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Abstract

Determining what constitutes protective immunity to TB is critical for the development of improved diagnostics and
vaccines. The comparison of the immune system between contacts of TB patients, who later develop TB disease
(progressors), versus contacts who remain healthy (non-progressors), allows for identification of predictive markers of TB
disease. This study provides the first comprehensive analysis of the immune system of progressors and non-progressors
using a well-characterised TB case-contact (TBCC) platform in The Gambia, West Africa. 22 progressors and 31 non-
progressors were analysed at recruitment, 3 months and 18 months (time to progression: median[IQR] of 507[187–714]
days). Immunophenotyping of PBMC, plasma cytokine levels and RT-MLPA analysis of whole blood-derived RNA was
performed to capture key immune system parameters. At recruitment, progressors had lower PBMC proportions of CD4+ T
cells, NKT cells and B cells relative to non-progressors. Analysis of the plasma showed higher levels of IL-18 in progressors
compared to non-progressors and analysis of the RNA showed significantly lower gene expression of Bcl2 but higher CCR7
in progressors compared to non-progressors. This study shows several markers that may predict the onset of active TB at a
very early stage after infection. Once these markers have been validated in larger studies, they provide avenues to
prospectively identify people at risk of developing TB, a key issue in the testing of new TB vaccines.
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Introduction

Close to one-third of the world’s population is infected with

Mycobacterium tuberculosis (MTb), the causative agent of tuberculosis

(TB), with infection rates highest in poverty-stricken countries in

Africa and Asia [1]. The majority of infected persons remain

asymptomatically (latently) infected with the pathogen, while 10%

progress to active TB within their lifetime, resulting in 2 million

deaths per year [1]. A better understanding of what constitutes

protective immunity to TB is critical for development of improved

diagnostics, treatment protocols and vaccines.

The abundance of latently infected individuals world-wide

constitutes an extremely large reservoir which fuels TB reactiva-

tion and subsequent transmission. However, the relatively low

proportion of people that progress to active TB disease suggests

that natural immunity to MTb is the general rule, although this

also complicates evaluation of intervention studies. The majority

of TB biomarker studies to date have focused on differences

between subjects with active TB compared to latently infected

counterparts [2–5]. These have shown the unequivocal role of

CD4+ T cells and IFN-c production in TB immunity [2–5], yet do

not allow distinction between the underlying cause of progression

to active TB and the dynamics of immune changes leading to or

resulting from this progression. Other potential immune markers

for determining susceptibility or protection to TB, including T cell

and B cell subsets [6], type I IFN signalling pathway [7] and

apoptotic and innate immune regulators [8] all need to be validated

in longitudinal cohort studies that monitor contacts of TB cases (TB

case-contact study (TBCC)) for TB disease progression [9]. One

such study in The Gambia followed 2348 contacts of TB cases for 2

years resulting in 26 progressors of which half were positive by TST

at recruitment and half were positive by ELISPOT [10]. Other

studies have examined the predictive values of IFN-c release assays

(IGRA) and TST responses at baseline but have also shown

inconclusive results [11,12]. Clearly, more complex immunological

parameters need to be assessed in order to determine more sensitive

bio-signatures of protection or susceptibility. This will not only aid

in development of effective TB vaccines but will ultimately reduce

TB transmission rates by enabling identification and early-

treatment of susceptible individuals.

This study provides the first detailed description of the immun-

ological differences between TB progressors and non-progressors at
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early time points after contact with the index TB case, in most cases

many months before the onset of disease. We compared plasma

cytokine levels, peripheral blood immune cell phenotypes and whole

blood RNA gene expression. These data provide an initial platform

for determining biomarkers of protective immunity to TB.

Materials and Methods

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. Ethical approval was obtained from

the Gambia Government/Medical Research Council Joint Ethics

Committee. All patients provided written informed consent for the

collection of samples and subsequent analysis.

