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Abstract

Breast cancer is the most frequent cancer among women, and
metastases in distant organs are the leading cause of the cancer-
related deaths. While survival of early-stage breast cancer patients
has increased dramatically, the 5-year survival rate of metastatic
patients has barely improved in the last 20 years. Metastases can
arise up to decades after primary tumor resection, hinting at
microenvironmental factors influencing the sudden outgrowth of
disseminated tumor cells (DTCs). This review summarizes how the
environment of the most common metastatic sites (lung, liver,
bone, brain) is influenced by the primary tumor and by the varying
dormancy of DTCs, with a special focus on how established metas-
tases persist and grow in distant organs due to feed-forward loops
(FFLs). We discuss in detail the importance of FFL of cancer cells
with their microenvironment including the secretome, interaction
with specialized tissue-specific cells, nutrients/metabolites, and
that novel therapies should target not only the cancer cells but
also the tumor microenvironment, which are thick as thieves.
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Introduction

Metastases are the leading cause of cancer-related deaths in breast

cancer patients (Siegel et al, 2020). This spread to distant organs is

a multi-step process in which cancer cells invade surrounding tis-

sues at the primary site, intravasate, and survive in the circulation

as circulating tumor cells (CTCs) that extravasate at distant organs

(referred to as disseminated tumor cells; DTCs), and possibly form

metastasis (Chambers et al, 2002; Alix-Panabi�eres & Pantel, 2014;

Lambert et al, 2017; Esposito et al, 2021; Ganesh & Massagu�e,

2021). Especially, CTC clusters are rare but are more metastatic than

single CTCs (Aceto et al, 2014). Despite significant advances in our

understanding of the metastatic cascade, therapeutic targeting of

metastasis remains poor and is a significant impediment to the clini-

cal management of patients. Much of the reduction in cancer-related

mortality achieved by therapeutic interventions has been based on

early detection and improved surgery, combined with adjuvant

treatments that eliminate DTCs. However, for breast cancer patients

that reach the metastatic stage, the 5-year survival rate has barely

improved in the last 20 years (Esposito et al, 2021). Therefore, a

mechanistic understanding of the metastatic odyssey that suggests

specific effective therapies is of the utmost clinical importance.

One of the main challenges for successful treatment is tumor het-

erogeneity, which is found at several levels within a single patient.

First, there is the heterogeneity within the same primary tumor or the

same metastases, known as intra-site heterogeneity. Second, there is

heterogeneity between different lesions, so-called inter-site heteroge-

neity (Koren & Bentires-Alj, 2015; L€uönd et al, 2021). Over the years,

several studies have shed light on the diverse origins of genetic het-

erogeneity during cancer evolution (Burrell et al, 2013; Yates, 2017).

While metastases of breast cancer patients harbor more mutations

than primary tumors (Angus et al, 2019; Priestley et al, 2019), the

gain of actionable driver mutations seems to play a subordinate role

in the metastatic process (Vanharanta & Massagu�e, 2013; van de

Haar et al, 2021; Reiter et al, 2018). Therefore, phenotypic alterations

of DTCs, including changes in epigenome, metabolism, and interac-

tions with immune and stromal cells, seem to be key for metastatic

progression. The combination of genetic heterogeneity, phenotypic

plasticity, and various selection pressures at different stages of the

metastatic progression is a major hurdle to successful therapy.

Cancers can arise from a single “mutated” cell; however, disease

progression is often a consequence of sequential alterations that

enrich for aggressive subpopulations within the tumor (Swanton,

2012). To a certain degree, cancer progression resembles the Dar-

winian “survival of the fittest” principle and tumors can be viewed

as constantly evolving ecosystems (Tabassum & Polyak, 2015;

Vendramin et al, 2021). One of the most important non-genetic

drivers of cancer development is the tumor microenvironment
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(McGranahan & Swanton, 2017; Black & McGranahan, 2021).

Tumor development is heavily shaped by physical and architectural

constraints of the tissue, competition for space, the enduring effects

of the immune system, and the changing nutritional environment

(Altea-Manzano et al, 2020). In particular, the reactions of cancer

cells to the potentially harsh environment outside of primary tumors

is a driver in the selection of metastatic cancer clones (Massagu�e &

Obenauf, 2016; Vendramin et al, 2021).

This review summarizes how the environment of metastatic sites

is influenced by the phenotype of the primary tumor and by the

varying dormancy of DTCs, with a special focus on how established

metastases persist and grow in distant organs due to feed-forward

loops (FFLs). Finally, we discuss the concept that novel therapies

should target not only the cancer cells but also the tumor

microenvironment.

The (co-)evolution of metastasis and
the microenvironment

Properties of the pre-metastatic niche
An elaborate interplay of the primary tumor’s secretome with

immune and tissue-resident cells results in a microenvironment in

secondary organs (the pre-metastatic niche—PMN) that favors

subsequent cancer cell homing. PMN alterations can be broadly cat-

egorized into (i) vascular changes including vascular leakiness,

expression of adhesion molecules, clot formation, (ii) activation of

stromal components and extracellular matrix (ECM) reorganization,

for example, by distant secretion of matrix metalloproteinases, (iii)

immune cell recruitment, (iv) changes in resident cells, including

metabolic adaptions (Peinado et al, 2017; Wang et al, 2019).

The concept that metastases do not seed arbitrarily was proposed

in 1889 by Stephen Paget, who suggested that cancer cells (“seeds”)

preferentially home to specific secondary organs (“soil”) (Paget,

1889). It is nowadays evident that the “seeds” can prime the “soil”

on multiple levels. The “seed and soil” theory was amended with

the concept of the PMN. Systemic effects of tumor-secreted factors

and vesicles result in changes in secondary organs devoid of cancer

cells (the PMN) that favor subsequent CTC homing (Peinado et al,

2017).

Organ-specific metastases (organotropism) are a common occur-

rence in multiple solid cancers. Clinically, breast cancer often

spreads to several distant organs and different subtypes have been

associated with differential patterns of metastasis. The most com-

mon site of metastasis shared between all subtypes is the bone, with

the highest percentage in the estrogen receptor (ER)-positive

subtype. In ER-positive/HER2-negative patients, there is a pattern of

bone only disease (Leone et al, 2017). Patients with triple-negative

Glossary

Cancer dormancy
Two forms of dormancy have been observed: Cellular dormancy
describes a reversible non-proliferative state of a cancer cell that can last
for several years. Tumor mass dormancy represents the offset of cancer
cell proliferation by cell death, resulting in net-constant cell numbers.
Colonization
Growth of micrometastases into macrometastases.
Disseminated tumor cells (DTCs)
Cancer cells that infiltrate and survive in distant sites. DTCs may
succumb, remain dormant, or colonize the tissue.
Extracellular Matrix (ECM)
Three-dimensional network surrounding cells, consisting of macromol-
ecules and minerals, including collagens, glycoproteins, and cell adhe-
sion proteins. The ECM provides essential structural support and
serves diverse biochemical activities. Components of the ECM are pro-
duced intracellularly by resident cells and subsequently secreted into
the extracellular space. The composition thus varies widely between
organs and can be transiently remodeled upon physiological injury or
chronic stimuli, including cancer/metastases.
Extracellular Vesicles (EV)
EV is a collective term covering a variety of cell-derived membranous
structures that encapsulate and transport cellular materials, and
nearly, all cell types can produce them. EV cargo include proteins,
lipids, microRNAs (miRs), mRNA, and noncoding RNAs. One example of
EVs are exosomes. In the context of cancer, EVs released from primary
tumors can establish a pre-metastatic niche in distant organs.
Inter-site heterogeneity
Heterogeneity between lesions in different sites. Inter-site heterogene-
ity is generally used to describe cancer cells; however, it also applies
to other cell types that are part of the tumor microenvironment.
Intra-site heterogeneity
Heterogeneity within the same primary tumor or the same
metastasis. Commonly, intra-site heterogeneity is used for cancer cells
only; however, it also applies to other cell types that are part of the
tumor microenvironment.

