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Abstract

Aster Yellows phytoplasma (AYp; ‘Candidatus Phytoplasma asteris’) is an obligate bacterial

pathogen that is the causative agent of multiple diseases in herbaceous plants. While this

phytoplasma has been examined in depth for its disease characteristics, knowledge about

the spatial and temporal dynamics of pathogen spread is lacking. The phytoplasma is found

in plant’s phloem and is vectored by leafhoppers (Cicadellidae: Hemiptera), including the

aster leafhopper, Macrosteles quadrilineatus Forbes. The aster leafhopper is a migratory

insect pest that overwinters in the southern United States, and historical data suggest these

insects migrate from southern overwintering locations to northern latitudes annually, trans-

mitting and driving phytoplasma infection rates as they migrate. A more in-depth under-

standing of the spatial, temporal and genetic determinants of Aster Yellows disease

progress will lead to better integrated pest management strategies for Aster Yellows disease

control. Carrot, Daucus carota L., plots were established at two planting densities in central

Wisconsin and monitored during the 2018 growing season for Aster Yellows disease pro-

gression. Symptomatic carrots were sampled and assayed for the presence of the Aster

Yellows phytoplasma. Aster Yellows disease progression was determined to be significantly

associated with calendar date, crop density, location within the field, and phytoplasma

subgroup.

Introduction

Understanding the progression of pathogen infections resulting in disease phenotypes in agri-

cultural crops is critically important for determining effective pest management strategies.

Aster Yellows phytoplasma (AYp), ‘Candidatus Phytoplasma asteris’ is one agricultural patho-

gen of concern, particularly for commercial growers of carrot, lettuce and celery in the
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Midwest. This small, wall-less prokaryote can infect more than 350 different species of plants

including vital agricultural crops resulting in multiple host-dependent disease phenotypes [1–

3]. In carrot, the AYp pathogen causes Aster Yellows (AY) disease. This pathogen is vectored

by multiple leafhopper species [1–3]. However, in the central United States, the primary vector

of concern is the aster leafhopper (ALH), Macrosteles quadrilineatus Forbes (Hemiptera: Cica-

dellidae), which enables the movement of the phytoplasma from infected hosts into susceptible

healthy plants. ALH is a migratory insect, overwintering in the southern United States [3]. His-

torically, the migration of ALH from the southern United States into northern, agriculturally-

intensive areas is thought to drive infection rates (number of AYp infected leafhoppers/ total

number of leafhoppers collected) [1].

Understanding and reducing the spread of pathogenic agents in the field is of critical impor-

tance for agricultural growers. The movement of AYp across larger, geographic areas has previ-

ously been examined in depth [1–3]. However, the progression and movement of AYp

genotypes within individual commercial agricultural fields has not been explored. Previous stud-

ies have examined different disease models, and determined several factors influencing the

movement of pathogens within different plant species [4–7]. These include insect sensory mech-

anisms [7], pathogen-protein manipulation of host plants [8], the movement of pathogens within

the host plant [4], and geographic and temporal components [3, 9]. These results suggest multi-

ple factors are involved in the development of endemic disease conditions resulting in AY. Char-

acterizing the specific factors, including the arrival and colonization of carrot fields by the ALH,

and the development and spread of the AY disease vectored by these leafhoppers, would provide

growers with additional information useful for managing this economically important disease.

Symptoms of AY disease can vary depending on the infected plant species. In commercial

carrots, AYp can cause the agriculturally significant AY disease. Symptoms include witch’s

broom (proliferation of shoots), phyllody (retrograde development of flowers into leaves),

virescence (flower organs remaining green), bolting, formation of shortened internode and

elongated petioles, chlorosis, and the production of hairy roots [10]. The etiology of Aster Yel-

lows related disease consists of one taxon group of phytoplasma, Ca. Phytoplasma asteris.

However, within the species designation there are multiple subgroups of the phytoplasma [8,

11, 12]. The subgroup classification is based on the phylogenetic difference between a con-

served region of the 16S rRNA [13], which is assessed through the use of restriction fragment

length patterns (RFLP) [14]. Within the Midwestern region of the United States, and more

specifically Wisconsin, the AYp subgroups 16SrI-A and 16SrI-B have been detected and are

both known causative agents of AY in carrots [2].

