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A Method to Quantify FRET Stoichiometry with Phasor Plot Analysis and
Acceptor Lifetime Ingrowth
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ABSTRACT FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to
quantify both theFRETefficiency (E) and the affinity (Kd) of themolecular interaction from intermolecular FRET signals in samples
of unknownstoichiometry. Here, we present amethod for the simultaneous quantification of the complete set of interaction param-
eters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image
pixel. Themethodmakesuseof fluorescence lifetime information fromboth donor andacceptormolecules and takes advantageof
the linear properties of the phasor plot approach.We demonstrate the capability of our method in vitro in amicrofluidic device and
also in cells, via thedetermination of the binding affinity between tagged versionsof glutathione andglutathioneS-transferase, and
via the determination of competitor concentration. The potential of the method is explored with simulations.
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Förster resonance energy transfer (FRET) is widely applied
in the study of molecular interactions and conformational
changes in biological systems (1). Both the FRETefficiency,
E, and the fraction of molecules participating in the interac-
tion, f, are important parameters in biochemical research. A
number of intensity-based FRET methods have been devel-
oped to quantify E and f (2,3). Those can be performed with
basic fluorescence equipment, which is advantageous; but
they also require extensive calibration protocols, which
may lead to large cumulative errors.

Fluorescence lifetime imaging microscopy (FLIM) pro-
vides a more robust means of quantifying FRET interactions
because the fluorescence lifetime is an inherently ratiomet-
ric measurement (4–6). In existing FLIM methods, the fluo-
rescence decay can be analyzed either by decay-curve fitting
(7) or by using a geometric global analysis approach, called
the AB- (8,9) or phasor-plot method (10–14). Both FRET
efficiency and molecular fractions of active donors (i.e.,
donors participating in the FRET process), fD

FRET, can be
recovered. The value fD

FRET depends on several factors,
such as local concentrations of donor and acceptor and the
binding affinity between them. All of these are of interest,
but they cannot be quantified without knowledge of the
bound acceptor fraction (fraction of acceptors that are in
complex with their binding partners), which is not tradition-
ally available when only donor lifetimes are measured.
Spectrally resolved FLIM has been applied for FRET mea-
surements to improve both the separation of multiple life-
time components and the accuracy of recovered FRET
efficiencies (6,15–17), but they have not been extended to
the recovery of the acceptor stoichiometry. The lifetime
ingrowth of acceptors has been exploited for the analysis
of FRET stoichiometry (18,19); however, these methods
are impractical when fluorescence bleedthrough from donor
fluorophores contaminates the FRET signal, a problem for
most FRET pairs, because then the bound acceptor fraction
becomes difficult to retrieve.

Here, we present a method, which combines the advan-
tages of FLIM and phasor plot techniques, taking into full
account the presence of cross-excitation (direct excitation
of the acceptor upondonor excitation) anddonorfluorescence
bleedthrough in the acceptor emission channel. FRET effi-
ciency and molecular fractions of both the bound donor and
acceptor molecules are recovered, as well as the dissociation
constant Kd. Measurements in a maximum of only three
spectral channels are required by our method, which we
refer to as multichannel FLIM-FRET (MC-FLIM-FRET).
The validity and potential of the method are explored
with simulations, and demonstrated experimentally with
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time-correlated single photon counting measurements in mi-
crofluidic devices and in cells. We quantified the binding af-
finity between glutathione (GSH) fused to the fluorescein
derivative Oregon green (OG-GSH, donor) and glutathione
S-transferase (GST) fused to the fluorescent proteinmCherry
(mCherry-GST, acceptor) for various protein stoichiometries
(for details on constructs, see Section S2 in the Supporting
Material).