Metastasis
Metastasis is a multi-step process in which cancer cells invade sur-
rounding tissues at the primary site, intravasate, and survive in the
circulation as circulating tumor cells (CTCs) that extravasate at distant
organs (referred to as disseminated tumor cells; DTCs). Metastases are
responsible for the majority of breast cancer-related deaths.
Minimal residual disease (MRD)
This disease stage is when a patient is in remission, and only a small
number of cancer cells have persisted therapy. Minimal residual
disease can endure for several months or, in some cases, up to
decades and represents a significant challenge for long-term remission
because it is a reservoir of cancer cells that can regrow anytime. Addi-
tionally, these cells are often of a more aggressive type because they
are treatment-resistant and will therefore be more challenging to
eradicate.
Organotropism
Process of cancer cells spreading to and surviving in distant organs in
a non-arbitrary way. Broadly categorized, it depends on cancer cell
intrinsic factors (i.e., clonal fitness, genetic alterations, or metabolism)
and non-cancer cell autonomous features (i.e., endothelial structure,
or immune cells). These factors allow seeding to specific distant
organs and enable survival in this foreign microenvironment.
Pre-metastatic Niche (PMN)
Primary tumors secrete soluble factors and EVs that reprogram
distant sites and facilitate future cancer cell homing and survival.
Numerous factors influence PMN formation, including vascular
changes, stromal cell activation, immune cell recruitment, ECM
remodeling, and metabolic reprogramming.
Tumor Microenvironment (TME)
The TME can include endothelial, immune, tissue-resident cells, nerve
cells, adipocytes, a stroma composed of extracellular matrix, cancer-
associated fibroblasts, mesenchymal cells, and numerous soluble fac-
tors. Breast cancer cells and the TME co-evolve dynamically through
reciprocal interactions that corrupt homeostatic networks and con-
tribute actively to disease progression.
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breast cancer have a higher risk to develop brain and lung metasta-

ses than patients with other subtypes. On the other hand, HER2-

positive tumors more often spread to the liver (Chen et al, 2017; Wu

et al, 2017). Moreover, there is a 25-50% incidence of brain metasta-

sis in advanced HER2-positive disease (Zimmer et al, 2020).

Multiple factors contribute to organotropism; for example, secre-

tion of lysyl oxidase by the hypoxic primary tumor induces Wnt sig-

naling in pre-metastatic bone lesions (Cox et al, 2015); periostin

expression in resident cells modifies the ECM and enhances lung

metastases (Malanchi et al, 2012); and lactate secretion by cancer

cells limits NK cell cytotoxicity and increases brain metastases

(Parida et al, 2022).

The metastatic niche
After extravasation into the blood stream (Fig 1), only approxi-

mately 0.01% of CTCs infiltrate and eventually colonize distant

organs (Massagu�e & Obenauf, 2016). The initial arrest of CTCs

at distant sites is regulated primarily by blood circulation and

flow patterns, the vascular architecture, and whether they adhere

to the endothelium (Chambers et al, 2002). CTC survival is pro-

moted by neutrophils in the circulation and the PMN (Szczerba

et al, 2019). Additionally, CTC homing to distant sites is

enhanced by neutrophils and macrophages facilitate anchorage

and escape from immune surveillance and provide survival sig-

nals and metabolites (Kitamura et al, 2015; Celi�a-Terrassa &

Kang, 2018). Once DTCs intravasate into distant organs, whether

they succumb, remain dormant, or colonize the tissue depends

on their surroundings (Fig 1) (Lukanidin & Sleeman, 2012; Liu &

Cao, 2016). In patients, metastasis cannot be fully distinguished

from therapy resistance as most metastases of breast cancer are

recurrences after systemic therapy (Weiss et al, 2022). Thus, the

metastatic niche is not only important for metastatic growth but

also for resistance to therapy.

Dormancy
Following primary tumor removal and therapy, minimal residual

disease (MRD) that persists several years to decades without clini-

cal detection is referred to as “dormancy”. Two forms of dor-

mancy have been proposed: cellular dormancy and tumor mass

dormancy. Cellular dormancy is characterized by three traits: dor-

mant DTCs persist in foreign organs (“soil”), they are—for the

time being—arrested in G0 and are frequently resistant to treat-

ments (Ghajar, 2015). In tumor mass dormancy, cancer cell prolif-

eration is offset by cell death due to immune surveillance and/or

insufficient vascularization, resulting in insignificant net change in

cell number (Chambers et al, 2002; Kang & Pantel, 2013). Nota-

bly, the risk of breast cancer relapse is subtype-dependent. While

this risk remains constant in the ER-positive subtype, it decreases

over time in ER-negative disease (Lee & Djamgoz, 2018; Rueda

et al, 2019).

Cancer cells may enter or exit cellular dormancy through can-

cer cell-intrinsic mechanisms (Vera-Ramirez et al, 2018; La Belle

Flynn et al, 2019) or extrinsic stimuli (Ghajar et al, 2013; Senft

& Jeremias, 2019; Perego et al, 2020; Correia et al, 2021). We

have shown recently that IFNc secretion from NK cells maintains

breast cancer cell dormancy in the liver (Correia et al, 2021).

The reawakening of DTCs and subsequent colonization is medi-

ated by CXCL12 secretion from activated hepatic stellate cells.

This suppresses immune surveillance by inducing NK cell quies-

cence and results in metastatic outgrowth (Correia et al, 2021;

Lopes & Vivier, 2021). Additionally, it was reported that tissue-

resident type I innate lymphoid cells promote metastatic seeding

to the liver, whereas conventional NK cells impede colonization

(Ducimeti�ere et al, 2021).

Other mechanisms have been reported to tip the balance from

dormancy to overt metastasis. Neutrophil activity can wake dor-

mant DTCs upon exposure to environmental inflammatory

Establishing the 
pre-metastatic niche

Secreted factors

PRIMARY TUMOR METASTASIS

CTCsInvasion/
dissemination

Extravasation Dormancy

Establishing the
metastatic niche

Colonization

Feed-forward
loops

Figure 1. The path of cancer escalation.
Breast cancer disease progresses over several stages. After local invasion and dissemination from the primary tumor, CTCs enter the blood circulation, traveling as single
cells or in clusters combined with neutrophils or T cells. Several factors secreted from primary tumor cells, including exosomes, S100 proteins, VEGF-A, TGFb, TNFa, SAAs,
and CCL2, influence the properties of pre-metastatic niches in particular organs). Additionally, these same factors can facilitate the extravasation of DTCs at distant sites.
Metastatic cancer cells adhere to and multiply at distant sites (pre-metastatic niches) with surface and immunological affinities. Cancer cell dormancy can, at this stage,
persist for several years or even decades. Disseminated cancer cells are in constant interaction with tissue-resident cells and with the resident homeostatic programs
that foster metastatic niche formation and survival. This results in self-enhancing loops and disease escalation that is in many cases fatal. CTCs, circulating tumor cells;
CCL2, C-C motif chemokine ligand 2; DTCs, disseminated tumor cells; SAAs, serum amyloid A proteins; TGFb, transforming growth factor-beta; TNFa, tumor necrosis
factor-alpha; VEGF-A, vascular endothelial growth factor-A.
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cues (Albrengues et al, 2018). Depending on the host’s NK cell

status, neutrophils can be facilitators or inhibitors of metastatic

colonization (Li et al, 2020). Additionally, sprouting neovascula-

ture can lead to breast cancer DTC outgrowth (Ghajar et al,

2013). Moreover, surgical resection of primary breast tumors can

also trigger outgrowth of previously immune-controlled metasta-

ses by macrophage engagement (Krall et al, 2018). Unfortu-

nately, the triggers leading to clinically detectable metastases are

probably the least characterized—yet potentially most important

components—in the metastatic cascade (Esposito et al, 2018).