The Gambian Tuberculosis Case Contact Study
In the TBCC study, we followed 317 adult sputum smear and

culture positive tuberculosis index cases and 2348 of their household

contacts. Participants were recruited between September 2002 and

September 2004. Household members were eligible for inclusion in

the study if they had been sleeping in the same compound (walled

group of houses) as the index case during the index case’s period of

illness with TB. All contacts underwent a clinical assessment and

had a Tuberculin Skin Test (TST: 2 tuberculin units (TU) of

Purified Protein Derivative (PPD) RT23, Staten Serum Institute,

Denmark) using the Mantoux technique. Subjects with skin test

induration of $10 mm diameter were categorised as TST positive.

Those with a negative TST at baseline had a repeat test after 3

months.

Follow-up
Study participants were followed formally for 2 years and

passively after that. Each individual was re-evaluated for symptoms

of tuberculosis at each visit. All TB suspects received a chest

radiograph and sputum analysis for acid fast bacilli (AFB) smear and

culture. If tuberculosis disease was bacteriologically confirmed,

patients were referred for the standard six month tuberculosis

treatment course. Blood samples were taken at 3 months and 18

months following the initial visit and were processed to obtain

Peripheral blood mononuclear cells (PBMC), plasma and RNA

which were cryopreserved until required. Subjects were included if

they were .18 years of age and were HIV-1 sero-negative. Ethical

approval was obtained from the Gambia Government/Medical

Research Council joint ethics committee.

Study group definitions
All contacts with symptoms consistent with TB, that com-

menced at least 3 months after their respective index case was

diagnosed, were considered to be possible secondary TB cases

(termed progressor throughout this paper). A TB diagnosis was

based on chest x-ray and positive sputum smear and culture

results, and/or their response to TB treatment. Randomly chosen

non-progressors were age and sex-matched to the progressors and

were diagnosed as definitely not having TB for the whole follow-

up period. Non-progressors were selected from different household

as the progressors to reduce effects of clustering.

PBMC thawing and flow cytometry
PBMC were removed from liquid nitrogen and semi-thawed in

a 37uC water bath. They were then quickly resuspended in cold

RPMI+10%FCS and centrifuged (1500 rpm, 5 min), followed by

a second wash to remove residual DMSO. Cells were then

resuspended in RPMI+10% FCS and counted. For flow cytometry

staining, at least 200,000 cells were used per test. After carefully

removing the supernatant, 20 mL of previously titrated antibody

cocktail was added to each tube and vortexed. Cells were then

incubated at 4uC for 15 min, followed by a wash with cold PBS/

FCS/Azide buffer. Supernatant was removed and cells resus-

pended in 1% paraformaldehyde for flow cytometry acquisition.

Antibodies used were CD4-PerCP, CD8-Pacific Blue, CD27-APC,

CD45RO-PE, CD56-PE, CD56-PECy7 (all from BDPharmingen,

USA); CD3-PE-Cy7, CD19-APCAlexa750 (all from eBioscience,

UK) and Va24-FITC and Vb11-PE (Beckman Coulter, USA). All

samples were acquired with a 9-colour (11-parameter) CyAn ADPTM

flow cytometer (Beckman Coulter, USA). Prior to acquisition,

calibration and compensation were performed and lymphocytes

gated according to 90u forward and side scatter plots. FACS plots

were analysed using FlowJo software (Treestar, OR), version 6.1.1.

Multiplex cytokine analysis of plasma samples
Plasma samples from TB cases, non-progressors and progressors

at recruitment, 3 months and 18 month time-points were analysed

using a Bio-Rad custom made 7-plex kit according to the manu-

facturer’s instructions. Cytokines assessed were: IL-10, IL-12(p40),

IL-13, IL-17, IL-18, IFN-c and TNF-a. Following pre-wetting of

the filter plate, 50 ml of bead suspension was added to each well

and washed twice. 50 ml of samples and standards were then added,

the plate was sealed and shaken for 30 sec at 1100 rpm, and

incubated for 1 hr at 300 rpm. The plate was washed 3 times then

25 ml of pre-diluted detection antibody was added. Following

shaking, the plate was incubated for 30 min. at 300 rpm in the dark.