In the 16SrI-A AYp strain, secreted AY-WB protein (SAP) effector genes have been identi-

fied and some have been shown to promote phytoplasma virulence and enhanced insect-path-

ogen and insect-plant interactions [14–16]. Studies have identified 56 putative SAPs in the

AY-WB genome and SAP11 was found to migrate out of the phloem into adjacent tissues,

including trichomes, of A. thaliana [17]. Secreted AY-WB11 is a known, destabilizing class II

TCP transcription factor of Arabidopsis thaliana leading to the induction of shoot branching

resembling witch’s broom symptoms and leaf crinkling [16, 18–22]. Moreover, SAP11 sup-

presses jasmonic acid (JA) synthesis and modulates volatile organic compounds (VOC) origi-

nating from glandular trichomes of plants [16, 21]. This interaction relies on a nuclear

localization signal in SAP11, which has also been predicted in SAP22, SAP30 and SAP42 [17].

The function of another effector, SAP54, has also been characterized in depth, and is known to

result in phenotypic changes in leaf-like sepals, fewer and less elongated siliques, loss of floral

determinacy, and other reproductive deficiencies [14]. Secreted AY-WB 54 interacts with type

II MADS-domain transcription factors (MTFs) and the 26S proteasome shuttle factor RAD23

leading to degradation of MTFs in plants, causing the phyllody phenotype [14]. The SAP54
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effector is also responsible for enhanced colonization by insect vectors on plants [15], a pheno-

type that is dependent on SAP54 interaction with RAD23 [15]. An effector known as tengu-su

inducer (TENGU) has been demonstrated to interact with two phytohormones (auxin and jas-

monate) resulting in flower sterility and was first identified in onion yellows [23]. Tomkins

et al. used a multi-layered model to predict the complex interactions between leafhopper, phy-

toplasma and plants related to the expression of effector genes SAP11 and SAP54 and sug-

gested that the effectors contribute to disease spread [6]. The majority of SAP genes lie in close

proximity to each other on apparent pathogenicity islands that resemble conjugative transpos-

able elements that were named potential mobile units (PMUs) [22, 24]. These PMUs are vari-

ably present and horizontally exchanged among phytoplasmas [25]. In the genome of AY-WB

phytoplasma, the gene for SAP11 lies on a PMU-like genomic region adjacent to other candi-

date effector genes encoding for SAP56, SAP66, SAP67, SAP68. The genes for 34 of the 56

SAPs are also located on PMUs, while 7 are located on plasmids [17, 20, 22].

In the current investigation, our overarching goal was to investigate the disease progression

of AY within a carrot field, emphasizing the spatial and temporal dynamics of AY incidence and

the composition of SAP effectors genes associated with AYp strains found in infected plants. We

further examined the effects of within-field location, time, and planting density on AY incidence

and characterized the genetic markers related to the composition of AYp. We found that the pat-

terns of disease spread are not random but structured, and are the result of multiple biological

parameters. The findings provide insight into the movement and colonization of AYp in a carrot

field and will lead to a better understanding of disease progression and management.

Materials and methods

Data availability

All relevant data are contained within the paper and its supporting information files.

Ethical statement

This article does not contain studies with any human participants and no specific permits were

required for field collection or experimental treatment of Macrosteles quadrilineatus for the

study described.

Disease progression and leafhopper pressure

On May 7, 2018, carrot plantings (cv. ‘Canada’) were established at the University of Wiscon-

sin’s Hancock Agricultural Research Station (HARS) in field K3 (44.118181˚N,

-89.549045˚W). Seed was purchased through a commercial vendor (Seedway LLC) which con-

ducts phytosanitary procedures necessary to screen for pathogens and was certified disease

free. Within a larger, 180m by 45m carrot field, a central 66m wide section was divided in half

and planted at either a high density (1360k seeds per hectare) or low density (556k per hectare)

seeding rate. Each planting was further divided into five rows of 18 beds with 4m bare alleys

separating rows (90 beds per density). Each 3-row raised bed measured 2m wide by 6m long.

The first and last rows of beds were considered “edge” beds and were bordered by other, non-

carrot crops to the north (sorghum) and the south (green bean). Carrot beds were subse-

quently managed with a standard fertilizer program, but no crop protection pesticides (herbi-

cides, fungicides, insecticides) were applied at any point in the season. Weeds were managed

by hand-pulling every two weeks.