Admittedly, monitoring and studying the switch from dormancy

to metastatic outgrowth in clinical specimens is challenging and

most of our current understanding of these processes is derived

from preclinical studies.

Colonization and feed-forward loops (FFLs)—the stage
of escalation
Colonization (the transition from a micro to macro metastasis) is

the last and most fatal stage of breast cancer and the most diffi-

cult to treat due to tumor heterogeneity, metabolic flexibility,

and complex interactions of cancer cells with the tumor microen-

vironment. It is important to note that no single therapeutic

agent has been approved that specifically targets breast cancer

metastases. That clinically detectable metastases can develop

years after resection of the primary tumor highlights the fact

that colonization is the most complex and rate-limiting phase of

the metastatic cascade (Fig 1) (Massagu�e & Obenauf, 2016). The

signals governing the development of nascent metastatic lesions

are still being defined, but it is already known that stimuli range

from stress hormones to chemokines (Obradovi�c et al, 2019;

Ozga et al, 2021).

One example is CCL2 secretion from mammary tumors, which

recruits C-C motif receptor 2 (CCR2)-expressing inflammatory mono-

cytes to the metastatic site (Qian et al, 2011; Bonapace et al, 2014;

Kitamura et al, 2015). We have shown previously that anti-CCL2

therapy efficiently retains monocytes in the bone marrow. However,

interruption of the treatment results in rapid dissemination and

direct colonization of metastatic cells fueled by elevated monocyte

release from the bone marrow due to vascular endothelial growth

factor A (VEGF-A) and interleukin 6 (IL6) signaling (Bonapace et al,

2014). This highlights that targeting colonization is complicated by

interactions between tumor cells, their microenvironment, and

remote sites such as the bone marrow (Keklikoglou & De Palma,

2014; Hitchcock & Watson, 2015).

The outgrowth of metastases can be influenced by factors from

resident immune and stromal cells. However, crosstalk between

cancer cells and the tumor microenvironment (TME) can also result

in detrimental self-enhancing loops that increase the survival and

proliferation of metastatic tumor cells. One example is that mam-

mary tumor-initiating cells exhibit elevated G-CSF production due to

increased mTOR signaling, which then leads to accumulation of

myeloid-derived suppressor cells (MDSC). Notch activation by

MDSCs subsequently increase tumor-cell initiating frequency (Welte

et al, 2016). Such vicious cycles vary between different tissues and

are therefore discussed separately for specific organs later in this

review. These organ-specific self-enhancing loops are challenging

but potentially offer important therapeutic opportunities for treat-

ment of metastases that will be discussed at the end of this review.

Factors influencing the TME

The secretome of cancer cells and their microenvironment
A key aspect of metastasis initiation is the cancer secretome,

that is, cytokines, metabolites, and extracellular vesicles that

transmit reprogramming signals to cells in the vicinity of the

cancer as well as in distant organs. The secretome is relevant

from the onset of tumorigenesis and embodies crucial stimuli

throughout the metastatic cascade. In the following paragraph,

we focus on initial FFLs that prime and establish the metastatic

niche (Fig 2).

The PMN is composed of several soluble factors secreted by can-

cer cells in the primary tumor, by bone marrow-derived cells, sup-

pressive immune cells, and host tissue stromal cells (Paolillo &

Schinelli, 2019). The main pro-inflammatory signal proteins

secreted from the cancer cells include VEGF-A, transforming growth

factor b (TGFb), and tumor necrosis factor (TNF) (Paolillo & Schi-

nelli, 2019). In turn, all these factors further induce expression of

S100 chemoattractants, a family of Ca2+-binding proteins that are

implicated in many aspects of cancer progression (Lukanidin &

Sleeman, 2012; Rinaldi et al, 2021). S100 proteins lie at the center of

many vicious FFLs that foster metastasis. Examples include S100A8

and S100A9 secreted from breast cancer cells, as well as MDSCs that

promote metastases in xenograft models in an auto- and paracrine

fashion (Bresnick et al, 2015).

The cancer secretome is critical for recruitment of immune

cells. Tumor-derived cytokines and chemokines such as CCL2,

mentioned above, recruit regulatory and immunosuppressive

immune cells, including tumor-associated macrophages (TAMs),

to secondary organs, where they are potent orchestrators of PMN

formation through immune-modulation and immune-suppression

(Qian et al, 2011; Bonapace et al, 2014; Ozga et al, 2021).

Recently, b-catenin-mediated CCL2 secretion has been implicated

in enhancing TAM recruitment and promoting metastasis (Zhang

et al, 2021a). For an extensive overview of chemokines and the

immune response to cancer, we refer to the recent review by

Ozga et al (2021). Importantly, the same cytokines are often

involved in recruiting both pro- and anti-tumorigenic immune

cells. For example, the CCR5/CCL5 axis attracts both Tregs and

cytotoxic CD8+ T cells (Ozga et al, 2021). Ultimately, cytokines

and chemokines are double-edged swords as they are indispens-

able for homeostatic tissue functions but may become delinquent

in metastases formation.

Heterogeneous immunosuppressive bone marrow-derived cells

recruited by the cancer secretome are also important contributors to

the PMN. Examples include the ability of VEGF to mobilize VEGFR1+

hematopoietic bone marrow progenitor (HPCs) cells or VEGF-A,

TGFb, and TNFa-evoked induction of serum amyloid A proteins that

recruit MDSCs (Kaplan et al, 2005; Hiratsuka et al, 2006, 2008).

MDSCs are a heterogenous population of immunosuppressive

cells that can be broadly categorized into CD11b+CD68+F4/80+

myeloid cells, CD11b+Ly6C+ monocytes, and CD11b+Ly6G+Ly6C+

granulocytes (Liu & Cao, 2016). MDSCs expression of integrins, and

secretion of chemokines, inflammatory mediators, and growth and

angiogenic factors promote the PMN (Liu & Cao, 2016). Intriguingly,

MDSCs can reduce NK cell cytotoxicity in the pre-metastatic lung in

breast cancer models (Sceneay et al, 2012). For further reading on

MDSCs, we refer to a review by Wang et al (2019).
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Neutrophils are another important immune cell type that is

attracted by tumor-derived factors, including G-CSF and S100 pro-

teins, as well as by the CXCL12/CXCR4 axis (Dumitru et al, 2013;

Leach et al, 2019; Gonzalez et al, 2020; Wang et al, 2020). Leukotri-

ene signaling from neutrophils can support metastasis-initiating cells

in pre-metastatic lung of mammary cancer mouse models (Wculek &

Malanchi, 2015). This also contributes to the reawakening of dor-

mant tumor cells by neutrophil extracellular traps (NETs) formation

(Albrengues et al, 2018) and to metastatic colonization, as they are

recruited by cd-T cell-released G-CSF that leads to expansion and

polarization of neutrophils in the lung metastatic niche (Coffelt et al,

2015). Moreover primary tumor angiopoietin-like protein 2

(ANGPTL2) secretion increases recruitment of neutrophils to the

lung, thus contributing to PMN formation (Charan et al, 2020).

Extracellular vesicles (EVs), including exosomes released from

the primary tumor, can dictate organotropic behavior of metastatic

tumor cells (Hoshino et al, 2015). Breast cancer-derived exosomes

containing several integrins travel in the bloodstream and are prefer-

entially endocytosed into organ-specific cells such as lung fibroblasts

or liver Kupffer cells (Hoshino et al, 2015). Various S100 family pro-

teins in these cells are then highly upregulated and secreted, leading

to a pro-inflammatory supportive niche (Sakaguchi, 2017). Addition-

ally, exosome-packaged RNA can activate Toll-like receptor 3

(TLR3) signaling in lung epithelial cells, leading to chemokine secre-

tion and subsequent neutrophil attraction to the PMN (Liu et al,

2016). Tumor-derived exosomes were shown to render macrophages

in the PMN immunosuppressive through glycolytic dominant meta-

bolic reprogramming (Morrissey et al, 2021). Mechanistically, NF-

jB augments glycolysis, which increases lactate and drives PD-L1

expression (Morrissey et al, 2021).

