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Abstract 
Hypertrophic cardiomyopathy (HCM) is a relatively rare but debilitating diagnosis in the 

pediatric population and patients with end-stage HCM require heart transplantation. In 

this study, we performed single-nucleus RNA sequencing on pediatric HCM and control 

myocardium. We identified distinct underling cellular processes in pediatric, end-stage 

HCM in cardiomyocytes, fibroblasts, endothelial cells, and myeloid cells, compared to 

controls. Pediatric HCM was enriched in cardiomyocytes exhibiting “stressed” 

myocardium gene signatures and underlying pathways associated with cardiac 

hypertrophy. Cardiac fibroblasts exhibited clear activation signatures and heightened 

downstream processes associated with fibrosis, more so than adult counterparts. There 

was notable depletion of tissue-resident macrophages, and increased vascular 

remodeling in endothelial cells. Our analysis provides the first single nuclei analysis 

focused on end-stage pediatric HCM. 
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Introduction 
Hypertrophic cardiomyopathy (HCM) is a relatively rare, but debilitating diagnosis 

in the pediatric population, with an estimated incidence of 2.9/100,000 [1]. The 

outcomes and presentations depend on underlying etiology and age of presentation and 

the phenotype ranges from mild cardiac hypertrophy to sudden cardiac death and end-

stage heart failure [2]. In fact, young HCM patients carry an almost 4-fold higher 

mortality compared to the general population [3]. The “cumulative burden” of HCM 

across the lifetime of a patient is significant and younger patients carry a heightened 

risk of adverse outcomes. In particular, end-stage pediatric HCM patients represent a 

vulnerable population; approximately a quarter of these patients experience significant 

arrhythmias and waitlist mortalities can be as high as 33% in the infant population [4].  

 Alterations in the structure and function of the sarcomere is thought to be the 

primary cause of HCM, with most variants identified in myosin heavy chain 7 encoding-

MYH7 and myosin binding protein C3 encoding-MYBPC3 [5]. Variants generally lead to 

functional protein changes like reduction of ATP-responding, sensitivity of actin-myosin 

complex disassociation, and efficiency of force generation [5],[6]. This leads to 

downstream molecular changes including activation of signaling pathways, like 

transforming growth factor beta and mitogen-activated protein kinase pathways [5]. 

Ultimately, these alterations lead to histological changes like myocyte disarray, cardiac 

hypertrophy, and interstitial fibrosis [5]. 

 Single-nucleus RNA sequencing (snRNA-seq) is a powerful tool used to assess 

gene expression across different cell types and conditions in the heart. Recently, 

studies utilizing snRNA-seq have described the transcriptome in adult HCM patients 

[7],[8]. These studies establish enrichment of genes associated with “cardiac stress” in 

cardiomyocytes, genes associated with fibroblast activation and fibrosis in fibroblasts, 

and macrophage activation and subtype switching [7],[8]. In addition, enhanced 

intercellular communication, both in number and strength of interactions, is seen in 

HCM, similar to other cardiac diseases like congenital heart disease [8],[9]. snRNA-seq 

studies involving cardiac disease in pediatric patients are scarce, owing to the rarity of 

pediatric samples [9],[10]. There have been no studies focusing on pediatric HCM. 
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 We set out to perform snRNA-seq to study transcriptome differences between 

end-stage pediatric HCM patients and controls without structural heart disease. We also 

set out to identify pathways implicated in each of the major cell types - cardiomyocytes, 

fibroblasts, endothelial cells, and myeloid cells - determine co-expressed gene networks 

upregulated in disease, predict intercellular communications across each of the major 

cell types, and compare identified major pediatric HCM cellular processes to adult HCM 

counterparts. 

 
Methods 
Research ethics for donated tissues 

Cardiac tissue samples used in this study were collected during cardiothoracic 

surgery performed at Texas Children’s Hospital (Houston, Texas). The protocols for the 

procurement and use of these patient sample were approved by the Institutional Review 

Board for Baylor College of Medicine and Affiliated Hospitals (Protocol Number H-26502). 

With the help of the Heart Center Biorepository at Texas Children’s Hospital, consent was 

obtained from patients.  

 

Clinical cohort 

We identified four, non-syndromic, end-stage pediatric (<18 years) HCM patients 

transplanted at Texas Children’s Hospital/Baylor College of Medicine from 2014-2021. 

Of the four, we obtained left ventricular tissue samples from three at the time of heart 

transplant (HT; Figure 1A/1B). All three patients met indications for transplantation due 

to severe diastolic dysfunction leading to restrictive physiology and associated 

symptoms and had variants identified in sarcomere genes TNNT2 or MYH7. Data for 

our HCM cohort was collected retrospectively via chart review from medical records. 

Demographics and clinical variables collected included sex, age of diagnosis, age at 

HT, pre-HT medications, gene sequencing testing, and laboratory findings, specifically 

B-type natriuretic peptide (BNP) levels. Diagnostic imaging studies collected included 2-

dimensional echocardiographic studies, performed on commercially available cardiac 

ultrasound scanners.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2024. ; https://doi.org/10.1101/2024.01.25.577226doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.25.577226
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sample collection and nuclear Isolation 

HCM tissues was collected in the operating room during HT. The anatomic location 

of tissue collected is LV free wall. Cardiac tissue sample was kept in cold saline on ice 

during transfer to the laboratory for preservation. Cardiac tissue samples were carefully 

dissected into multiple aliquots, which were flash-frozen and stored at –80 °C. Nuclear 

isolation was performed as described previously [9],[11]. Briefly, frozen cardiac tissue 

was dissociated by using a Dounce homogenizer. Single nuclei were isolated via 

fluorescence-activated cell sorting (FACS). 

 

Single-nucleus RNA sequencing 

SnRNA-seq was performed by using the 10X Genomics platform. Isolated nuclei 

were loaded into the 10X Genomics Chromium Controller to obtain the gel beads in 

emulsion. The sequencing libraries were then prepared according to the manufacturer’s 

protocols for the Single-cell 3’ Reagents Kits v3. Sequencing was performed by using the 

NovaSeq 6000 system. 

 
Controls 

Since our patient cohort was made up of female patients, we identified two female 

controls with relatively similar ages. Clinical characteristics are described in Table S1. 

Controls tissue data were obtained from the following published data sets [9],[10],[12]. 

Control data were downloaded in the format of raw sequencing reads and were re-

processed with the HCM data using the same pipeline. 

 
SnRNA-seq data processing and integration 

All newly generated and published snRNA-seq data sets were processed using a 

uniformed pipeline. Raw sequencing reads were aligned to the genome (build GRCh38) 

using the 10X Genomics toolkit CellRanger version 5.0.1 (cellranger count) with --include-

introns set to true. All other parameters were left as defaults. Quality control metrics 

generated by CellRanger were inspected for each library. To remove background signals 

from ambient transcripts, the raw UMI count matrices were further processed by 

CellBender version 0.1.0 (cellbender remove-background) with --total-droplets-included 
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= 25000, --low-count-threshold = 15, and --epochs = 200. To minimize the loss of valid 

cell barcodes called by CellRanger, we also set --expected-cells at 1.5 times of 

CellRanger output nuclei number. The output matrices from CellBender were filtered to 

only include valid cell barcodes that were also identified by CellRanger. Additional quality 

controls at single nucleus level were performed for each library. Briefly, we first identified 

low-quality nuclei based on fixed cut-offs of UMI count per nucleus > 200, gene count per 

nucleus > 150 and mitochondria gene-derived UMI <5%. Then, a set of dynamic cut-offs 

based on per-library data distribution were calculated, which is essential to account for 

heterogeneity between samples. In brief, for each library, an upper and lower bound were 

set at the 75th percentile plus 1.5 times the interquartile range (IQR) and the 25th 

percentile minus 1.5 times IQR, respectively, for UMI count and gene count per nuclei. 

