
distribution p‘ of local density across the same space. The difference is due
to a lower walking speed in high density areas, which will lead to
individuals spending longer time in dense areas compared to lower density
areas.

0.05<(v(p))= M VPmax 1 34 (6)

0.5

is the average velocity (1.34 m/s is the average value of the free speed
when the corridor is empty®) and pj,.x is the maximum value of the
density.

The probability density functions of the crowd density over space
(p°) and space-and-time (p') are illustrated in Fig. 2. The reason why
p' is skewed towards larger crowd density values compared to p* is
because pedestrians walk slower when they are in dense regions
compared to less dense regions, which means that they will spend
more time in crowded areas compared to less crowded areas.

Because walking speed is a decreasing function of crowd density,
individuals spend relatively longer periods of time in crowded areas
compared to less crowded areas. Therefore, from an individual per-
spective, the average value of the local density around an infected
individual is given by Eq. (7).

00
)= | #oinde o)
which means that, substituting this value in the definition of the
contact rate we obtain:

©

p'(p)pdp (8)

;bdensny—dependent —=cx TERZ % J
0

Number of pedestrians in circle

where ¢ is the transmissibility i.e. the fraction of infected-susceptible
contacts that actually lead to an infection.

In this way, we have obtained a new description of the transmis-
sion rate between pedestrians in a crowded location, a value that
depends on the crowd density. With the previous model definition,
the value of the transmission rate did not depend on the crowd
density in the corridor which is the case for the new model.

Numerical results. Let us now compare our new density-dependent
model with the previous model to investigate what effect a crowd-
density-dependent per-capita infection rate A%rsi-deendent wil] have
on the population scale. As can be seen in Fig. 3, the rate of infection
per unit time is a non-linear function of crowd density. For practical
purposes, the infection rate per distance walked is a better metric than
the infection rate per unit time. For example in a busy transport hub,
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Figure 3 | Dependency of per-captita infection rate £ on average crowd
density p=N/A. Note that the rate of infection per 0.1 metre walked,
peaks at high crowd density due to the decreasing walking speed at high
crowd density.

people have to walk a fixed distance from one platform to another
regardless of the level of crowdedness and will therefore spend longer
time altogether in that transport hub on crowded days (thus, being
even more affected by prevalent diseases in that space).

To show the population-scale impact of our proposed model, we
simulate a hypothetical disease that spreads between two individuals
when they are at close proximity. We set the constant per-capita
transmission rate to A<™*" = 0.01. If we take (p) = 1.0 m 2 as an
arbitrary crossover point between /<"t and Adensity-dependent 'yye get ¢
= 0.01/(nR*) which will define Adesitv-dependent gecording to Eq. (8).

We now run our old and new density-dependent SEI models next
to each other for different values of average density in the interval
0=N/A€[0,8](m ™). We then plot the model results for the fraction
of exposed individuals in the population, for a population size N =
1000, as a function of both time ¢, and average crowd density o (see
Fig. 4 for results). It is clear that even though the old and the newly
proposed model give comparable results within a narrow range of
crowd densities, for large portions of the density spectrum, the old
model either severely under- or over-estimates the rate of infection of
the disease.

Model validation. A comprehensive quantitative model validation is
not within the scope of this paper. However, to be able to validate the
main characteristics of our model, we will run an agent-based crowd
model of unidirectional crowd flow in a corridor. Our crowd model is
based on the social-force model’* where the motion of pedestrian i is
described by
avi(t) -
m 0 e ©)

where m is the mass of the pedestrian (in kg), ¥ is the walking velocity,
andf,- is a force described by
- 1, .. . . .
fiy=mi (We—7(0) + D _fi(+ > _flt)

i k

(10)

whereﬁj is a repulsive force from pedestrian j acting on pedestrian i
specified as

fij=Fexp(—dy/Do)e; (11)

where dj; is the distance from pedestrian i to pedestrian j, € is the
normalised vector pointing from the centre of mass of pedestrian j to
the centre of mass of pedestrian i.

I New density-dependent SEI model
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Figure 4 | Numerical results showing how the fraction of individuals in
the exposed state e depends on time t and average crowd density o=N/A.
The two surfaces correspond to a traditional compartmental model
(referred to as ‘old SEI model” and the model we propose in this paper
referred to as ‘density-dependent SEI model’).

The forceﬁk from boundary k onto pedestrian i is also specified by
Eq. (11), but the position of pedestrian j is replaced by the closest
point on boundary k.

The model parameters used are the same as in Ref. 21. Note that
our model does not use the second force component (D, =d;j)* used
to accurately model turbulent and very dense crowds, since that is not
the focus of our paper. The free speeds 1° are Gaussian distributed
with mean 1.34 m/s and standard deviation 0.26 m/s when pedes-
trians are unobstructed. However, speeds are also bounded by
v) <d""(t)/T; where d]""(t) is the minimum net-distance to all
surrounding pedestrians j and T; is the preferred net-time headway
that are Gaussian distributed with mean 0.5 s and standard deviation
0.1s.