Additionally, EVs can contain microRNAs (miRs), small non-

coding RNAs that are crucial master regulators of gene expression in

several cancer-related signaling pathways (Chen et al, 2018). One

example is miR122, which reprograms glucose metabolism and pro-

motes breast cancer metastasis in preclinical and clinical studies

(Wu et al, 2012; Fong et al, 2015). Another example is miR-105,

which destroys endothelial barriers and promotes metastasis (Zhou

et al, 2014). Furthermore, brain metastatic cells release miR-181c-

containing EVs capable of destructing the blood–brain barrier

(Tominaga et al, 2015).

Early detection of metastasis is an unmet clinical need. Recently,

a study of 426 human samples of multiple cancers (including breast

cancer) identified EV markers from tumor and plasma that might

improve early cancer detection and characterization (Hoshino et al,

2020). Additionally, cancer exosomal migration-inducing and

hyaluronan-binding protein (CEMIP) may be a potential prognostic

PD-L1

INFLAMMATION

CCL2

SAA
proteins

NK cell

T cell

ROS

Kupffer cell

TAM

Treg

Lung
epithelial cells

MDSC
recruitment

Neutrophil
recruitment

Exosomes

Fibroblasts

Lactate

PRIMARY
TUMOR

METASTASIS

S100
proteins

Chemokines

TGFβ
TNFα

VEGF-A

Figure 2. The intricate soluble network that creates a (pre-)metastatic niche.
The vast secretome of primary tumors includes chemokines, growth factors, and a range of tumor vesicles, including exosomes. These enter the blood system and reach
secondary sites before cancer cells disseminate. This results in a microenvironment that is compatible for tumor cells and immune-suppressive. Examples include TNFa,
TGFb, and VEGF-A, which induce serum amyloid A (SAA) proteins that recruit MDSCs to the organ. Additionally, S100 proteins are induced and secreted by various mech-
anisms, including chemokines and exosomes, from the primary tumor that act on tissue-resident cells, including fibroblasts, Kupffer cells, and lung epithelial cells. S100
proteins are pro-inflammatory proteins diversely involved in metastatic niche properties. Furthermore, S100 proteins secreted from immune-suppressive immune cells
including MDSCs are additionally able to initiate their proliferation in an S100-autocrine manner. The proteins are also involved in a vicious FFL with neutrophils that
are attracted to the niche, where they in turn secrete even more S100 proteins. Exosomes induce higher lactate secretion from tumor-associated macrophages (TAM),
which in turn upregulates PD-L1, a crucial immune checkpoint inhibitor. Moreover, CCL2 from primary tumors attracts TAMs and regulatory T cells (Tregs) to pre-
metastatic niches, which deters anti-tumorigenic NK cells and T cells. In addition, reactive oxygen species (ROS) secreted from neutrophils further impact cytotoxic NK
cells and T cells. All of these listed factors promote metastatic signaling and thus enhance exacerbating disease progression. CCL2, C-C motif chemokine ligand 2; MDSC,
myeloid-derived suppressor cells; PD-L1, programmed death-ligand 1; ROS, reactive oxygen species; SAA, serum amyloid A proteins; TAM, tumor-associated macrophages;
TGFb, transforming growth factor b; TNFa, tumor necrosis factor a; Treg, regulatory T cells; VEGF-A, vascular endothelial growth factor-A.
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factor for brain metastasis (Rodrigues et al, 2019). For further read-

ing regarding how exosomes promote metastasis, we refer to the

review by Wortzel et al (2019).

While several studies have shown that tumor-secreted vesicles

can modulate distant organs in various ways, thereby creating an

intricate regulatory network, we are only at the beginning of unco-

vering the multiplicity of effects of EVs in metastasis. In summary,

the secretome of cancer cells and the TME are potent and multiface-

ted modulators that can enhance disease progression and, thus,

warrant careful investigation.

Interaction with specialized tissue-resident cells

Lung
The lung is exposed to the external environment and exhibits vari-

ous efficient mechanisms that eliminate pathogens, primarily innate

immune responses. Inflammation and immune responses in the

lung are limited and, thus, tissue damage is avoided. However, this

characteristic is a drawback that exposes the lungs to DTCs out-

growth (Gao et al, 2019).

Secretion of bone morphogenic factors (BMPs) from lung-

resident fibroblasts is inhibitory for metastatic cancer cells (Fig 3A).

However, this effect is cancelled by the activity of DAN domain fam-

ily member 5 (DAND5 or COCO), a secreted antagonist of TGFb
ligands, and N-acetyl-galactosaminyltransferases 14 (GALNT14),

which inhibit BMPs. The result is reactivation of dormant DTCs and

subsequent metastatic outgrowth (Song et al, 2016). Cancer-secreted

GALNTs can also attract macrophages to the metastatic site, further

promoting the growth of metastatic cancer cells in the lung through

fibroblast growth factor (FGF) secretion (Song et al, 2016).

The ECM protein tenascin C (TNC) secreted from breast cancer

cells arriving in the lung initiates the formation of a metastatic

micro-niche (Fig 3A) (Oskarsson et al, 2011). TNC promotes the

outgrowth and survival of pulmonary metastases, allowing cancer

cell survival before the metastatic niche is supported by the sur-

rounding lung stroma (Gao et al, 2019).

Tumor exosomal RNAs activate TLR3 signaling in alveolar type

II epithelial cells, which recruits neutrophils and contributes to the

formation of a PMN (Fig 3A) (Liu et al, 2016; Altorki et al, 2019).

Additionally, it was reported that neutrophil activity can reawaken

dormant DTCs through neutrophil extracellular traps (NETs)-

induced inflammation and subsequent integrin a3b1 signaling-

dependent proliferation of dormant DTCs (Albrengues et al, 2018).

Tumor-secreted protease cathepsin C (CTSC) activity also enhances

breast cancer metastasis through recruitment of neutrophils and for-

mation of NETs (Xiao et al, 2021). Leukotrienes secreted from neu-

trophils can directly promote lung colonization, which results in

selective expansion of highly tumorigenic cancer cells (Wculek &

Malanchi, 2015). To summarize, different mechanisms involving

neutrophils unshackle DTCs in the lung by generating FFLs with

cancer cells and alveolar type II epithelial cells.

Brain
In the brain microenvironment, interaction between DTCs and reac-

tive astrocytes or microglia sparks several vicious cycles that pro-

mote metastasis formation, driving disease progression, and

immune evasion.

DTCs that reach the brain can activate astrocytes in the sur-

rounding tissue, likely through damage-associated molecular pattern

(DAMP) signals (Fig 3B). Initially, the number of DTCs is restricted

by these reactive astrocytes, primarily through plasmin activation.

However, serpins secreted by cancer cells block the proteolytic acti-

vation of plasmin and enhance DTC accumulation (Valiente et al,

2018). Cancer cells established in the brain microenvironment are

influenced by the pro-tumorigenic activity of reactive astrocytes.

Gap junctions that arise between metastatic cells and reactive astro-

cytes induce cyclic monophosphate-adenosine monophosphate

(cGAMP)-mediated paracrine loops (Fig 3B) (Srinivasan et al,

2021). This and further mechanisms result in the release of multiple

inflammatory cytokines from reactive astrocytes, including IL1b,
IL6, IL8, IFNa, or TNFa, which then drive the survival and coloniza-

tion of cancer cells, as well as chemo-resistance through calcium

sequestration (Lin et al, 2010; Kim et al, 2011; Xing et al, 2013;

Chen et al, 2016, 2018; Valiente et al, 2018).

In addition to inflammatory cytokines, miR19a-containing

exosomes are released from reactive astrocytes and reduce expres-

sion of the tumor suppressor PTEN in metastatic cells (Fig 3B).