Next, the remaining nuclei were evaluated by the Scrublet tool [13] to identify potential 

doublets, with parameters expected_doublet_rate = 0.1 and call_doublets threshold = 

0.25. Finally, we integrated all samples and corrected batch-effect using a deep 

generative model scANVI [14]. The scANVI latent space was reduced to generate the 

final global UMAP embedding and subsequent subcluster UMAP embeddings for 

cardiomyocytes, fibroblasts, endothelial/endocardial cells, and myeloid cells.   

 

Sublustering and differential gene expression testing 

We subsetted data by major cell type, focusing on cardiomyocytes, fibroblasts, 

endothelial/endocardial cells, and myeloid cells. Re-clustering was then performed with 

the FindNeighbors function using 50 dimensions of the scVI latent space and 

subsequently the FindCluster function with a Louvain resolution of 0.2. Clusters 

expressing markers of two major cell types were labeled as doublets and removed. 

Testing of differentially expressed genes (DEGs) between clusters was completed using 

the FindAllMarkers function (Wilcoxon rank-sum test, min. pct = 0.05, thresh.use = 

0.15). This function employs the Bonferroni correction to calculate an adjusted P value. 

We next sorted DEGs by the log fold-change of the average expression (avg log2FC or 

FC) and filtered for DEGs with adjusted P values <0.05. Sample level pseudobulk 

differential expression analysis was performed after extracting the single-cell RNA-seq 

raw count data and using the typical workflow with the DEseq2 package (version 1.38.3; 
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https://hbctraining.github.io/scRNA-seq/lessons/pseudobulk_DESeq2_scrnaseq.html) 

[15]. To explore the similarity of the samples based on the condition of interest (HCM vs 

control), we performed and plotted the principal component analysis (PCA). 

 

Differential abundance testing 

 For differential abundance testing, we used the MiloR package (version 1.6.0) to 

determine the abundance of diseased cohort control neighborhoods in clusters.[16] For 

k-nearest graph construction, we used the reduced dimensions output from scVI and 

depending on the cell number in each major cell type, we set the number of nearest 

neighbors (k) from 10 to 50. For counting cells in neighborhoods and differential 

abundance testing, we inputted the samples (ie. tissue samples) used and matched 

them to the condition of interest (ie. HCM vs control). An alpha threshold of 0.1 for 

plotNhoodGraphDA was used to generate the final graph of neighborhoods. P values 

were adjusted with the Benjamini-Hochnberg correction. 

 

Weighted gene co-expression network analysis 

To perform weighted gene co-expression network analysis (WGCNA), we used 

the high dimensional WGCNA (hdWGCNA) package (version 0.2.26) [17]–[19]. The 

recommended hdWGCNA workflow was followed. We included genes expressed in at 

least 5% of the cells in each dataset. To construct the metacell expression matrices, we 

inputted the samples as recommended in the group.by parameter to ensure that cells 

coming from the same biological sample of origin are used to construct the metacells. 

The number of cells to be aggregated (k) was determined by the number of cells in each 

dataset and ranged from 25-50 and the maximum number of shared cells between two 

metacells was set to 10. To perform k-nearest neighbors, the scVI dimensionality 

reduction was used. We then focused on the “hub” genes and their respective 

eigengene-based connectivity (kME). The top 25 “hub” genes were identified based on 

their kME, a measure of the correlation of a gene and the respective module eigengene, 

and was used to compute a gene score and module networks. We then ran the UMAP 

algorithm on the topological overlap matrix, set the number of hub genes to include in 

the UMAP embedding to 10, the neighbor’s parameter to 15, and the minimum distance 
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between points at 0.1, and finally ran the ModuleUMAPPlot function to plot the genes 

and their co-expression relationships.  

To perform differential module eigengene analysis, we subset the data to group 

cells from patients with HCM and controls separately. hdWGCNA employs a function 

analogous to the FindMarkers function in Seurat called the FindDMEs function, which 

uses the Wilcoxon rank-sum test to perform differential module eigengene expression 

testing. To test for similarities in our Seurat and hdWGCNA analyses, we then compare 

hdWGCNA modules to cluster marker genes. We reran the FindAllMarkers function with 

a log fold change threshold of 1 to identify highly DEGs in each of our clusters and 

computed marker gene overlap. In both the former analyses, P values were adjusted 

with Benjamini-Hochnberg correction and we set a significance of 0.05. 

 

Module score creation 

 We utilized the AddModuleScore function in the Seurat package to develop cell 

scores for myocardial stress, LAMININ ligand, COLLAGEN ligand, and fibroblast 

activation, based on previous genetic signatures defined by Kuppe et al., Chaffin et al., 

and CellChat (https://www.cellchat.org/cellchatdb/) [7],[20]. This function normalizes the 

average expression of a given gene set against the average expression of control 

genes across the whole dataset. Scores were then compared within each of the 

cardiomyocyte and fibroblast clusters, between HCM and control cells, and between 

adult and pediatric HCM. The genes included in each of these scores are listed in Table 

S2.  

 

Functional enrichment analyses and cell-cell Interactions 

 To test for functional enrichment, analyses were performed following DEG or 

“hub” gene identification in the Seurat and the hdWGCNA analyses, respectively. The 

clusterProfiler package (version 4.6.2) was used to perform enrichGO and enrichKEGG 

analyses on the top 500 genes to identify functional pathways enriched in each cluster 

and similarly in pediatric vs adult HCM [21]. As part of the hdWGCNA package, EnrichR 

enrichment testing was performed on the top 500 genes within each respective module 
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to identify functional pathways enriched within each module. Enriched terms and 

pathways were filtered based on adjusted P values of <0.05. 

 Intercellular interactions were analyzed with CellChat (version 1.6.1) [22]. The 

typical workflow and default parameters were followed. In short, control and HCM 

Seurat objects were subsetted into two separate datasets and converted into CellChat 

objects. To compare intercellular interactions amongst major cell types in HCM and 

control samples, the CellChat objects were combined and the CellChat comparison 

analysis of multiple datasets workflow was followed. Given we saw a significantly higher 

number and greater weight of interactions in our HCM cohort, we then further analyzed 

intercellular communication in the HCM dataset alone, stratified by individual cluster.  

 

Statistical analysis and data visualization 

 All statistical analyses outside the previously mentioned packages were 

completed using the ggpubr (version 0.6.0) package in R (version 4.2.3). Box plots 

exhibit medians, the lower and upper quartiles, and the minimum and maximum data 

values. Relative expression between two groups were compared with the Wilcoxon 

rank-sum test and more than two groups were compared with the Kruskal Wallis test. 

Data visualization was completed via the various cited packages described above. In 

addition to these, bar plots depicting percentages were created using dittoSeq [23]. Pre-

mutation testing between cell proportions was completed with the scProportionTest 

package [24]. Parts of Figure 1 were drawn by using pictures from Servier Medical Art. 

Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 

Unported License (https://creativecommons.org/licenses/by/3.0/).  