The mass m of pedestrians are Gaussian distributed with mean
60 kg and standard deviation 10 kg; the maximum pair-wise repuls-
ive forceis set to F = 160 N; the relaxation timeis set tot = 0.5 s;and
the remaining parameter D, that determines the typical length scale
of the repulsive forces is set to Dy = 0.31 m.

The results of our agent-based model (see Fig. 5) matches the main
characteristics of our model results as shown in Fig. 3. Notably, the
number of infections per metres walked peak at an average crowd
density above 6 m 2. This highly non-linear behaviour which is the
result of many interactive bodies would normally need a microscopic
treatment. However, as we have shown here, the outcome of this
non-linear behaviour can be accurately accounted for by our mac-
roscopic equations where the only input needed is the average crowd
density. This opens up new application areas for compartmental
models where they have been less suitable in the past, such as envir-
onments containing large and dense crowds. A more comprehensive
model validation will be carried out in future work, to empirically test
the accuracy of our model predictions in dense and confined spaces,
when such data becomes available.

Discussion and future work

Our study shows a way in which detailed insights gained from data-
driven crowd research can be utilised to improve current disease
spreading models in an analytically tractable way. Thus, the spread
of disease depends strongly on the behaviour of the crowd, and in
particular the contact rate is a key parameter in the study of the
evolution of a disease and it varies considerably depending on the
density of the population in the studied environment.
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Figure 5 | Top: Results of the agent-based model (ABM) of a
unidirectional crowd flow in a corridor. The curves correspond to the
mean values of 10 simulations for a number of average crowd densities, and
the error bars correspond to 1 standard deviation. The blue dashed curve is
the same as in Fig. 3 for comparison. Bottom: Snapshot of the agent-based
crowd model. Colours correspond to: susceptible (yellow); infected (red);
and exposed (blue).

We have found that three different but related effects of crowd
behaviour affect the rate of infection in a confined space. All three
effects contribute to an increased infection rate for increasing crowd
density; (i) increasing crowd density leads to decreased proximity,
but this leads to a higher number of individuals within the range of
infection around an infected individual; (ii) density-dependent walk-
ing speeds lead to individuals spending longer periods of their time in
crowded locations compared to less crowded locations within an area
with locally varying crowd densities (thus, the mean crowd density
underestimates the typical proximities between individuals); and (iii)
for the same reason, individuals also spend longer time altogether in
environments such as transport hubs on crowded days compared to
less crowded days, which leads to an increasing rate of infection per
distance walked.

Comparing our new model with existing models, we have shown
how existing models may give significant over- or under-estimations of
the spread of disease in certain settings, and we have also shown how
current models can be improved by a modification of the A parameter.

Moreover, the use of a generic definition of the transmission rate
that depends on the transmissibility of the disease, the area considered
and the density of the population, is a powerful tool that can be used
in many different crowd scenarios, and will decrease the dependency
on a-posteriori empirical transmission rate data every time one of the
environmental or crowd-related parameters have changed.

Having a more precise prediction of what may, or may not, happen
in crowded environments in terms of contagion between individuals
could be highly useful to be able to devise adaptive control strategies
during mass gatherings, in busy transport hubs, or in busy city centres.

Methods
Figure 2 was produced by numerically solving Egs. (4)-(6) for p on the interval [0.01,
8] with a step size of 0.01.

Note that the average walking speed (v(p)) is truncated at an upper boundary at
1.34 m/s (i.e. the “free’ unobstructed walking speed), and by a lower boundary at 0.01
(m/s). All intermediate walking speeds are calculated using the non-linear function
specified by Eq. (6).

Figure 3 was produced by solving Eq. (8) for 100 values of p equally distributed on
the interval [0.01, 8].

Figure 4 was created by solving Eq. (3) for a population size N = 1000, using our
proposed density-dependent specification of A obtained from Eq. (8) and comparing
the results to the number of exposed individuals produced using a constant value
Acnstant The range of crowd density is exactly the same as the one used in Fig. 3. The
time axis uses a time step of 60 seconds and the time range used is [0, 6 X 3600]
seconds (i.e. six hours).

Figure 5 was obtained by repeatedly running an agent-based crowd model 10 times
for each of 40 different values of crowd density in the range [0, 8] m ™ using N = 200
pedestrians in a corridor with periodic boundary conditions. The model ran for 10
simulated seconds and data from ¢ < 2 s was excluded because of the time needed for
pedestrians to accelerate from their initial zero speeds at the start of the simulation.
The model equations (9)-(11) were solved numerically using the 1st order Euler
method with a time step of 0.05 s.
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