Increased secretion of the chemokine CCL2 from DTCs then attracts

pro-tumorigenic brain-derived myeloid cells to the metastatic site

(Zhang et al, 2015). Reactive astrocytes also have immunosuppres-

sive effects through inhibition of CD8+ T cells and polarization of

TAMs into anti-inflammatory M2 macrophages in a STAT3-

dependent manner (Fig 3B) (Priego et al, 2018; McFarland & Benve-

niste, 2019). STAT3 labels a subpopulation of reactive astrocytes

found near metastatic lesions that have been shown to be important

for establishing a pro-metastatic environment (Priego et al, 2018).

Another FFL stimulated by brain metastases involves increased

expression of hepatocyte growth factor (HGF) receptor (c-Met) in

tumor cells that leads to high IL1b secretion (Fig 3B). This results in

increased HGF secretion from tumor-associated reactive astrocytes,

which feeds back to the c-Met receptor. HGF-dependent c-Met-IL1b
signaling also enhances the secretion of pro-tumorigenic IL8 and

CXCL1, which promotes angiogenesis (Xing et al, 2016).

Microglia are tissue-resident macrophages in the brain closely

interacting with DTCs. They have anti- and pro-metastatic proper-

ties similar to other macrophage populations. In breast cancer cells,

loss of the long non-coding RNA X-inactive–specific transcript

(XIST) increases the secretion of exosomes carrying miR503

(Fig 3B). Exosomal miR503 induces M2 polarization of microglia,

which then increases the colonization of breast cancer cells in the

brain in a WNT-dependent manner (Pukrop et al, 2010; Xing et al,

2018).

Liver
The liver is one of the organs most affected by breast cancer metas-

tasis, which often results in fatal disease progression (Harbeck et al,

2019). Important for this process are hepatic stellate cells (HSCs), a

liver-resident cell type. HSCs can be activated by different factors,

including the fibrogenic factors TGFb and PDGF (Tsuchida & Fried-

man, 2017). These and other inflammatory signals are secreted from

tissue-resident fibroblasts or macrophages upon tissue damage and

may also be secreted from DTCs themselves (Fig 3C) (Tsuchida &

Friedman, 2017). Secretion of CXCL12 from activated HSCs

enhances metastatic colonization by binding to CXCR4 on cancer

cells and thereby promoting survival and proliferation (Luker &
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Figure 3. Interaction with tissue-resident cells and how these interactions facilitate colonization.
During colonization, cancer cells coalesce with tissue-resident cells, which results in vicious cycles of cancer maintenance and nurturing. (A) In the lung, exosomal RNAs
secreted from metastatic cells activate TLR3 in alveolar type II cells and induce recruitment of neutrophils. The secretion of leukotrienes and the expulsion of NETs from
neutrophils can enhance cancer metastasis. Tenascin C from tumor cells facilitates colonization through WNT and Notch signaling in cancer cells. DAND5 and GLANT14
secreted from cancer cells recruit TAMs and further enhance metastatic colonization. Furthermore, GLANT14 blocks inhibitory BMPs secreted from tissue-resident fibro-
blasts. (B) In the brain, DAMPs from DTCs can activate resident astrocytes and miR19a exosomes, IL1b IL6, IL8, IFNa, and TNFa secreted from these activated astrocytes
enhance metastatic growth. A STAT3+ subpopulation of astrocytes has immunosuppressive properties. CCL2 secreted from tumor cells attracts pro-tumorigenic brain-
derived myeloid cells. Tumor-derived exosomes with miR503 can induce M2-polarization of microglia, which enhances metastatic growth through WNT signaling.
(C) TGFb and PDGF are secreted from DTCs in the liver and activate HSCs. aHSCs-secreted CXCL12 evoke NK cell quiescence via its cognate receptor CXCR4, and thus pre-
vent them from retaining DTCs in a dormant state. Additionally, CXCL12 secreted from aHSCs binds to the CXCR4 of cancer cells and enhances their growth. The deposi-
tion of matrix from aHSCs forms a barrier against immune cells. Furthermore, aHSCs attract immunosuppressive immune cells, from which further TGFb and PDGF is
secreted and thus even more HSCs are activated. (D) The bone is a classic example of tumor-cell occupation of the microenvironment of a distant site. Several factors
(IL1, IL6, IL8, IL11, S100A4, PGE2, TNFa, RANKL, M-CSF) secreted from DTCs induce pre-osteoclast maturation to osteoclasts. PTHrP, IL1, and IL6 secreted from DTCs
enhance RANKL and M-CSF and downregulate OPG expression in osteoblasts, thus further inducing the maturation of osteoblasts. Dysbalance of osteoclast/osteoblasts
leads to bone resorption and liberation of pro-metastatic nutrients, enzymes, and growth factors (Ca2+, IGF, PDGF, TGFb, and proteinases) from the bone microenviron-
ment. BMPs, Bone morphogenetic proteins; CCL2, C-C motif chemokine ligand 2; CXCL12, C-X-C motif chemokine ligand 12; CXCR4, C-X-C motif chemokine receptor 4;
DAMPs, damage-associated molecular patterns; DAND5, DAN domain BMP antagonist family member 5; DTCs, disseminated tumor cells; GLANT14, polypeptide N-
acetylgalactosaminyltransferase 14; (a)HSCs, (activated) hepatic stellate cells; IFG, insulin-like growth factor; IL, interleukin; M-CSF, macrophage colony-stimulating fac-
tor; miR, micro RNA; NETs, neutrophil extracellular traps; OPG, osteoprotegerin; PDGF, platelet-derived growth factor; PGE2, prostaglandin E2; PTHrP, parathyroid
hormone-related protein; RANKL, receptor activator of nuclear factor kappa B ligand; STAT3, signal transducer and activator of transcription 3; TGFb, transforming growth
factor-beta; TNFa, tumor necrosis factor-alpha; TLR3, toll-like receptor 3; VEGF-A, vascular endothelial growth factor-A.
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Luker, 2006; Shi et al, 2020; Zieli�nska & Katanaev, 2020). Addition-

ally, enhanced extracellular matrix deposition from activated HSCs

induces a fibrotic liver environment that enhances metastatic

growth (Fig 3C) (Marvin et al, 2020). This fibrosis is a physical bar-

rier to anti-tumorigenic immune cells (Tsuchida & Friedman, 2017).

Pro-tumorigenic immune cells associated with activated HSCs shift

the balance increasingly toward a pro-metastatic immune environ-

ment (Fig 3C). Ultimately, enhanced colonization and growth of

metastatic cancer cells in the liver leads to further augmented secre-

tion of TGFb from the metastatic cells, which nurtures this vicious

FFL (Kang et al, 2011). Additionally, in this loop, liver tissue-

resident NK-cells are suppressed by TGFb or CXCL12 secretion

(Bellone et al, 1995; Viel et al, 2016; Correia et al, 2021). Interest-

ingly, we have shown recently that IFNy secreted from NK cells in

the liver maintains DTCs in a dormant state (Fig 3C) (Correia et al,

2021). Notably, activation of HSCs by chemical liver damage

impairs NK cells (Correia et al, 2021). When dormancy is overcome,

cancer cells are promoted by the same FFL described above. This

highlights how the activity of HSCs results in a permissive environ-

ment for cancer cells that invade the liver.

Bone
Bones are the most common site of metastases in breast cancer

patients (Esposito et al, 2018). In the bone microenvironment,

cancer cells interact with osteoblasts and osteoclasts cells in the

hematopoietic niche. Metastatic breast cancer cells in this micro-

environment often show markers of bone cells, an adaptation

called osteomimicry (Rucci & Teti, 2010; Weilbaecher et al, 2011).

Metastatic cancer cell activity upregulates osteoblast-specific

markers, including alkaline phosphatase (ALP) and Runt-related

transcription factor (RUNX2), as well as factors regulating bone

turnover, such as osteoprotegerin, osteopontin, parathyroid

hormone-related peptide (PTHrP), receptor activator of nuclear

factor kappa-B ligand (RANKL), and macrophage colony-

stimulating factor (M-CSF) (Fig 3D) (Gao et al, 2019). Osteomi-

micry can be influenced by miR218, which directly regulates

osteomimetic genes and increases Wnt signaling (Gao et al, 2019).