 
Results 
Global SnRNA-seq analysis reveals differences in cellular composition in HCM  

From the 8 tissue samples, we generated 91,682 single-cell transcriptomes and 

identified 10 clusters representing major cell types after batch correction and doublet 

removal (Figure 1C). Annotation of major cell types was completed based on differential 

expression of marker genes. We then focused on cardiomyocytes, fibroblasts, 

endothelial/endocardial cells, and myeloid cells. Following re-clustering, we further 
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manually removed doublets for a total remaining 29,501 cardiomyocytes, 29,512 

endocardial and endothelial cells, 13,959 fibroblasts, and 3,106 myeloid cells (Figure 

1C). Proportions of total cells contributed to each major cell type by subject and by total 

HCM and control are exhibited in Figure 1D. Premutation testing exhibited a significantly 

increased proportion of endothelial cells (Log2FD= 1.29, Adjusted P-value=0.001) and 

decreased proportion cardiomyocytes (Log2FD= -0.80, Adjusted P-value <0.001), 

fibroblasts (Log2FD= -0.12, Adjusted P-value <0.001), and myeloid cells (Log2FD= -

1.27, Adjusted P-value <0.001) in HCM. Sample level pseudo-bulk RNA-seq analysis 

exhibited global transcriptional differences between HCM and control samples (Table 

S3). The influence of disease on PCA analysis is exhibited in Figure 1E and PC2 

distinguishes control and HCM samples. 

 

Cardiomyocyte gene expression implicates several pathways enriched in HCM-enriched 

clusters 

Unbiased re-clustering of the cardiomyocyte population identified 6 cardiomyocyte 

clusters denoted as CM1-CM6 (Figure 2A). Proportions of cells contributed to each 

cluster by subject and total HCM and control are exhibited in Figure 2B. Premutation 

testing exhibiting a significantly increased proportion of HCM-derived cells in CM1 

(Log2FD= 2.72, Adjusted P-value<0.001) and CM4 (Log2FD= 1.31, Adjusted P-

value<0.001) and increased proportion of control-derived cells in CM2 (Log2FD= 0.58, 

Adjusted P-value<0.001), CM3 (Log2FD= 2.32, Adjusted P-value<0.001), CM5 

(Log2FD= 2.69, Adjusted P-value<0.001), and CM6 (Log2FD= 5.58, Adjusted P-value 

<0.001). This was further substantiated in the differential abundance analysis where the 

CM1 and CM4 clusters were enriched with HCM neighborhoods (Figure 2C).  

In the DEG analysis, DEGs that are significantly upregulated (FC >1) in CM1 

have been previously implicated in cardiomyopathy and are associated with “cardiac 

stress” including ANKRD1, NPPB, and PROS1 (Figure 2D, Table S4) [8],[25]. Other 

upregulated genes of interest include PLCE1, which promotes myocardial ischemia-

reperfusion injury, and IGF1R, shown to be related to cardiac homeostasis and aging 

[26],[27]. Interestingly, control-dominant CM5 exhibited upregulation of TCAP, MB, 

DES, MYH7, and XIRP2, several of which are known to be upregulated in stressed 
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myocardium, as well as other sarcomere genes like TNNT2, TNNC1, and TNNI3. 

Pseudobulk-RNA analysis exhibited some overlap with HCM dominant clusters in our 

DEG analysis. It also identified other genes of interest like upregulated SLITRK4, 

previously shown to be diagnostic marker in HCM [28]. Additionally, genes known to be 

downregulated in end-stage cardiomyopathy like MYH6 and CORIN were identified 

(Figure 2E; Table S5) [9],[12]. Functional enrichment analysis revealed upregulation of 

Gene-Ontology (GO) pathways related to actin binding in HCM-enriched CM1, but were 

also seen in control-enriched CM3, CM5, and CM6 (Figure 2F, Table S6). Upregulation 

of insulin receptor pathways was unique to CM1 (Table S6). KEGG pathways 

upregulated in HCM-enriched CM1 and CM4 again exhibited insulin signaling pathways, 

as well pathways related to mitophagy, focal adhesion/adherens junction, PI3K-Akt 

signaling, and mTOR signaling (Table S7). 

 Owing to findings of genes associated with “cardiac stress” in control-enriched 

clusters, we created module scores incorporating genes identified by Kuppe et al. in 

“normal”, “pre-stressed”, and “stressed” myocardium derived from adults following 

myocardial infarctions [20]. Control-enriched clusters CM2 and CM3 had the highest 

relative expression determined by the “normal” myocardium score, control enriched 

CM3 and CM5 the highest for the “pre-stressed” myocardium score, and HCM-enriched 

CM1 and control-enriched CM6 for the “stressed” myocardium score (Figure 2G). 

 

Co-expression network analysis reveals underlying processes in HCM cardiomyocytes 

We then sought to create co-expression networks to identify interconnected 

genes enriched in HCM by using hdWGCNA. The hdWGCNA pipeline is described in 

Figure S1A. Twelve modules of co-expressed genes were identified (Figure S1B, Table 

S8). Correlation of module eigengenes, a metric summarizing gene expression profiles 

of each module, is exhibited in Figure S1C. Differential module eigengene (DME) 

analysis results exhibited that module CM-hd9, CM-hd2, and CM-hd7 are upregulated in 

HCM compared to controls (Figure S1D, Table S9). In CM-hd9, the most upregulated 

module in HCM, genes with the highest kME include previously implicated PLCE1 and 

other genes associated with inflammation, cardiac remodeling, and glucose metabolism 

like FKBP5, CPEB4, and PDK4 (Figure 1D).[29]–[31] Consistent with our previous 
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analyses, the CM-hd9 hME was highest in HCM-enriched CM1 and CM4 (Figure S1E). 

Additionally, functional enrichment pathway analysis in CM-hd9 exhibited upregulation 

of actin cytoskeleton, focal adhesion, and cell substrate junction pathways. CM-hd7 was 

made up of genes associated with glycolysis, Wnt signaling, and the NF-kappaB (NF-

κB) signaling pathways. These pathways were also seen in control dominant CM-hd5 

and CM-hd4, implying that pathways related to “cardiac stress” and injury may be seen 

in structurally normal, donor hearts. Functional enrichment analysis is exhibited in Table 

S10.  

Sensitivity analyses were performed to assess if hdWGCNA findings were 

consistent with our previous DEG analyses and consistent amongst HCM subjects and 

cells derived from left or right ventricles. Using overlap analysis and a log threshold of 1 

to identify gene markers for CM clusters, we identified significant overlap of CM-hd9 and 

HCM dominant CM1, with the highest hME expression (Figure S5A-C). CM-hd4, CM-

hd11, and CMhd-3 showed variable overlap with “pre-stressed” and “stressed” CM3, 

CM5, and CM6, which is likely due to genes associated with both scores being housed 

in those respective modules. We then performed DME on each HCM subject compared 

to controls and in another analysis only included left ventricle-derived cells, which 

showed consistent upregulation of CM-hd9 in HCM (Figure S6B, Table S11).  

 

HCM clusters are enriched in activated fibroblasts 

 Unbiased re-clustering of fibroblasts identified 4 clusters denoted as FB1-FB4 

(Figure 3A). Proportions of cells contributed to each cluster by subject and by total HCM 

and control are exhibited in Figure 3B. Premutation testing exhibiting a significantly 

increased proportion of HCM-derived cells in FB3 (Log2FD= 3.27, Adjusted P-

value<0.001) and increased proportion of control-derived cells in FB1 (Log2FD= 2.06, 

Adjusted P-value<0.001), with a slight predominance of HCM-derived cells in FB2 

(Log2FD= 0.45, Adjusted P-value<0.001) and FB4 (Log2FD= 0.59, Adjusted P-

value<0.001). Similar findings were exhibited in the differential abundance analysis, 

where FB1 was enriched with control neighborhoods and FB3, as well as FB2 and FB4 

to a lesser degree, were enriched with HCM neighborhoods (Figure 3C).  
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 In the DEG analysis (Table S12, Figure 3D), HCM-enriched FB3 exhibited DEGs 

(FC >1) related to fibroblast activation like POSTN, PALLD, FAM155A, and FGF14 [7]. 