Fig. 1 a shows the principle of MC-FLIM-FRET. The
method requires the measurement of fluorescence decays
in both the donor channel (donor excitation/donor emission)
and the FRET channel (donor excitation/acceptor emission).
Here the case for fluorophores exhibiting monoexponential
decays is discussed. Multiexponential decays are discussed
in Section S1 in the Supporting Material. Fluorescence
measured in the donor channel only contains a mixture of
signal from donors participating in FRET (active donors)
and those that do not (passive donors) (3,6), hence the corre-
sponding mixed phasor ð~tDMÞ lies along the line joining the
phasors of active ð~tFRETD Þ and passive donors ð~tDÞ. From the
positions of~tDM, both the active donor fractions, fD

FRET, and
FRET efficiency, E, can be recovered as previously demon-
strated ((10,11), and see Section S1 in the Supporting Mate-
rial). The bound donor fraction fD* is the same as fD

FRET

(see Section S1 in the Supporting Material for detail).
On the other hand, the phasor for the FRET channel,~tDA,

is a linear combination of active and passive acceptor
phasors (~tFRETA and~tA, respectively) and~tDM (combination
of ~tFRETD and ~tD) resulting from donor bleedthrough. The
value ~tA is easily obtained from a FLIM measurement in
the acceptor channel (acceptor excitation/acceptor emis-
FIGURE 1 Principle of MC-FLIM-FRET, and validation. (a) Explana

mitted light image of a microfluidic device containing a sequenc

(c) Recovered fraction of bound donor. (d) Recovered fraction of bo

and acceptor (log scale). (f) Recovered dissociation constantKd. (g) R

line), and expected value calculated from known mixing conditions d

pendent of [D]/[A]. The average photon count in each binned pixel is

the Supporting Material for details).
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sion) using a sufficiently long excitation wavelength, or,
alternatively, via measurement in a control sample contain-
ing acceptors only. The value ~tFRETA is calculated from ~tA
and ~tFRETD by considering the acceptor lifetime ingrowth
using the methods detailed in Section S1 in the Supporting
Material. The phasor~tAM (containing only the contribution
from acceptors) can then be obtained by the intersection of
the line ~tDM � ~tDA (blue line in Fig. 1) with the acceptor
phasor trajectory (red line), from which the fraction of
FRET active acceptors fA

FRET can finally be determined.
Note that, due to cross-excitation, not all of the acceptor
molecules bound to donor molecules are FRET-active.
The fraction of bound acceptors fA* can be recovered
with fA

FRET using the methods described in Section S1 in
the Supporting Material. Hence, both FRET efficiency and
stoichiometry are resolved with our method. If either donor
concentration ([D]) or acceptor concentration ([A]) is
known a priori, then Kd can also be recovered. If this is
not the case, then [A] can be recovered from an intensity
measurement in the acceptor channel. (See Section S1 in
the Supporting Material for further explanations.)

To explore the dynamic range of MC-FLIM-FRET, we
performed simulations using spectral parameters mimicking
the OG/mCherry pair and eGFP/mCherry pair (see Section
S4 in the Supporting Material for details). The simulations
were performed in the presence of realistic levels of noise,
and verify that donor- and acceptor-bound fractions as
well as Kd can be recovered with good accuracy from data
with signal levels typically available in real experiments.

Next, we validated the method experimentally by imaging
a microfluidic device filled with ~500 microdroplets of
tion of phasor plot construction for MC-FLIM-FRET. (b) Trans-

e of microdroplets with continuously varying stoichiometry.

und acceptor. (e) Recovered concentration ratio between donor

ecovered concentration ratio between donor and acceptor (blue

uring droplet generation. (h) The value Kd is verified to be inde-

~14,000 for panels c–f, and ~90,000 for g and h (see Section S3 in



FIGURE 2 Validation of MC-FLIM-FRET in cells. (a–c) Bound

fractions and dissociation constants. (d–g) Recovered parame-

ters upon adding competitor GSH. (h–k) Absolute concentration

determination in cells with known Kd ¼ 37.2 5 0.2 mM.