This adaptation promotes maturation of osteoclasts independently

of osteoblast activity (Anborgh et al, 2010). Moreover, tumor-

derived factors, such as IL1, IL6, IL8, IL11, TNFa, prostaglandin

E2 (PGE2), and S100A4 protein activate osteoclasts in a RANKL-

dependent or independent manner (Fig 3D) (Kim et al, 2019;

Haider et al, 2021; Venetis et al, 2021).

An elevated ratio of osteoclast versus osteoblast results in bone

resorption that not only liberates excessive nutrients such as cal-

cium, serine, glycine, glucose, and glycerol but also increases

growth factors, proteinases, and cytokines, including TGFb, IGF,

and PDGF (Fig 3D) (Lynch, 2011; Shi et al, 2014). Nutrients and

growth factors released from the bone matrix have a strong

metastasis-promoting effect (Kingsley et al, 2007). The presence of

cancer cells thereby results in a vicious cycle of osteoblast activity

and osteoclastogenesis that feeds back and enhances tumor growth

(Esposito et al, 2018). Notably, it has been shown recently that the

bone microenvironment enhances phenotypic EZH2-mediated plas-

ticity of ER-positive DTCs, which boosts further dissemination of

cancer cells to other organs (Bado et al, 2021). The bone microenvi-

ronment can also enhance the metastatic spread in triple-negative

breast cancer models (Zhang et al, 2021b).

Osteoclast-mediated bone resorption can also modulate the

hematopoietic niche and elicit proliferation of immature bone mar-

row progenitors (Kollet et al, 2006). Furthermore, interaction of

metastatic cancer cells with the hematopoietic niche is mediated by

a4b1-vascular cell adhesion molecule 1 (VCAM1), chemokines like

CXCL12, BMP, Notch, Nestin, and osteopontin (Weilbaecher et al,

2011). Most of these proteins/pathways are also involved in the

influx of metastatic cancer cells into the bone and can directly influ-

ence cancer cell proliferation and resistance to therapy.

Fibroblasts—engineers of the metastatic niche

Fibroblasts make up a major fraction of stromal cells in the tumor

environment of primary and secondary sites and contribute to sev-

eral, if not all, hallmarks of cancer (Houthuijzen & Jonkers, 2018).

However, other studies suggest that fibroblasts can be tumor sup-

pressive, especially when they constitute a restrictive barrier in early

tumor stages impeding invasion of tumor cells (Xu et al, 2010; Chang

et al, 2012; Costa et al, 2018; Ping et al, 2021). Recent technological

advances have shed more light on the heterogeneity of fibroblasts

in patient samples (Costa et al, 2018; Pelon et al, 2020). They

have important homeostatic activity in various organs. Fibroblasts

become activated following tissue damage and produce TGFb, which

is a vital factor in wound healing (Gabbiani, 2003). Activated fibro-

blasts (= myofibroblasts) express alpha-smooth muscle actin

(aSMA), which is associated with a highly contractile phenotype

(Rockey et al, 2013). Among these, are cancer-associated fibroblasts

(CAFs) that arise from tissue-resident fibroblasts or stellate cells (in

the liver and pancreas) upon exposure to cancer-associated stimuli.

CAFs can also develop from bone marrow-derived mesenchymal

stem cells that are attracted to the tumor or through differentiation of

endothelial cells, adipocytes, or pericytes. Typically, CAFs are

defined by their elongated and spindle-like morphology, the lack of

lineage markers for epithelial cells, endothelial cells, and leukocytes,

and the absence of mutations found in cancer cells (Sahai et al,

2020). CAFs express mesenchymal markers such as vimentin, aSMA,

fibroblast activation protein (FAP), fibroblast-specific protein 1

(FSP1 or S100A4), and platelet-derived growth factor-alpha (PDGFa)
(Sahai et al, 2020; Ping et al, 2021). CAFs can have different effects

on the TME. Here, we will focus on mechanisms leading to positive

feedback-loops that result in disease progression and metastasis.

TGFb1 is a well-described stimulus that converts fibroblasts to

myofibroblasts (or CAFs) (Petersen et al, 2003; Karagiannis et al,

2012). Interestingly, CAFs produce TGFb1 upon activation, which

sustains an autocrine loop of persistent CAF activation (Kakarla

et al, 2012; Zarzynska, 2014). In CAFs, TGFb1 elevates fibronectin,

aSMA and laminin expression, which augments CAF proliferation

and breast cancer cell migration (Houthuijzen & Jonkers, 2018).

Likewise, it has been shown that integrin a6b4- and a6b1-positive
exosomes secreted from breast cancer cells can enhance expression

of the pro-inflammatory S100A4 protein in lung-resident fibroblasts.

This leads to a PMN and enhances lung colonization through the

generation of CAFs (Hoshino et al, 2015). Furthermore, lung-

resident CAFs are involved in establishing a PMN by secreting

chemokines such as CXCL12 and CCL2. These chemokines can

guide breast cancer, which express high levels of CXCR4 and CCR7,

to the lung (M€uller et al, 2001). IL1 and IL6 are two further
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cytokines that can activate CAFs through NF-jB or JAK/STAT

signaling, respectively (Erez et al, 2010; Sahai et al, 2020). CAFs

trigger the NLRP3 inflammasome activation and secretion of

pro-inflammatory cytokines (such as IL1 and IL6), which results

in a positive-feedback loop generating evermore CAFs (Ershaid

et al, 2019).

Tissue stiffness has a significant impact on the risk of breast can-

cer and the prognosis. A slight rise in tissue stiffness can activate

YAP/TAZ mechano-transducing pathways (Calvo et al, 2013; Lee

et al, 2019). This leads to the transcription of different matricellular

proteins and a more contractile phenotype of CAFs in general. Con-

sequently, this aggravates tissue stiffness and results in a positive

feedback-loop that enhances CAF generation and increases onco-

genic signaling in cancer cells (Panciera et al, 2020). Additionally,

radiation- or chemotherapy may add to the physiological and geno-

mic stress, thereby reinforcing this loop (Park et al, 2020). As shown

by Wang et al, cerebral cavernous malformations 3 (CCM3) is a

gatekeeper in this YAP-mediated process and the loss of CCM3 in

CAFs enhances tissue remodeling while exacerbating matrix stiff-

ness. The result is reciprocal YAP/TAZ activation in neighboring

tumor cells and dissemination to distant organs (Wang et al, 2021).

There are also YAP-independent mechano-transducing processes

that help breast cancer progression (Lee et al, 2019).

In brief, we have highlighted several CAF-regulated FFLs that

result in disease escalation. Various growth factors secreted from

CAFs may facilitate the spread of cancer cells to other sites by

remodeling the matrix and enhancing both angiogenesis and pro-

liferation of cancer cells. Additionally, due to the secretion of

pro-inflammatory cytokines or exosomes that lead to an inflamed

environment, the activity of CAFs may facilitate colonization of

distant organs.

Nutrients and metabolites support cancer cell survival
at distant sites

Metabolic activity during metastasis
Altered cellular metabolism is a hallmark of cancer and is as diverse

as the disease itself (Hanahan & Weinberg, 2011). Metabolic path-

ways are intricate networks of highly plastic biochemical reactions

that depend on many factors, including the presence of genetic

mutations, enzymes, and nutrients (Elia et al, 2018). Nutrients

converted to metabolites support various activities, including cellu-

lar homeostasis, growth, signaling, and epigenetic modifications

(Elia et al, 2018).

Originally observed by Otto Warburg, tumors feature constitutive

elevated glucose consumption and ATP generation through glycoly-

sis, independent of the availability of oxygen (Warburg, 1956). This

“aerobic glycolysis” was termed the “Warburg effect”. Nowadays,

we know that while aerobic glycolysis does not yield the highest

number of ATP per carbon atom, it is the source of crucial building

blocks for several cellular metabolic pathways (Dey et al, 2021).