FB2 exhibited marker genes for lipogenic fibroblasts APOE and APOD [32]. FB4 

exhibited pro-inflammatory and pro-fibrotic OSMR [33]. This was further validated in 

pseudo-bulk RNA analysis with significant overlap implicating POSTN, THSD4, PALLD, 

and FAM155A, as well as several collagen genes like COL4A6, COL22A1, and 

COL11A1 (Table S13, Figure 3E). Functional pathway analysis exhibited upregulation 

of integrin pathways in HCM-enriched FB2 and FB3, extracellular matrix structural 

constituent and focal adhesion pathways in FB2-FB4, and calmodulin-related pathways 

in FB3 and FB4 (Table S14-15, Figure 3F). These findings are consistent with fibroblast 

to myofibroblast activation and their subsequent secretory functions. 

 To explore the collective expression of genes involved in fibroblast activation, we 

computed a module score based on the average expression of genes defined in 

activated fibroblast populations by Chaffin et al.[7] HCM-derived cells exhibited 

significantly higher module scores and HCM-enriched FB3, consistent with our previous 

findings, exhibited the highest module score (Figure 3G, Figure S6A). Higher relative 

expressions for each gene included in the module was shown in HCM compared to 

controls, as well as higher module scores across all HCM subjects compared to control 

subjects (Figure S6A). This indicates that our findings are not driven by one HCM 

subject, but a genetic signature for fibroblast activation across all HCM subjects.  

   

Activated fibroblast genes are co-expressed and enriched in HCM myocardium 

Nine modules of co-expressed genes were identified (Figure S2A; Table S16). 

Correlation of module eigengenes is exhibited in Figure S2B. Module hMEs are shown 

overlayed on the original UMAP embedding in Figure S2C. We then applied the UMAP 

embedding to visualize the co-expression networks as exhibited in Figure S2D. DME 

analysis results exhibited that modules FB-hd4, FB-hd7, FB CM-hd8 are upregulated in 

HCM compared to controls (Figure S2E; Table S17). Consistent with our previous DEG 

analysis, FB-hd4 and FB-hd7 hME was highest in HCM-enriched FB3 (Figure S1F). 

When focusing on the most upregulated module FB-hd4, fibroblast activating genes 

PAALD, POSTN, and NOX4 are co-expressed along with genes associated with cell 
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migration, inflammation, and fibrosis like ASAP1 and FKBP5 [7],[30],[34]. Similarly, in 

module FB-hd7, fibroblast activating genes like THBS4, FAP, and LTBP2 are co-

expressed with genes associated with fibrosis, cell adhesion, and cell migration like 

IGFBP-5, FN-1, and CD99 [35]–[37]. This implies that fibroblast activation is related to 

upregulation in cell migration, fibrosis, and inflammation. This is consistent with the 

functional enrichment pathway analysis showing enrichment of pathways involved in 

fibrosis in FB-hd7 like extracellular matrix organization pathways and with higher odds 

ratios compared to control dominant modules (Table S18).  

Sensitivity analyses were performed. Overlap analysis exhibited significant 

overlap between FB-hd4 and FB3 as well as FB-hd7 and FB2, consistent with our 

previous analyses showing heightened fibroblast activity in those respective clusters 

(Figure S5A-C). We then performed DME on each HCM subject compared to controls 

and in another analysis only included left ventricle-derived cells, which showed 

consistent upregulation of FB-hd4 and FB-hd7 in HCM (Figure S6B, Table S19). 

 

Genes associated with angiogenesis and cell fate are enriched in HCM endothelial cell 

and endocardial clusters 

 Unbiased re-clustering identified five clusters denoted as EC1-EC3, EndoC, and 

LEC (Figure 4A). Proportions of cells contributed to each cluster by subject and by total 

HCM and control are exhibited in Figure 4B. With premutation testing of proportions, 

LECs (Log2FD= 1.29, Adjusted P-value=0.002) and EC1 (Log2FD= 0.19, Adjusted P-

value=0.002) were found to be HCM dominant, while EndoC was control dominant 

(Log2FD= 1.95, Adjusted P-value=0.002). Similarly, differential abundance testing 

showed that the greatest number of HCM neighborhoods were found in EC1, followed 

by EC2 and EC3 (Figure 4C).   

 DEG analysis (Table S20, Figure 4D) was completed. Cluster markers for 

venous, capillary, and arterial endothelial cells, as well as endocardium and lymphatic 

endothelial cells were identified. EC1 represented capillary endothelial cells (ie. CA4 

and RGCC), EC2 arterial endothelial cells (ie. GJA5, DLL4, and SEMA3G), EC3 venous 

endothelial cells (ie. NR2F2, SELP, and ACKR1), EndoC endocardium (ie. SPOCK1, 

NPR3, and POSTN), and LECs lymphatic endothelial cells (ie. CCL21).[38] Both EC1 
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and EC2 were enriched with genes associated with cell fate, angiogenesis, cell junction, 

and vascular remodeling (NOTCH4, FLT1, ADAMTS6, FGFR1, RGCC, COL15A1; 

Figure 4D/4E) [39]–[41]. This was further validated in pseudo-bulk RNA analysis with 

overlap implicating genes like FLT1, FGFR1, and RGCC (Table S21). Functional 

enrichment pathway analysis exhibited upregulation of GO pathways associated with 

cell adhesion, cadherin binding, NOTCH binding, and vascular endothelial growth factor 

receptor binding pathways (Table S22; Figure 4F) and similarly, KEGG pathways 

associated with adherens junction and NOTCH signaling pathways mainly in clusters 

EC1-EC3 (Table S23). These findings support the role of endothelial cells in vascular 

remodeling in HCM. 

 

Genes driving cell fate and angiogenesis are co-expressed and enriched in HCM 

Eight modules of co-expressed genes were identified (Figure S3A; Table S24). 

Correlation of module eigengenes is exhibited in Figure S3B. Module hMEs are shown 

overlayed on the original UMAP embedding in Figure S3C. We then applied the UMAP 

embedding to visualize the co-expression networks as exhibited in Figure S3D. DME 

analysis results exhibited that module EC-hd2 is upregulated in HCM compared to 

controls and the hME was highest in HCM-predominant EC1 in our previous DEG 

analysis (Figure S3E/S3F; Table S25). Hub genes in EC-hd2 again implicate genes 

associated with angiogenesis like FLT1.[39] Consistent with previous results, functional 

enrichment pathway analysis identified pathways associated with angiogenesis, cell 

fate, and endothelial cell differentiation (Table S26). Sensitivity analyses were 

performed similar to prior. Overlap analysis exhibited significant overlap between EC-

hd2 and HCM-predominant EC1 and EC2 clusters, of which EC1 had the highest hME 

expression (Figure S5A-C). We then performed DME on each HCM subject compared 

to controls and in another analysis only included left ventricle-derived cells, which 

showed consistent upregulation of EC-hd2 in subjects H1 and H2 and EC-hd2 in HCM 

compared to LV specific control tissue (Figure S6B, Table S27). 