Using a random number generator, two beds from each row of the high- and low- density

plantings were selected as plots for biweekly stand counts and AY disease monitoring. Initial
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counts occurred on Jun 27, 2018, when plots were staked, stand counts of all carrots within

selected beds were conducted, and AY disease phenotype of each carrot observed. Possible AY

disease phenotypes included proliferation of shoots (“witches-broom”), retrograde develop-

ment of flowers into leaves, virescence, formation of shortened internode and elongated leaves,

and yellowing/reddening of foliage. Plots were scouted in this way every two weeks (Jun 27, Jul

11 and 25, Aug 8 and 21, Sep 6 and 18, Oct 2 and 16) for a total of 9 observations. The exact

location of each phenotypically-described, diseased carrot was recorded and marked within

the field relative to the front stake of each row. Each symptomatic carrot had a small sample of

both petiole and stem removed for genetic confirmation of the presence of the AYp pathogen

in the carrot tissue. Symptomatic carrots were tagged with a small plastic stake to prevent dou-

ble-counting over successive sample dates.

To assess ALH abundance and infection prevalence within the leafhoppers within the carrot

fields, 1000 sweeps of the plant canopy were performed in both the high- and low-density plantings

using a standard, 15-inch sweep net during each biweekly disease monitoring event. Experimental

design of the plot layout and methods can be found in S1 Fig Collected insects were bagged in 3.8

L sealable plastic bags and placed on ice for transportation to the University of Wisconsin-Madison

for processing, where the total number of ALH was determined and a subset of individuals

(N = 40) obtained from each planting density/sample time were stored for later analysis. A taxo-

nomic key to the family Cicadellidae was used to confirm the identity of all adult ALH [26].

DNA isolation from plant and leafhopper tissue

Tissue samples from all symptomatic carrots and 40 leafhoppers per density/sample time were

analyzed. Tissue samples (10 mg) collected from carrots were processed as individual samples

based upon tissue type (petiole, stem). Samples were placed in corresponding 1.5 ml sterile

microcentrifuge tubes and homogenized with a sterile plastic pestle in 500 μl 2% CTAB (Cetyl-

trimethyl-ammonium-bromide) (bioWORLD, Dublin, OH) buffer with 1 μl of 0.2ng/μl RNase

A (Thermo Fisher Scientific, Waltham, MA). Homogenates were incubated at 60˚C for 30 min,

centrifuged at 12,000g for 5 minutes, and the supernatant was transferred to a fresh tube. A sin-

gle volume of chloroform was added and the samples were gently mixed for 10 minutes. Samples

were then centrifuged for 10 minutes at 12,000g and the supernatant was again transferred to a

fresh tube. DNA was precipitated by adding 1 volume of cold isopropanol and mixed by inver-

sion for 10 minutes. Samples were centrifuged to pelletize DNA and washed with 75% EtOH.

After washing, EtOH was discarded and samples were allowed to completely air dry; methodol-

ogy was adapted from Marzachi et al. [27]. DNA was suspended in DNase/ RNase free H20, and

subsequently quantified using a NanoDrop, microvolume spectrophotometer (Thermo Fisher

Scientific, Waltham, MA), and brought to a final volume of between 20 μl -100 μl depending on

the measured concentration. Samples were then frozen at -20˚C for further analysis.

Confirmation of Aster Yellows phytoplasma within tissue samples

To confirm the presence of AYp in DNA isolations from tissue samples, a P1/P7 PCR amplifi-

cation was conducted, followed by a R16F2n/R16R2 nested PCR on the P1/P7 PCR product to

amplify the 16S rRNA sequence. DNA primers were obtained from Smart et al. 1996 (P1/P7)

[28] and Gundersen et al. 1996 (R16F2n/R16R2) [29] and are presented in S1 Table. Specifi-

cally, 25 μl PCR reactions were conducted with GoTaq1 Green Master Mix (Promega Corpo-

ration, Madison, WI). Reaction conditions included 240 seconds at 94˚C as the initial

denaturing step, followed by 30 cycles of 30 seconds at 94˚C for denaturation, 60 seconds at