The average photon count in each binned pixel is ~13,000

(see Section S3 in the Supporting Material for details).
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volume 3 nL, each containing a unique stoichiometry of OG-
GSH and mCherry-GST with [D]/[A] ranging from 0.06 to
11.19 (see Section S2 in the Supporting Material for details).
Fig. 1 b shows a transmitted light image of the microfluidic
device. Fig. S13 a in the Supporting Material shows the cor-
responding phasor plot for the data from which a FRET effi-
ciency of E ¼ (59.5 5 0.5)% (errors quoted as SE, 68%
confidence interval) is recovered. Fig. 1, c and d, presents
the recovered bound fractions fD* and fA*, respectively,
from which we obtain the [D]/[A] across the image (Fig. 1
e, and see Section S1 in the Supporting Material for details).
Fig. 1 f shows the recovered dissociation constant Kd across
the image. Because each spatial position inside themicroflui-
dic device correlates with the time point when the mixture
was generated, we can plot the temporal evolution of the con-
centration ratiosmeasured (blue curve, Fig. 1 g) and compare
this with the known values (red curve; see Section S2 in the
Supporting Material for details). The data are in good
agreement. Fig. 1 h shows the recoveredKd value for different
donor and acceptor concentration ratios and as expected, the
recoveredKd value is approximately constant throughout.We
obtain a mean value of Kd ¼ 26.55 0.2 mM. Fig. 1, g and h,
shows how the sensitivity of the method decreases as [D]/[A]
gets large, and signal/noise correspondingly small. In Section
S4 in the Supporting Material we compare the experimental
noise performance andmeasurement sensitivity with simula-
tions, and both are in good agreement.

We also tested the performance of the method for mea-
surements in cells, with autofluorescence taken into account
(20). HEK293T cells expressing mCherry-GST were pre-
pared and permeabilized with saponin, a mild detergent
(21). OG-GSH was then added to the medium and its diffu-
sion ensued into the cells. The cell-endogenous GSH, which
is a competitor for the OG-GSH and mCherry-GST inter-
action, was depleted after membrane permeabilization
(Section S2 in the Supporting Material). Fig. 2, a and b,
shows the bound fractions of donors and acceptors, respec-
tively, for a representative cell. The recovered FRET effi-
ciency is (58.7 5 0.6)%. Using a further measurement in
the acceptor channel, we recovered the acceptor concentra-
tion [A] (see Section S3 in the Supporting Material), and
hence, Kd, as shown in Fig. 2 c. We obtain an average value
of Kd ¼ 37.2 5 0.2 mM. Although similar to the micro-
droplet result, the difference is likely to reflect the residual
presence of endogenous GSH and the different solution
conditions prevailing in the cell. Next, we added 200 mM
GSH to the medium to introduce the effect of a competitor.
Fig. 2, d and e, shows the recovered fD* and fA* in this case;
both are lower than in absence of competitor, as expected.
The calculated apparent Kd, Fig. 2 f, is now clearly larger
than in the GSH-depleted sample shown in Fig. 2 c.
Assuming that the real Kd value is unchanged, we can
now recover the concentration of the competitor, GSH
(Fig. 2 g). We thus obtain a GSH concentration of 93.3 5
0.3 mM. This reduced concentration is likely reflective of
the fact that GSH undergoes oxidation during sample prep-
aration (Section S2 in the Supporting Material). Finally,
even in the case where neither donor nor acceptor concentra-
tions are available, it is possible to recover variations in Kd

and competitor concentrations across a sample (see Section
S1 in the Supporting Material for details).

On the other hand, for a known Kd value in a bimolecular
complex, and in the absence of competitor reactions, both
absolute donor and acceptor concentrations can be recov-
ered (Section S1 in the Supporting Material). In Fig. 2, h
and i, the bound fractions fD* and fA* are presented for
another cell. Assuming a Kd value as was measured in
Fig. 2 c, [D] and [A] can be recovered in the cell (Fig. 2, j
and k). The average [A] recovered in this way is (66.9 5
0.2) mM, which compares well with an acceptor-intensity-
based measurement of (50.8 5 0.1) mM, giving confidence
to both the robustness of the method and the extracted value
for Kd.

In summary, we have developed a robust method for
FRET quantification using FLIM measurements in both
the donor and acceptor emission channels, in combination
with a powerful phasor plot approach. It permits us to
compensate for donor bleedthrough and acceptor cross-
excitation, recovering both FRET efficiency and molecular
fractions of bound donor and acceptor complexes, unachiev-
able with common FLIM-FRET techniques. The method
was validated using simulation, microfluidic experiments,
and cell experiments. Our method is useful for measure-
ments of dissociation constants, donor and acceptor concen-
trations, and the presence and concentration of competitors
to binding reactions.
Biophysical Journal 108(5) 999–1002
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SupportingMaterials andMethods, 13 figures, and one table are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00075-2.
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