 

Tissue resident macrophages are diminished in HCM myocardium 
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 Unbiased re-clustering derived from myeloid cells identified 3 clusters. These 

were labeled based on cell markers defined by Eraslan et al. as a monocyte derived 

macrophage cluster enriched with HLA Class II genes and NAMPT (MP1), a tissue-

resident macrophage cluster enriched with LYVE1 (MP2), and a monocyte cluster 

enriched with VCAN (Mono) [42]. Proportions of cells contributed to each cluster by 

subject and by total HCM and control are exhibited in Figure 5B. Premutation testing 

exhibited heightened HCM proportions in MP1 (Log2FD= 1.21, Adjusted P-value<0.001) 

and heightened control proportions in MP2 (Log2FD= 0.38, Adjusted P-value<0.001) 

and Mono (Log2FD= 2.08, Adjusted P-value<0.001). Similar findings were exhibited in 

the differential abundance analysis, where MP2 and Mono were enriched with control 

neighborhoods and MP1 more enriched with HCM neighborhoods (Figure 5C). 

DEG analysis (Table S28, Figure 5D) and pseudo-bulk RNA analysis (Table S29) 

was completed. We also obtained markers of recruited (ie. derived from CCR2+ 

markers) and resident (derived from CCR2- markers) macrophage subsets identified by 

Bajpai et al (Figure 5E and 5F) [43]. HCM enriched MP1 differentially expressed (FC>1) 

NAMPT, a gene encoding nicotinamide phosphoribosyltransferase shown to play a role 

in myocardial adaption to pressure overload, as well as other genes involved in NAD+ 

nucleosidase activity like IL18R1 [44]. MP1 also differentially expressed several MHC 

Class I and II genes (ie. HLA-DRA, HLA-DRB1, HLA-DQB1, HLA-DPB1). This is 

consistent with exhibiting a high relative expression of CCR2+ markers suggesting an 

inflammatory role for this cluster. This is further substantiated by functional enrichment 

analysis showing enrichment of GO and KEGG pathways involving antigen processing 

and presentation, immune activity, and MHC protein-related pathways (Table S30 and 

S31). MP2 exhibited high relative expression of CCR2- markers and differentially 

expressed genes like the sodium channel SCN9A, a sodium channel modulator FGF13, 

and F13A1, encoding the coagulation factor XIII A subunit. This is consistent with 

findings in previous studies analyzing gene expression in CCR2- macrophages as well 

as functional enrichment analysis exhibiting pathways associated with scavenger 

receptor activity and calcium channel activity [43]. When analyzing pseudo-bulk RNA 

analysis, genes associated with macrophage activation and differentiation were noted, 

like ANKRD22 (Table S29) [45]. 
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HCM myocardium has a predominantly fibroblast driven increase in inferred cellular 

interactions 

 We sought to estimate differential outgoing and incoming interactions between 

HCM and controls. When comparing outgoing and incoming interactions, 86.7% of 

inferred interactions were in HCM (n=365/421). The differential number and weight of 

interactions were significantly higher in HCM (Figure 6A-C). When evaluating strength 

of interactions by cell type, fibroblasts appear to have the highest strength of outgoing 

interactions while endocardium, endothelial cells, and cardiomyocytes have the highest 

incoming interaction strengths (Figure 6D). This is consistent with a disrupted tissue 

microenvironment. Ligand/receptor pairs are shown in Table S32-33. The strongest 

differential outgoing interactions from fibroblasts involved LAMININ and COLLAGEN 

pathways and translated to the pathways seen in incoming interactions in 

cardiomyocytes, endothelial cells, and endocardium (Figure 6E). The ligand and 

receptors with the highest estimated probabilities include LAMA2, LAMB1, COL6A4, 

COL4A1, COL4A2, ITGA9, ITGA7, ITGA6, and ITGB1 (Table S32-33). Other outgoing 

interactions of note include PTPRM pathways, associated with cell growth and 

differentiation, strongly seen in endocardium and less so in endothelial cells and 

cardiomyocytes (Figure 6E).  

 We then sought to assess cell to cell communication within HCM-derived cells 

and amongst clusters to identify patterns in diseased tissue. Fibroblast clusters were the 

largest contributors to both number and strength of outgoing interactions (Figure S4A 

and S4E) and less so for endothelial cells and endocardium (Figure S4C) and 

cardiomyocyte clusters (Figure S4D). Ligand/receptor pairs by cluster are shown in 

Table S34. We then sought to assess common patterns for pathways amongst the 

clusters. We selected the default 4 patterns to be identified based on Cophenetic and 

Silhouette values. Outgoing interaction pathways belonging to each pattern are shown 

in Figure S4B. Cardiomyocyte clusters exhibited pathways in Pattern 1, endothelial 

clusters EC1-EC3 and EndoC exhibited pathways in Pattern 2, fibroblast clusters in 

Pattern 3, and LECs in Pattern 4. Specific pathways and their respective contribution in 
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each cluster are shown in Figure S4F and were consistent with pathways expected to 

be upregulated based on our DEG analyses.  

 

Pediatric HCM fibroblasts are enriched with ribosomal and extracellular matrix protein-

related genes compared to adult HCM 

 We next integrated data from 16 end-stage, adult HCM subjects described in the 

Chaffin et al. study [7]. When comparing pediatric HCM to adult HCM, we found 2125 

DEGs in pediatric HCM (Table S35). Of these, several DEGs with FC>1 included genes 

related to ribosomal proteins like FAU, RPS15, RPL18, and RPL14 and collagen genes 

like COL21A1, COL4A1, COL1A1, and COL4A4. In addition, some fibroblast activation 

genes were upregulated in pediatric HCM like PALLD, FGF1, and AKT3, but others 

were upregulated in adult HCM like FAP, NOX4, and THBS4. Consistent with this, our 

functional pathway over-representation analysis first on upregulated DEGs in pediatric 

HCM and then comparing pediatric and adult HCM, exhibited consistent upregulation of 

GO pathways related to protein synthesis and cellular proliferation (ie. ribosome-related 

pathways), fibrosis related pathways (ie. extracellular matrix protein-related pathways), 

and apoptosis/mitophagy pathways (Figure 7A and 7B; Table S36-S38) in pediatric 

HCM. Owing to heightened fibroblast outgoing interactions noted in our primary 

analysis, we created module scores based on ligand genes described in CellChat 

COLLAGEN and LAMININ pathways (https://www.cellchat.org/cellchatdb/). We found 

consistent upregulation of these modules in pediatric HCM (Figure 7C). This data is 

consistent with heightened cellular proliferation, protein synthesis, and upregulation of 

downstream pathways associated with fibrosis.  

 
Discussion 

 We identify significant transcriptional changes in ventricular tissue derived from 

pediatric HCM patients compared to structurally normal hearts in cardiomyocytes, 

fibroblasts, endothelial/endocardial cells, and myeloid cells. We identify cell states and 

cellular processes unique to pediatric HCM in major cell types. Interestingly, a marked 

fibroblast response is seen in end-stage pediatric HCM and a disrupted micro-tissue 

environment is largely mediated by signaling originating from fibroblasts. Compared to 
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adult HCM, downstream upregulation of fibrotic pathways was seen. These data add to 

our understanding of end-stage HCM, now uniquely shown in a pediatric population. 

We identify genes and pathways upregulated in pediatric HCM cardiomyocytes 

associated with pathways implicated in hypertrophy, cardiac remodeling, and 

maladaptive responses to injury. Importantly, we note upregulation of genes associated 

with “cardiac stress”, like NPPB and ANKRD1 [7],[40]. Interestingly, we note 

upregulation of other “cardiac stress” genes like MYH7 and XIRP2 in some control-

enriched clusters. This, as previously shown, may be associated with the organ 

procurement process [9]. Further, it illustrates that “cardiac stress” can occur outside of 

structural heart disease. We also identified genes associated with maladaptive and 

inflammatory responses to stress, cardiac remodeling, and hypertrophy. For instance, 

PLCE1 encoding phospholipase C epsilon 1 was identified in both our hdWGCNA and 

DEG analysis and is known to promote inflammation via NF-κB signaling pathway 

activation and hypertrophy via scaffolding to mAKAP in cardiac myocytes [26],[46]. 