64˚C (P1/P7) or 60˚C (R16F2n/R16R2) for annealing, 90 seconds at 72˚C for extension and a

final extension of 300 seconds at 72˚C. PCR amplification products were run on a 1.5% agarose
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gel to confirm the presence of corresponding DNA fragments. The corresponding DNA frag-

ment observed from the P1/P7 amplification was 1.8 kbp, while the nested product was 1.2

kbp. Total DNA of only extracted carrot tissue through CTAB procedure was used to analyze

the genetic composition of subgroup and effector proportions. Subgroup identification was

determined using both nucleic acid sequencing and restriction fragment length polymorphism

(RFLP). The identity and position of five unique, single nucleic acid polymorphisms (SNPs)

(S2 Fig) were compared between sequences to identify AYp subgroup. Furthermore, a RFLP

assay using the restriction endonuclease Hha1 (Promega Corporation), was conducted at 37˚C

for 90 min and run on 1.5% agarose gel. RFLP was used as a supplementary assay to confirm

the subgroup designation resulting from SNP assessment of the sequencing data [11].

Effector determination by ‘MonsterPlex’ sequencing

To assess the genetic variability of Aster Yellows phytoplasma approximately 400 ng of each

AYp-positive carrot sample’s DNA was submitted to Floodlight Genomics LLC (Knoxville, TN)

for ‘MonsterPlex’ amplification and Illumina DNA sequencing, samples that were deemed as

co-infected were not used in the Monsterplex analysis. Floodlight Genomics used an optimized

Hi-Plex approach to amplify targets in a single multiplex reaction with 21 targets, including 16S

rRNA (control gene) and 20 effector sequences (S2 Table). The sample-specific barcoded

amplicons were sequenced on the Illumina HiSeq X platform according to the manufacturer’s

directions. Floodlight Genomics delivered sample-specific raw DNA sequence reads as FASTQ

files. Annotation of the raw reads was performed with Geneious bioinformatics software (Auck-

land, New Zealand). Raw reads were aligned to reference sequences and annotated. To deter-

mine subgroup designation, the reads were annotated for known SNPs associated with each

subgroup [11]. Effector reads were aligned to reference sequences, and the total number of

effector reads were standardized to the number of 16S rRNA within each sample to generate a

reads ratio indicating the number of reads of each effector per 16S rRNA read. Effectors were

classified as being present in a sample if the read number after standardization was greater than

1. Effectors SAP21, 36, 54, and 67 did not amplify in either subgroup and were removed from

further analysis, as amplification might have been the result of primer efficiency within the

‘MonsterPlex’ analysis. Samples were considered AYp-infected if both the PCR and genetic

sequencing were positive for the presence of the phytoplasma (16S rRNA sequences were

searched against the non-redundant nucleotide NCBI database using BLASTn).

Data analysis

The effect of date, planting density, and plot location (edge/interior of field) on AY disease inci-

dence was quantified using a maximum likelihood regression model with a beta binomial distri-

bution and a logit link function in JMP Pro 13.2.1 (SAS Institute, Cary, NC). Beta binomial

models require a total count and a diseased count variable, both of which were generated for

each plot on each scouting date. Differences in effector copy number by AYp subgroup were ana-

lyzed in R version 3.6.1 (R Core Team, Vienna, Austria) by running a binomial regression with a

logit link function for each effector and performing a Chi-squared test on the resultant model.

Results

Edge- and density-dependent disease progression

Aster Yellows disease progression increased over the growing season and was also dependent

upon initial planting density. On the first sampling date (27 Jun 2018), no symptomatic carrots

were identified. Disease incidence gradually increased throughout the season until October,
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when it increased exponentially, reaching an average of 4.5 ± 1.8% (edge plots) and 4.3 ± 1.9%

(interior plots) in the high-density planting, and an average of 11.0 ± 5.9% (edge plots) and

8.2 ± 2.2% (interior plots) in the low-density planting (Fig 1 and S3 Table).