Additionally, increased demand for NAD+ relative to ATP drives

aerobic glycolysis (Luengo et al, 2021). However, tumor metabolism

goes far beyond glycolysis. Another anabolic process active in can-

cer cells is oxidative phosphorylation (Davis et al, 2020). The meta-

bolic activity of metastasizing breast cancer cells can vary according

to subtype, for example, ER-positive breast cancer cells are better

adapted to oxidative phosphorylation and triple-negative breast can-

cer cells to glycolysis (Leh�uede et al, 2016).

Every organ is unique with regard to nutrients and oxygen

availability, as well as to the level of oxidative stress (Schild et al,

2018). Tumor cells exhibit significant metabolic flexibility and, as a

result, survive and thrive in different metastatic organs; the higher

the metabolic flexibility, the higher the metastatic potential

(Leh�uede et al, 2016). Metabolic adaptation can occur on epige-

netic and post-translational levels through metabolite availability

(Bergers & Fendt, 2021). Importantly, changes in metabolism affect

cellular energetics and signaling networks (Schild et al, 2018).

Thus, it is no surprise that many tumor mutations activate pro-

survival and growth pathways. For example, phosphatidylinositol

3-kinase/protein kinase B (PI3K/AKT) and MYC are crucial pro-

teins for cellular metabolism (Shim et al, 1997; Miricescu et al,

2021). In breast cancer, metabolic rewiring begins at the intravasa-

tion of cancer cells from the primary tumor and persists until colo-

nization is complete (Elia et al, 2018; L€uönd et al, 2021). At these

stages, nutrient availability and utilization dictate activity of meta-

bolic pathways (Elia et al, 2017, 2018).

The metabolism of metastatic cancer cells is governed by the two

overarching and intertwined concepts of metabolic plasticity and

flexibility (Bergers & Fendt, 2021). Metabolic plasticity describes the

involvement of specific metabolites in different pathways; prime

examples are lactate, pyruvate, or glutamine. Metabolic flexibility

on the other hand describes the use of different metabolites for one

specific pathway.

In the following section, we summarize current knowledge about

metabolic pathways and the nutritional cross-feeding involved in

breast cancer metastases. When nutrients are in short supply,

changes in the microenvironment sustain the energetic state of can-

cer cells. For simplicity, we categorize the pathways as glycolytic,

fatty acid, and amino acid metabolism.

Nurturing the sugar high
Glucose is the most critical energy source for homeostatic tissues as

well as for tumors (Sun et al, 2019; Santos & Hussain, 2020).

Glycolysis-related proteins such as glucose-transporter 1 (GLUT-1)

and MCT4 are upregulated in patients’ breast cancer brain metasta-

ses (Kim et al, 2014). During glycolysis, glucose breaks down into

two pyruvate molecules, and it has been shown that environmental

pyruvate is involved in shaping the ECM in metastatic niches of the

lung (Elia et al, 2019). Elevated pyruvate uptake results in increased

a-ketoglutarate-enhancing collagen hydroxylation (Elia et al, 2019).

Rapidly dividing cancer and myeloid cells consume most of the glu-

cose within the TME (Reinfeld et al, 2021). Additionally, metabolic

reprogramming in the TME toward aerobic glycolysis influences the

immune system by attracting MDSCs via CCAAT/enhancer-binding

protein beta (CEBPB) and through G-CSF and GM-CSF secretion (Li

et al, 2018).

Pyruvate generated by glucose or amino acids can be converted

into lactate in a one-step reaction catalyzed by lactate dehydroge-

nase (LDH) (Bergers & Fendt, 2021). Mainly produced by aerobic

glycolytic cancer cells in hypoxic regions, lactate was long thought

to be the ugly duckling of metabolites, being simply a waste product

of glycolysis (Rabinowitz & Enerb€ack, 2020). However, with the dis-

covery that lactate can promote cancer cell growth, the spotlight

turned on lactate and its activity as a pro-tumorigenic metabolite
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(Fig 4A and B) (Boidot et al, 2012). Interestingly, hypoxia and

cancer-derived reactive oxygen species (ROS) can induce production

and secretion of lactate by CAFs, thus promoting cancer cell metab-

olism (Fig 4B) and leading to a vicious FFL (Becker et al, 2020).

Apart from being an energy-rich metabolite enhancing cancer pro-

gression, lactate creates an acidic TME. This deters immune cell

infiltration while simultaneously promoting pro-tumorigenic

immune cell populations, further exacerbating disease progression

(Fig 4A) (Naik & Decock, 2020). Summarizing these findings, we

highlight that glycolysis and its products pyruvate and lactate sus-

tain breast cancer metastases.

A fatty situation
Fatty acids (FAs) from de novo lipogenesis and exogenous uptake

are linked to cancer progression (Elia et al, 2018). FA uptake occurs

via lipid receptors CD36 and fatty acid-binding proteins (FABPs). It
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Figure 4. Nutritional feed-forward loops fostering metastasis.
Factors secreted from cancer cells into the microenvironment generate an immune-modulated and nutritionally beneficial niche. (A) Lactate from cancer cells lowers the
extracellular pH. This is immunosuppressive to cytotoxic immune cells, including NK and T cells. Simultaneously, it attracts gMDSC to the metastatic niche, which further
supports the growth of cancer. Additionally, uptake of the MCT1 transporter increases the availability of high-energy substrate lactate. Moreover, MCT1 is upregulated in
brain metastases. (B) ROS secreted from cancer cells together with a hypoxic microenvironment can stimulate lactate secretion from CAFs, which is then available via
MCT1. (C) IL6 release promotes free fatty acids (FFA) secretion from adipocytes and also induces lipolysis in adjacent adipocytes, releasing even more FFAs into the TME.
In turn, uptake of these FFAs into cancer cells via the CD36 lipid receptor or fatty acid-binding proteins promotes further disease progression. Additionally, interaction of
cancer cells and adipocytes stimulates release from the latter of lactate, glutamine, ketones, and leptin, which can enhance cancer cell growth. Elevated fatty acid oxida-
tion (FAO) and upregulation of sterol regulatory element-binding protein 1 (SREBP-1) are both promotors of the metastatic cascade. (D) Example of nutritional cross-
feeding in the TME. Glutamate secreted from cancer cells promotes aspartate secretion from CAFs, which supports cancer cells metabolically. CAF, cancer-associated
fibroblast; FABP, fatty acid-binding proteins; FAO, fatty acid oxidation; gMDSC, granulocytic myeloid-derived suppressor cells; IL6, interleukin 6; MCT1, monocarboxylate
transporter 1; ROS, reactive oxygen species.
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has been shown that CD36 expression enhances the metastatic

potential of DTCs in distant organs (Pascual et al, 2017). Concomi-

tantly, the secretome of breast-associated adipocytes induces FA

uptake into breast cancer cells through CD36, enhancing primary

tumor aggressiveness (Zaoui et al, 2019). Additionally, tumor cell

activity can induce lipolysis in adjacent adipocytes. Free FAs then

sustain the proliferation of cancer cells via FA oxidation, which is

often upregulated in breast cancer cells (Fig 4C) (Wang et al, 2017;

Broadfield et al, 2021). Thus, constant release of FA from adipocytes

promotes cancer cell growth, which leads to even greater FA release

from the TME (Romero et al, 2015).

De novo FA synthesis in cancer cells (based on glucose or gluta-

mine) is the other main pathway of FA generation and this was

shown recently to be involved in breast cancer brain metastasis

(Ferraro et al, 2021). Additionally, upregulation of sterol regulatory-

binding protein 1 (SREBP1) in brain metastatic breast cancer cell

lines promotes lipid synthesis and FA metabolism (Jin et al, 2020).