Similarly, FKBP5 was identified which promotes inflammation via NF-κB signaling 

pathway activation [30]. In addition, other upregulated genes identified included CPEB4, 

a mediator of pathologic cell growth in cardiomyocytes via its interactions with 

transcription factors, and PDK4, of which overexpression has been shown to cause 

metabolic inflexibility and exacerbate cardiomyopathy in the setting of hypertrophy. 

[29],[31] We also identified upregulation of pathways in HCM-enriched clusters that are 

key regulators of hypertrophy and can cross-interact to promote hypertrophy, like insulin 

signaling pathways, PI3K-Akt signaling, and mTOR signaling [47]. 

 Fibroblasts are the main mediators of fibrosis in heart disease and cardiac 

fibroblasts have the capabilities to expand functionally in response to injury [48]. 

Although their functions can be reparative in the acute setting, chronic fibroblast 

activation and subsequent fibrosis can lead to diastolic and systolic dysfunction, as well 

as have pro-arrhythmic consequences. Clinically, fibrotic remodeling seen in cardiac 

disease, particularly in heart failure with preserved ejection fraction, is associated with 

poorer outcomes [49]. Activated fibroblasts, or myofibroblasts, are usually seen in the 

early proliferative phase shortly after myocardial injury and this population decreases as 

the scar matures [48]. They possess several functional roles including neovessel and 
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extracellular matrix formation, as well as contractile activity [48]. We note a large 

population of activated fibroblasts in end-stage pediatric HCM. Fibroblast activation is 

noted in adult HCM studies as well and were almost exclusively found in pathologic 

samples [7]. This has also been exhibited in adult DCM, with robust evidence of 

activation gene signatures [12]. When comparing our pediatric data to adult HCM 

fibroblast data, we found significant upregulation of pathways associated with cellular 

proliferation and protein synthesis. Further, although fibroblast activation genes were 

not consistently upregulated in pediatric HCM, we found downstream pathways 

associated with fibrosis (ie. ECM-related pathways) were upregulated in pediatric HCM 

compared to adults. This may explain why these patients presented with restrictive 

physiology early on and met indication for transplant prior to their adult counterparts. 

 Other notable findings in non-cardiomyocyte cell types are a predominance of 

endothelial cell heterogeneity and enrichment in HCM, as well as a depletion of tissue-

resident macrophages. In HCM, myocardial ischemia, especially in the 

subendocardium, can be seen in the absence of coronary artery disease and is likely 

secondary to a cardiac mass/perfusion mismatch [50]. As such, responses seen in 

endothelial cells promoting angiogenesis is likely a response to chronically hypoxic 

myocardium and an attempt to maintain contractile function [51]. Although the exact 

mechanisms are not fully understood, angiogenesis-induced hypertrophy can still occur 

without hypertrophic stimulation [51]. In addition, pathways related to angiogenesis like 

the NOTCH and vascular endothelial growth factor receptor binding pathways, were 

found to be upregulated [51],[52]. In regards to myeloid cells, the resident marker 

enriched cluster was deplete of HCM neighborhoods and the recruited marker rich 

cluster had slightly higher amounts of HCM neighborhoods. Resident macrophages, 

enriched with CCR2- markers, are protective and compared to more pro-inflammatory 

CCR2+ macrophages, do not secrete inflammatory mediators and may inhibit leukocyte 

recruitment [43]. This may suggest a shift to a more pro-inflammatory myeloid state in 

pediatric HCM. 

 Using ligand to receptor analyses, we identify a clear upregulation of cell-to-cell 

interactions in HCM compared to controls. This is consistent with a disrupted 

microtissue environment and aberrant intercellular communication seen in disease [9]. 
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On further analysis, the majority of outgoing interactions are noted to be mediated by 

fibroblasts and were mostly related to collagen and laminin pathways, with 

cardiomyocytes, endocardium, and endothelial cells being the primary receivers of the 

interactions. The primary receptors identified were of the integrin family, a group of 

heterodimeric transmembrane cell adhesion molecules, that likely play a role in 

extracellular matrix protein deposition in the diseased heart [53]. As pathologic 

remodeling continues, mechanical stiffness in of itself can promote myofibroblast 

differentiation and continued extracellular matrix protein production [53],[54]. Our overall 

data suggests a prominent fibroblast-mediated response leading to extracellular matrix 

protein deposition. 

 Our study is limited by the sample size and lack of functional validation. Pediatric 

samples and disease are relatively rare compared to their adult counterparts and as 

such, this will be an inherent limitation to most pediatric-focused studies. In addition, 

biases that cannot be controlled for in our patients like race, ethnicity, surgical sampling, 

medication, and epi-genetic modifications may have influence on our results. And 

finally, patients used in this study are those with end-stage disease requiring HT and as 

such, may not represent cellular processes seen in non-end-stage disease. Regardless, 

this is the first snRNA-seq study seeking to illustrate underling genetic signatures in 

pediatric HCM. 

 In conclusion, our data exhibits prominent underlying cellular processes in 

pediatric HCM. Fibroblast-mediated cellular processes appear to be the most prominent 

amongst the major cardiac cell types analyzed and when compared to adult 

counterparts, pediatric patients transplanted appear to have a heightened amount of 

downstream processes associated with fibrosis.  
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Figure Legends 
Figure 1: A) Study cohort description exhibiting HCM and control subjects with their 

respective ages. B) Study schematic and steps in analysis in both controls and those 

with HCM from time of procurement (1), tissue handling and RNA sequencing (2), 

identification of major cell types of interest (3), and downstream analyses (4). C) UMAP 

embedding of major cell types and subsequent clustering of major cell types of interest. 

D) Proportion of major cell types of interest within control subjects (C1 and C2) and 

HCM subjects (H1, H2, and H3) and proportions in pooled cohorts (Control vs HCM). E) 

PCA plot for pseudo-bulk RNA-seq analysis for all major cell types of interest by 

diagnosis (red: Control; blue: HCM). Ellipses represent the 95% confidence intervals. 

 

Figure 2: A) UMAP embedding of reiterative clustering of cardiomyocytes. B) Bar plot 

depicting proportion of major cell types of interest within control subjects (C1 and C2) 

and HCM subjects (H1, H2, and H3) and proportions in pooled cohorts (Control vs 

HCM). C) Left: Embedding derived from Milo k-nearest neighborhood differential 

abundance testing and layout derived from UMAP embedding. Nodes with false 

discovery rate <10% depict neighborhoods and are colored by log fold changes for 

HCM (blue) versus control (red) samples. Right: Beeswarm plot depicting significant log 

fold changes for HCM (blue) and control (red) neighborhoods derived from differential 

abundance testing stratified by cardiomyocyte clusters (y-axis). D) Heatmap of top 5 

differently expressed genes derived from FindAllMarkers function in CM1, CM2, CM3, 

CM4, CM5, and CM6. E) Volcano plot derived from pseudo-bulk RNA differential gene 

expression. F) Enrichment map stratified by CM cluster depicting the proportional GO 

pathway analysis. Node size is determined by the number of genes within each GO 

pathway. G) Feature plots illustrating expression of normal, pre-stressed, and stressed 

cardiomyocyte scores derived from Kuppe et al. in combined HCM and control cells, 

overlaid on the original UMAP embedding. 