Aster Yellows disease incidence appeared to be influenced by planting density (high versus

low density), by plot location within the field (field-edge versus interior plots), and was

strongly dependent on date. To evaluate each of these factors, a mixed model was constructed

to include density (high/low), plot location (edge/interior), and week number, and all two-way

interactions as fixed effects, and plot as a random effect (S4 Table). In the incidence model,

density (F = 9.06, P = 0.0083), week (F = 479.49, P<0.0001), and the density�week interaction

(F = 26.81, P<0.0001) were significant. The random effect of plot was also significant (Wald’s

p-value = 0.040), indicating disease incidence differences between specific plots in the field

independent of all other fixed effects. Plot location within the field showed a non-significant

trend (F = 2.63, p = 0.12). This model confirms a significant difference in disease incidence

between the high-density and low-density plantings, as well as a difference in the rate of

Fig 1. Mean Aster Yellows disease incidence in carrot plantings by planting density (high/low) and plot location within the field (edge/interior).

https://doi.org/10.1371/journal.pone.0239956.g001
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change in disease progress between the two densities. However, a similar mixed model using

only the number of diseased carrots per plot rather than the stand count-adjusted disease inci-

dence values only, showed week as a significant component (f = 497.82, p< .0001), with den-

sity, location, and all interaction terms non-significant. In total, 350 symptomatic carrots were

recorded in the experiment, with 163 present in low density and 187 in the high density plant-

ing portions of the experimental plot. This suggests that the progression of AY through both

the high- and low-density plantings was not limited by the number of available host plants, but

rather by other factors.

Aster leafhopper abundance and infectivity

Cumulative ALH abundance and rates of AYp-carrying ALH peaked in late August of 2018

and followed a similar bell-shaped distribution over both high and low planting densities. As

the principal insect vector of the AYp in Wisconsin, ALH populations were monitored to eval-

uate vector pressure throughout the 2018 growing season in the high- and low-density carrot

plots. From each leafhopper collection, a subset of adult ALH was assayed for phytoplasma to

quantify the infectivity of the in-field leafhopper populations at unique time points throughout

the study. Cumulative ALH abundance and rates of AYp-carrying ALH captured within the

two plots peaked in late August of 2018 and followed similar bell-shaped distributions over

both high and low planting densities (Fig 2). Aster leafhopper abundance in the field peaked

from late July through late August, with populations declining through September and Octo-

ber (Fig 2). The fraction of captured ALH carrying the AYp followed a similar pattern, with a

mean peak infectivity of 8.75% coincident with peak ALH populations (Fig 2).

Aster leafhopper abundance was greater in the high-density carrot plantings in July and

August. Abundance peaked in the high-density planting at 32.85 ALH/ 20 sweeps. Further,

Fig 2. Mean abundance of aster leafhoppers and proportion of captured leafhoppers infected with AYp averaging over both planting

densities within the carrot field.

https://doi.org/10.1371/journal.pone.0239956.g002
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phytoplasma-carrying ALH similarly peaked at 17.5% within the ALH populations in high den-

sity plantings on August 21 (Fig 3). The combination of high ALH counts together with high phy-

toplasma detections within the ALH coincide with high AYp disease incidence in carrot fields.

Aster yellows phytoplasma genotypic determination

Aster Yellows disease in carrots predominantly manifested late in the growing season with a

higher proportion of AYp subgroup 16SrI-A (67%). In addition to evaluating carrot plots for

disease progress, tissue samples from each symptomatic carrot (laboratory-confirmed AYp-

positive samples) were genotyped to determine phytoplasma subgroup. In this experiment,

only 16SrI-A and 16SrI-B AYp subgroups were observed within the field, with the overall sub-

group composition changing significantly during the growing season (Fig 4). In the early por-

tions of the sampling season, AYp samples were comprised of only 16SrI-B subgroup whereas

a greater proportion of mid-season samples were mixed, containing varying proportions of

both 16SrI-A and16SrI-B. The majority of AY diseased carrots possessed overt symptoms late

in the growing season, and the greatest proportion of these infected carrots were classified as

AYp subgroup 16SrI-A (67%).

Secreted AY-WB effector identification

The distribution and proportion of SAP effectors depends upon AY subgroup designation. By

employing ‘MonsterPlex’ parallel PCR amplification techniques, we were able to quantify the

abundance of known effector sequences in the AYp genome and PMUs in 290 unique AYp

samples collected from symptomatic carrots. To generate a “read ratio” for each effector, the

number of reads per effector was normalized to the number of 16 rRNA gene reads for each

sample. These normalized read values revealed significant differences in the presence of effec-

tors genes between the two AYp subgroups observed in the investigation (Fig 5). From among

the 20 effectors amplified, SAP11, 13, 15, 19, 45, and 68 were found to be specific to the

16SrI-A subgroup and not detected in the 16SrI-B subgroup (above an established threshold).