Thus, SREBP-1 promotes breast cancer metastases (Zhang et al,

2019). Notably, FAs are elevated in breast cancer metastases com-

pared to the primary tumor, highlighting the importance of FA

metabolism in metastatic disease progression (Liu et al, 2012).

Amino acid addiction
Amino acids can act as an energy source, biosynthetic molecules,

and mediators of redox balance in cancer cells, thus fueling anabo-

lism of cancer cells and promoting metastasis.

Non-essential amino acids (NEAAs) can be produced by host

cells but are also available for cancer cells through dietary uptake.

Proline catabolism is higher in metastases than in primary tumors of

mice and human patients (Elia et al, 2017). Serine metabolism is

important in breast cancer growth and progression (Mattaini et al,

2016). Indeed, the serine- and glycine-limited brain environment

normally restricts growth of metastatic seeds. However, phospho-

glycerate dehydrogenase (PHGDH), which is important for the ser-

ine biosynthesis pathway, is upregulated in DTCs in the brain (Ngo

et al, 2020). Ngo et al (2020) found that the low levels of serine and

glycine render brain metastasis of MDA-MB-231 cells susceptible to

PHGDH inhibition. PHGDH expression is involved in lung and liver

metastasis and is linked to shorter overall survival in patients (Kim

et al, 2014; Samanta et al, 2016; Rinaldi et al, 2021). For further

reading on serine and one-carbon metabolism in cancer, we refer to

the review by Yang and Vousden (Yang & Vousden, 2016). Nutri-

tional cross-feeding was reported in stiff primary tumor niches,

where CAFs receive glutamate from cancer cells and cancer cells

receive aspartate from CAFs (Fig 4D) (Bertero et al, 2019). It is not

known whether such a FFL also exists in breast cancer metastases.

Conditionally essential amino acids are only essential when the

metabolic consumption exceeds the endogenous production. In can-

cer cells, these include arginine, asparagine, and glutamine (Bröer,

2020). Arginine metabolism transiently changes toward pro-

proliferative polyamine synthesis during metastasis of 4T1 cells in

lungs (Kus et al, 2018). Increased glutamine metabolism is well

described in breast cancer and glutamine is the most abundant free

amino acid in the plasma (Cao et al, 2017; Bergers & Fendt, 2021).

Immunotargeting of xCT, the glutamate and cysteine transporter,

successfully inhibited breast cancer lung and brain metastases in

preclinical mouse models (Lanzardo et al, 2016; Elia et al, 2018;

Parida et al, 2022).

For breast cancer cells deprived of extracellular glutamine, aspar-

agine becomes an essential amino acid, highlighting the interdepen-

dence of amino acids in the TME (Pavlova et al, 2018). Limiting

asparagine bioavailability by dietary restriction reduces lung metas-

tasis without affecting the primary tumor growth (Knott et al, 2018).

Amino acid exchange between cancer cells and their microenvi-

ronment supports metastasis (Bertero et al, 2019). However, there

are few reports of nutritional cross-feedings, as amino acids are pri-

marily an anabolic need compared to secondary messengers modu-

lating the microenvironment.

The different mechanisms of metabolic reprogramming described

above promote metastasis and the survival of cancer cells under

altered metabolic constraints (Bergers & Fendt, 2021). Homeostatic

regulation of the tumor nutrient microenvironment in favor of

metastasis offers unique opportunities to disrupt FFLs and specifi-

cally target metastasis formation.

Outlook and clinical perspective

So far, a large proportion of cancer research and anti-cancer drug

development has focused on targeting the primary tumor. To extend

therapeutic options for stage IV cancer patients, we need specifically

targeted therapies aiming to eliminate metastasis. To accomplish such

long-term successful therapies, it is important to know the metastatic

TME in detail, rather than using data based solely on primary tumors.

Technological advances are needed in order to understand in more

detail the relationship between metastases and the TME, as well as

the extent of intra- and inter-metastatic and patient heterogeneity.

Over the last decade, much progress has been made in characterizing

tumors and their microenvironments at a single cell level as well as

defining their spatial composition. Advanced technologies, such as

single-cell resolved imaging to distinguish intra-tumoral heterogeneity

with biosensors (i.e., for glycolysis), will provide powerful tools to

unravel the metabolic states of metastatic cancer cells (Kondo et al,

2021). Similarly, new technologies such as “SpaceM”, which inte-

grates light microscopy with MALDI-imaging MS to spatially charac-

terize in situ single-cell metabolomics, are promising (Rappez et al,

2021). Additional new technologies include fluorouracil-labeled RNA

sequencing (Flura-seq) of cancer cell RNAs (Basnet et al, 2019), which

can characterize early colonization in different organs with high sensi-

tivity in situ (Basnet et al, 2019). This technique has already been

used, for example, to highlight specific metabolic requirements for

DTCs growing in the lung microenvironment, as opposed to those

growing in brain or breast (Basnet et al, 2019). Single-cell metabolic

profiling (scMEP) could help define metabolic characteristics of

immune cell populations or cancer cells in metastases (Hartmann et

al, 2021); which could be used to define how metabolism-associated

FFLs might be modulated and therapeutically targeted.

In this review, we provide some recent examples of how tumors

and the microenvironment interact. However, one significant ques-

tion persists: Is there a stage when the FFLs between the cancer and

its TME are irreversible and the disease reaches a stage of no return?

In the clinic, patients enter palliative care when this step of disease

escalation is reached. If patients present with multiple metastatic

lesions that are not resectable, targeting the cancer cells alone will

be insufficient for disease eradication. Normalization of the micro-

environment is crucial to improve therapeutic responses. Targeting

ª 2022 The Authors EMBO Molecular Medicine 14: e14283 | 2022 11 of 17

Zora Baumann et al EMBO Molecular Medicine



FFLs may be a possible way to tackle cancer cell proliferation and

normalize the environment and thus restore a homeostatic level in

which cancer cells are suppressed by the microenvironment. How-

ever, targeting cells in the TME also poses the risk of enhanced side

effects because cells apart from the metastatic niche have critical

homeostatic activities. In this regard, it will be challenging to

develop efficient therapies that target all sites at once, because the

compositions of metastatic sites can be very different. It is tempting

to speculate that the combination of immune-related therapies and

targeted cytotoxic agents will be more widely used to treat meta-

static breast cancer. However, successful targeting of metastases

will need a cautiously nuanced approach. Most importantly, cancer

genomics and proteomics, tumor (sub)type, TME composition, and

the metastatic organ need to be monitored with biopsies before and

during therapy (Dey et al, 2021). Greater emphasis must be put on

translationally relevant pre-clinical studies that assess these factors

in models of metastatic disease. Consequently, promising paths that

should be investigated further are interventions that enhance anti-

tumor immune function while limiting cancer cell metabolism and

proliferation (Dey et al, 2021). Intriguing perspectives are cancer

vaccines and second generation immune-checkpoint inhibitors.

Additionally, it should be noted that preclinical studies are often

suboptimal compared to the clinical situation of patients. In-depth

preclinical research and clinical validation that focus on controlling

dormant cells at the different metastatic sites are needed. The tumor

dormancy window offers a means to prevent incipient metastases

from reawakening. This has the advantage of intervening pharmaco-

logically and/or by modifying risk factors at a stage when the num-

ber and heterogeneity of cancer cells are still relatively low.

Moreover, technologies that identify harbingers of the switch from

dormancy to metastatic outgrowth will allow therapeutic interven-

tion during the early stages of metastases. These may include

secreted cytokines and chemokines, as well as circulating cells,

nucleotides, metabolites, and lipids. Nevertheless, given current

detection methods, some patients present to the clinic only at later

stages of disease when metastases are detectable, fully established

and have already a rewired microenvironment; thus, research on

late-stage disease is also needed (Ganesh & Massagu�e, 2021). To

summarize: with innovative ideas, more accurate model systems,

access to patient material including on-treatment biopsies, improved

technologies, and combinations of targeted therapies with immuno-

therapies, researchers can pave the way to more effective treatment

of metastatic patients.
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