 

Figure S1: A) High definition weighted gene co-expression network analysis workflow. 

B) Plots exhibiting genes in each module ranked by eigengene-based connectivity 

(kME). C) Correlogram of module eigengenes, a metric summarizing gene expression 
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profiles of co-expression modules, with batch correction completed with Harmony 

(hMEs). Positive correlation is indicated by a positive numeric and a purple color and 

negative correlation is indicated by a negative numeric and a green color. Non-

significant correlations are indicated by an “X”. D) Left: Lollipop plot of differential 

module eigengene (DME) analysis results, illustrating average log2 fold change for each 

of the modules within HCM. The size of each dot corresponds to the number of genes in 

the module. Non-significant correlations are indicated by an “X”. Right: Network module 

plot for upregulated CM-hd9 exhibiting the top 25 genes with the highest kME. E) Violin 

plot for upregulated module CM-hd9 hME stratified by Seurat FB clusters, with box plots 

overlayed. The center line in the box represents the median, the top edge of the box 

shows the upper quartile, the lower edge of the box shows the lower quartile, and the 

whiskers extend x1.5 of the interquartile range.  

 

Figure 3: A) UMAP embedding of reiterative clustering of fibroblasts. B) Bar plot 

depicting proportion of major cell types of interest within control subjects (C1 and C2) 

and HCM subjects (H1, H2, and H3) and proportions in pooled cohorts (Control vs 

HCM). C) Left: Embedding derived from Milo k-nearest neighborhood differential 

abundance testing and layout derived from UMAP embedding. Nodes with false 

discovery rate <10% depict neighborhoods and are colored by log fold changes for 

HCM (blue) versus control (red) samples. Right: Beeswarm plot depicting significant log 

fold changes for HCM (blue) and control (red) neighborhoods derived from differential 

abundance testing stratified by fibroblast clusters (y-axis). D) Heatmap of top 5 

differently expressed genes derived from FindAllMarkers function in FB1, FB2, FB3, and 

FB4. E) Volcano plot derived from pseudo-bulk RNA differential gene expression. F) 

Enrichment map stratified by FB cluster depicting the proportional GO pathway analysis. 

Node size is determined by the number of genes within each GO pathway. G) Top left: 

Feature plots illustrating expression of activated FB score depicted on original UMAP 

embedding. Bottom left: Boxplot illustrating relative expression level derived from 

activated FB score stratified by HCM versus control. The center line in the box 

represents the median, the top edge of the box shows the upper quartile, the lower 

edge of the box shows the lower quartile, and the whiskers extend x1.5 of the 
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interquartile range. P value <0.001 indicated by ***. Right: Dot plots illustrating average 

expression (depicted on color scale) and percent of cells expressing each gene 

(depicted by size of dot), stratified by FB clusters. 

 

Figure S2: A) Plots exhibiting genes in each module ranked by eigengene-based 

connectivity (kME). B) Correlogram of module eigengenes, a metric summarizing gene 

expression profiles of co-expression modules, with batch correction completed with 

Harmony (hMEs). Positive correlation is indicated by a positive numeric and a purple 

color and negative correlation is indicated by a negative numeric and a green color. 

Non-significant correlations are indicated by an “X”. C) Feature plot created within 

hdWGCNA illustrating expression of module hMEs colored by each module’s assigned 

color, and depicted on the original UMAP embedding. D) UMAP embedding applied on 

the hdWGCNA network to visualize the co-expression network, containing the top 10 

hub genes stratified by kME for each module, and downsampled to keep only 20% of 

edges in the network for visual clarity. Points represent each gene and the size of each 

dot is scaled based on a gene’s kME for its respective module. E) Left: Lollipop plot of 

differential module eigengene (DME) analysis results, illustrating average log2 fold 

change for each of the modules within HCM. The size of each dot corresponds to the 

number of genes in the module. Non-significant correlations are indicated by an “X”. 

Right: Network module plot for upregulated FB-hd4 exhibiting the top 25 genes with the 

highest kME. E) Violin plot for upregulated module FB-hd4 and FB-hd7 hMEs stratified 

by Seurat FB clusters, with box plots overlayed. The center line in the box represents 

the median, the top edge of the box shows the upper quartile, the lower edge of the box 

shows the lower quartile, and the whiskers extend x1.5 of the interquartile range. 

 

Figure 4: A) UMAP embedding of reiterative clustering of endothelial cells. B) Bar plot 

depicting proportion of major cell types of interest within control subjects (C1 and C2) 

and HCM subjects (H1, H2, and H3) and proportions in pooled cohorts (Control vs 

HCM). C) Left: Embedding derived from Milo k-nearest neighborhood differential 

abundance testing and layout derived from UMAP embedding. Nodes with false 

discovery rate <10% depict neighborhoods and are colored by log fold changes for 
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HCM (blue) versus control (red) samples. Right: Beeswarm plot depicting significant log 

fold changes for HCM (blue) and control (red) neighborhoods derived from differential 

abundance testing stratified by cardiomyocyte clusters (y-axis). D) Heatmap exhibiting 

differentially expressed genes for each of the EC clusters. Expression levels indicate 

the average expression for each cluster. Clusters are colored according to Figure 4A. E) 

Violin plot illustrating relative expression for RGCC and NOTCH4 in HCM versus control 

cells. F) Enrichment map stratified by EC cluster depicting the proportional GO pathway 

analysis. Node size is determined by the number of genes within each GO pathway. 

Node size is determined by the number of genes within each GO pathway. 

 

Figure S3: A) Plots exhibiting genes in each module ranked by eigengene-based 

connectivity (kME). B) Correlogram of module eigengenes, a metric summarizing gene 

expression profiles of co-expression modules, with batch correction completed with 

Harmony (hMEs). Positive correlation is indicated by a positive numeric and a purple 

color and negative correlation is indicated by a negative numeric and a green color. 

Non-significant correlations are indicated by an “X”. C) Feature plot created within 

hdWGCNA illustrating expression of module hMEs colored by each module’s assigned 

color, and depicted on the original UMAP embedding. D) UMAP embedding applied on 

the hdWGCNA network to visualize the co-expression network, containing the top 10 

hub genes stratified by kME for each module, and downsampled to keep only 20% of 

edges in the network for visual clarity. Points represent each gene and the size of each 

dot is scaled based on a gene’s kME for its respective module. E) Left: Lollipop plot of 

differential module eigengene (DME) analysis results, illustrating average log2 fold 

change for each of the modules within HCM. The size of each dot corresponds to the 

number of genes in the module. Non-significant correlations are indicated by an “X”. 

Right: Network module plot for upregulated EC-hdd exhibiting the top 25 genes with the 

highest kME. E) Violin plot for upregulated module EC-hd2 hME stratified by Seurat FB 

clusters, with box plots overlayed. The center line in the box represents the median, the 

top edge of the box shows the upper quartile, the lower edge of the box shows the lower 

quartile, and the whiskers extend x1.5 of the interquartile range. 
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Figure 5: A) UMAP embedding of reiterative clustering of myeloid cells. B) Left: 

Embedding derived from Milo k-nearest neighborhood differential abundance testing 

and layout derived from UMAP embedding. Nodes with false discovery rate <10% 

depict neighborhoods and are colored by log fold changes for HCM (blue) versus 

control (red) samples. Right: Beeswarm plot depicting significant log fold changes for 

HCM (blue) and control (red) neighborhoods derived from differential abundance testing 

stratified by myeloid cell clusters (y-axis). D) Bar plot depicting proportion of major cell 

types of interest within control subjects (C1 and C2) and HCM subjects (H1, H2, and 

H3) and proportions in pooled cohorts (Control vs HCM). E) Heatmap exhibiting 

differentially expressed genes for each of the ML clusters. Expression levels indicate 

the average expression for each cluster. G) Dot plots illustrating average expression 

(depicted on color scale) and percent of cells expressing each gene (depicted by size of 

dot), stratified by ML cells for CCR2+ markers (left) and CCR2- markers (right) derived 

from Bajpai et al. 