Effectors SAP05, 06, 27, 35, 41, 42, 44, 48, 49, and 66 were present in both subgroups. Of the

effectors present in both subgroups, SAP05, 06, 41, 42, and 66 amplifications generated more

than double the amount of reads from samples that were infected with the 16SrI-A subgroup

compared to the 16SrI-B subgroup. Both SAP06 and SAP66 were observed at an average read

number 35.3 and 21.4 times greater, respectively, in the 16SrI-A subgroup compared to the

16SrI-B subgroup. The effectors with the highest number of reads in subgroup 16SrI-A

Fig 3. Abundance of aster leafhoppers and proportion of captured leafhoppers infected with AYp illustrating both high density (A) and low density (B)

plantings in the carrot field.

https://doi.org/10.1371/journal.pone.0239956.g003
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Fig 4. Number of new Aster Yellows phytoplasma infected carrots identified and sampled by date, illustrating the ratio of both AYp 16SrI-A and

16SrI-B subgroup proportions for each sample date.

https://doi.org/10.1371/journal.pone.0239956.g004

Fig 5. A) Effector read number within 16SrI-A and 16SrI-B subgroups. B) Effector ratio between 16SrI-A and 16SrI-B subgroups. Result of Chi-squared tests

of significance comparing 16S rRNA-normalized effector copy numbers shown along top of panel A (���� (P<0.0001), �� (P<0.01), NS = non-significant).

https://doi.org/10.1371/journal.pone.0239956.g005
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samples were SAP41 (81.40 reads per 16S rRNA read) and SAP42 (78.34 reads per 16S rRNA

read), while SAP48 (62.69 reads per 16S rRNA read) and SAP49 (68.34 reads per 16S rRNA

read) had the highest copy within subgroup 16SrI-B (S2 Table). Only SAP44 generated slightly

more reads from 16SrI-B versus 16SrI-A within infected samples.

Discussion and conclusions

The movement and spread of AYp relies on multiple insect vectors, including the ALH [3].

Within susceptible agricultural crops the disease is monitored by growers and proactively con-

trolled with insecticides when the vector is deemed in sufficiently high numbers [3]. However,

if not controlled properly, AYp can manifest itself as AY disease, which can have significant

ramifications in terms of crop yield and raw product quality. We sought to understand the

progression of this disease in an insecticide-free environment to determine the ecological fac-

tors that influence AY disease progression. We examined the variables: time, planting density,

location within the field (edge versus interior plot effects) and the associated genetics of the

AYp (subgroup designation and effector composition) and hypothesized that disease progres-

sion within carrot fields by AYp was not random. However, we determined that the progres-

sion of AY disease is influenced by more than just the genotypic construct of AYp; it is also

influenced by sample location, planting density and time during the crop season.

The overall progression of AY disease was influenced by sample location within field, planting

density, and time of year. We observed that AY disease progressed at higher rates at lower plant-

ing densities. This suggests that infected leafhoppers were perhaps more readily attracted to

infected plants, or that infected plants had greater apparency to mobile insects in less dense aggre-

gations. Further, plants located along the outside edges of sample plots had a higher likelihood of

infection by AYp, though only a non-significant trend (P = 0.12). This could suggest that the

movement of leafhoppers is directional and that leafhoppers are colonizing the field from the plot

edges and inward. Similar to other members of the Hemiptera, adult leafhopper host location

cues involve contrasts, increasing the likelihood that landing and initial inoculations may occur

along field or plot edges. Leafhoppers were observed within our field as early as June 21, 2018,

with the highest abundance on August 21, 2018. The highest rates of new infections were observed

several weeks after peak leafhopper counts, in mid-September, which roughly corresponds to the

previously described period of latency for development of visual AY symptoms in newly infected

carrots, which can vary from 2–3 weeks [30]. While the observed infection rates within the low-

density carrots were statistically higher than the high-density planting, the actual, and non-

adjusted numbers of carrots infected in the low- and high-density planting were statistically simi-

lar. Although overall ALH numbers and the associated incidence of AYp infection within the

insects was greater in the high-density plantings, the incidence of AYp infection within susceptible

carrots (carrot cultivars that have been evaluated to be susceptible to infection by the AYp, and

develop overt symptoms as a result of AYp infection) [31] was correspondingly lower, suggesting

that the numbers of potentially inoculative insect vectors may not be limiting disease progress.