 

Figure 6: A) Circle plot illustrating the differential number (top) and weight (bottom) of 

ligand-receptor interactions in HCM versus control cells. Red indicates increased 

number or weight of interactions in HCM and blue indicates decrease in number or 

weight of interactions in HCM. B) Circle plots exhibiting the number of ligand-receptor 

interactions in HCM (top) versus control (bottom) cells. C) )Circle plots exhibiting the 

weight of ligand-receptor interactions in HCM (top) versus control (bottom) cells. D) 

Scatter plots for control (top) and HCM (bottom) cells illustrating the strength of 

incoming (y-axis) and outgoing (x-axis) interactions. The size of each circle is 

dependent on the number of interactions. E) Scatter plots illustrating differential 

incoming and outgoing interactions between HCM and control cells in fibroblasts, 

cardiomyocytes, endothelial cells, and endocardium. Each point represents a signaling 

pathway. The shapes define if the pathway is shared (circle), incoming specific 

(square), outgoing specific (triangle), or both incoming and outgoing specific (diamond). 

The color defines if the pathway is shared (black), control specific (red), or HCM specific 

(blue).   
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Figure S4: A) Circle plot illustrating the number (left) and weight (right) of ligand-

receptor interactions in HCM cells within each fibroblast, cardiomyocyte, endocardium, 

and endothelial cell cluster. B) Outgoing patterns showing how sender cells drive 

communication with certain signaling pathways. Four patterns were identified with their 

respective signaling pathways. Fibroblasts were associated with Pattern 3, 

cardiomyocytes with Pattern 1, endothelial cells with Pattern 2, and endocardium with 

Pattern 4. C)-E) Circle plots for each endothelial, endocardial, cardiomyocyte, and 

fibroblast cluster illustrating the relative weights of outgoing interactions. F) Dot plots 

illustrating outgoing communication patterns from each of the individual clusters (y-axis) 

and the respective signaling pathways (x-axis). The size of each dot is representative of 

the relative contribution. 

 

Figure 7: A) Lollipop charts for GO over-representation analysis showing top 10 GO 

pathways (Y-axis) ranked by fold enrichment (X-axis; calculated by mutate(x, 

FoldEnrichment = parse_ratio(GeneRatio) / parse_ratio(BgRatio))) in biological 

processes (left), molecular functions (center), and cellular components (right). Colors of 

circles correspond to adjusted-P values and size of circle corresponds to the number of 

genes implicated. B) Enrichment map stratified by pediatric vs adult HCM depicting the 

proportional GO pathway analysis (left) and KEGG pathway analysis (right; only 

pediatric specific pathways met significance). Node size is determined by the number of 

genes within each pathway. C) Boxplots illustrating relative expression level derived 

from activated LAMININ module score (left) and COLLAGEN module score (right) 

stratified by adult versus pediatric HCM. The center line in the box represents the 

median, the top edge of the box shows the upper quartile, the lower edge of the box 

shows the lower quartile, and the whiskers extend x1.5 of the interquartile range. P 

value <0.001 indicated by ***. 

 

Figure S5: A) Dot plots illustrating the results of the cardiomyocyte (left), fibroblast 

(center), and endothelial cell/endocardium (right) hdWGCNA and Seurat overlap 

analyses. The presence of each dot represents overlap of our Seurat marker genes and 

the respective hdWGCNA module. The size of each dot represents the overlap analysis 
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statistic. The false discovery rate (FDR) is represented as *** for FDR of 0-0.001, ** for 

FDR of 0.001-0.01, and * for FDR of 0.01-0.05. B) Bar plots illustrating the results of the 

cardiomyocyte (top), fibroblast (middle), and endothelial cell/endocardium (bottom) 

hdWGCNA and Seurat overlap analysis. hdWGCNA modules are ranked by the overlap 

statistic. A grey line illustrates an odds ratio of 1. C) Bar plot illustrating the results of the 

cardiomyocyte hdWGCNA and Seurat overlap analysis. hdWGCNA modules are ranked 

by the overlap statistic. A grey line illustrates a FDR <0.05. D) Dot plots exhibiting 

harmonized module eigengenes (hMEs) for each respective hdWGCNA module within 

the Seurat clusters in cardiomyocyte (left), fibroblast (center), and endothelial 

cell/endocardium (right). The average expression is depicted on a color scale and 

percent of cells expressing each gene is depicted by size of the dot. 

 

Figure S6: A) Left: Dot plot illustrating average expression (depicted on color scale) and 

percent of cells expressing each gene (depicted by size of dot), stratified by HCM 

versus Control. Center: Boxplots illustrating relative expression level derived from 

activated FB score stratified by stratified by FB clusters (center). Right: Boxplots 

illustrating relative expression level derived from activated FB score stratified by 

individual subjects. The center line in the box represents the median, the top edge of 

the box shows the upper quartile, the lower edge of the box shows the lower quartile, 

and the whiskers extend x1.5 of the interquartile range. P value <0.001 indicated by ***. 

B) Lollipop plots illustrating the DME analysis results in the cardiomyocyte, fibroblast, 

and endothelial hdWGCNA analysis when each HCM subject is compared against 

control subjects independently and when only LV to LV tissue is analyzed. 
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Supplemental Fig. 1 I Co-expression network analysis reveals underlying processes in HCM cardiomyocytes 
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A. Differential Number/Weight of Interactions B. Number of Interactions by Condition C. Weight of Interactions by Condition

D. Strength of Interactions by Cell Type E. Differential Incoming and Outgoing Interactions by Condition  

Fig. 6 I Cell interactions are increased in HCM myocardium and predominantly fibroblast driven
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A. Number and Weight of Interactions by Clusters B. Patterns of Outgoing Signaling Pathways

C. Endothelial Cell Cluster Outgoing Interactions 

D. Cardiomyocyte Cluster Outgoing Interactions 

E. Fibroblast Cluster Outgoing Interactions F. Outgoing Interaction Pathways for Major Cell Type Clusters

Supplemental Fig. 4 I Outgoing interactions are driven by fibroblast cluster 3 and 4
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A. Lollipop Charts for GO Over-Representation Analysis (Left to Right: BP, MF, and CC) in Pediatric HCM

B. Gene Ontology Pathways by Cluster (Left) and KEGG Pathways Enriched in Pediatric HCM (Right)

Fig. 7 I Pediatric HCM are enriched in ECM-related genes compared to adult HCM 
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C. Comparison of LAMININ Gene (Left) and COLLAGEN Gene (Right) Modules in Pediatric and Adult HCM
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Supplemental Fig. 5 I Modules of interest derived from hdWGCNA are enriched in Seurat clusters of interest

A. Dot Plots of hdWGCNA and Seurat Overlap Analysis

B. Bar Plots of hdWGCNA and Seurat Overlap Analysis

C. hdWGCNA Module hME Expression in Seurat Clusters
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A. Activated Fibroblast Score Sub-Analyses

B. HCM Subject and Myocardium Morphology Sensitivity Analyses

Supplemental Fig. 6 I Additional sensitivity analyses exhibits consistency amongst HCM subjects
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