It has been previously established that AYp consists of multiple, genetically-distinct sub-

groups that can cause AY disease in carrots [11]. In Wisconsin there are at least two AYp sub-

groups, 16SrI-A and 16SrI-B, that are known AY disease agents [2, 11]. These earlier

observations correspond to the findings of this study where we observed 16SrI-A, 16SrI-B, or a

coinfection with both subgroups present in our experimental fields. The predominant subgroup

at the beginning of the growing season was represented by 16SrI-B (100%), however as the sea-

son progressed the subgroup composition significantly shifted to 16SrI-A (67%) by the end of

the season. The higher proportion of 16SrI-B at the beginning of the season could be an artifact

of the initial low number of infected carrots. However, the shift in subgroup proportion is
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important to highlight and suggests that the 16SrI-A subgroup is being selected for in compari-

son to the 16SrI-B subgroup within our experiment. We did detect a small fraction of carrots

infected with both 16SrI-A and 16SrI-B, suggesting that the pathogen can co-occur within the

same host. The fraction of carrots deemed as coinfected with both 16SrI-A and 16SrI-B sub-

groups were determined through the use of RFLP and 16S rRNA sequencing. There is a possibil-

ity that the phytoplasma in this faction of carrots could actually be a new phytoplasma subgroup

with two copies of the 16S rRNA gene (One 16SrI-A and the other 16SrI-B) and should be fur-

ther evaluated in future studies. Differences in SAP effector genes between the 16SrI-A and

16SrI-B subgroups may contribute to the higher abundance of 16SrI-A later in the season.

Secreted AY-WB effector genes were detected in symptomatic carrots in Wisconsin.

Secreted AY-WB genes were amplified from field-collected plants infected with 16SrI-A phy-

toplasmas, consistent with primers designed to the 16SrI-A AY-WB phytoplasma genome. In

addition, some effector genes were present in field-collected 16SrI-B infected plants, indicating

that SAPs are present in both the 16SrI-A and 16SrI-B genomes found in Wisconsin. Differ-

ences in effector repertoires between the 16SrI-A and 16SrI-B subgroups could contribute to

the distinct disease progression dynamics that are observed in the fields of Wisconsin. Secreted

AY-WB proteins have been documented to manipulate host presentation to insect vectors.

The effectors have been shown to have important biological ramifications on insect vector col-

onization (attractiveness) and reproduction (fitness). The exact function of all effectors investi-

gated is still unknown. However, the functions of SAP11 and SAP54 have been well

documented. Secreted AY-WB protein11 promotes oviposition (egg laying) by gravid, adult

female ALH and SAP54 attracts insect vectors to plants by suppressing innate immune

responses to herbivores. We noted SAP11 effectors were significantly more abundant in

16SrI-A. It is possible that the SAP11 effector may be more effective at promoting 16SrI-A

phytoplasmas when there are more leafhoppers. However, how SAP11 modulates phytoplasma

dynamics in a field situation remains to be determined. Overall, the effector proportion was

significantly skewed towards 16SrI-A. Only SAP44 was significantly more abundant in the

16SrI-B phytoplasma subgroup. This observation suggests that subgroup 16SrI-A could be the

predominant subgroup found in our field location due to the enhanced potential for pathogen

spread associated with the increased proportion of effectors within this subgroup.

The data presented here represent an evaluation of a select set of factors which may influ-

ence progression of AY disease in susceptible carrots within central Wisconsin. We examined

the factors: time during the growing season, initial planting density, sample location within the

field and AYp subgroup and effector composition. Other factors could be evaluated in future

studies to further complement our current understanding of the AY disease system including

temperature, latitude, cultivar and cropping system. A further limitation of the study was that

it was conducted over a single year and a single production season, but the experimental

design implemented did allow for robust statistical analysis in terms of temporal changes

observed within this timeframe. Here we demonstrate that AY disease was greater along plot

edges and adjusted, final season incidence was greater in plots with lower, initial planting den-

sity. We also examined the genetic makeup of the phytoplasma and correlated subgroup

16SrI-A to higher effector proportion and greater disease spread. This information will lead to

a better understanding of AYp movement in commercial crops, and contribute new knowl-

edge towards describing factors that contribute to disease progress in susceptible carrots.
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