After washing, 50 ml of 16 streptavidin-PE was added to each

well and incubated for 10 min. The plate was again washed and

resuspended in 125 ml of assay buffer, sealed, mixed and immediately

read on the Bioplex analyser using Bioplex manager software

(version 4.0; Bio-Rad, USA) and a low PMT setting. All standards

were run in duplicate.

Dual-colour Reverse Transcription Multiplex
Ligation-dependent Probe Amplification (RT-MLPA)

RNA was isolated at MRC Unit, The Gambia from peripheral

blood using Paxgene tubes and extraction kits according to the

manufacturer’s instructions (Qiagen) and shipped to Leiden Uni-

versity Medical Center (LUMC). Dual colour RT-MLPA was

performed at LUMC [13,14] with several major modifications [15],

including probe-primer design for 45 genes of interest [15,16].

Briefly, 100–150 ng RNA was reverse transcribed using gene-

specific RT primers and MMLV reverse transcriptase. This was

denatured and hybridized overnight at 60uC with a SALSA probe

mix (MRC Holland, The Netherlands). After treating the samples

with ligase-65 (MRC-Holland, The Netherlands) for 15 min at

54uC, PCR amplification was performed with specific SALSA

FAM- or HEX-labelled MAPH primers (2 mM each, forward

primer 59-GGCCGCGGGAATTCGATT-39 and reverse primer

59-GCCGCGAATTCACTAGTG-39), 13.75 mL H20 and 0.25 mL

SALSA polymerase [15]. PCR conditions were 33 cycles of 30 s at

95uC, 30 s at 58uC and 60 s at 72uC, followed by 1 cycle of 20 min

at 72uC. PCR products were then diluted 1:10 in HiDi formamide

containing 400 HD ROX size standards and analysed on an ABI

PRISM 3730 capillary sequencer (Applied Biosystems, UK). Data

were analysed using GeneMapper software (Applied Biosystems,

UK) and peak areas were exported to a Microsoft Excel file.

Sample-related and peak-related differences in PCR and electro-

phoresis efficiency were corrected by adjusting to GAPDH

housekeeping gene. Signals below the threshold value for noise

cut-off (peak area #200) were adjusted accordingly. A positive

control that encompassed the combined target-specific sequences of

the left and right hand half-probes was used for all runs.

TB Biomarkers
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Statistical Analysis
For Hematological, Immunophenotyping and Luminex analy-

ses, group medians and distributions were compared using a

Kruskal-Wallis test followed by Dunn’s post-test comparison. For

RT-MLPA analysis a Mann-Whitney U-test was performed. To

avoid the assumption of constant variance within groups, robust

variance estimates were used. Analyses were performed using

STATA version 9.1 (Stata Corporation, USA) and Matlab version

7.6 (Mathworks, Natwick, 2008).

Results

Subject information
We analysed 22 confirmed TB progressors. These had PBMC

and/or RNA and/or plasma samples available but not all sample

types were available for all subjects at all time-points. Of the

progressors, 14 had viable PBMCs stored at recruitment, 9 at 3

months and 9 at 18 months. These were matched with 31 non-

progressors at recruitment, 35 non-progressors at 3 months and 22

non-progressors at 18 months. For cytokine levels within plasma

samples, 13 progressors were analysed at each time-point and

compared to 21 non-progressors. For RT-MLPA analysis, 12

progressors and 31 non-progressors were analysed. The media-

n[IQR] age of the confirmed progressors was 25[20–45] with 58%

males. The non-progressors were age and sex matched. To try and

correct for the variation in the time taken to progress to active

disease (median[IQR] of 507[187–714] days), we performed

analyses based on early (progression between 90–507 days) versus

late (progression .507 days) progressors where possible (indicated).

Comparison of hematological parameters between
progressors and non-progressors

There were no significant differences between progressors and

non-progressors at any time-point for any of the hematological

parameters analysed (WBC, Hemoglobin, MCV and platelets)

(Fig. 1; Table 1). However, Hemoglobin levels were significantly

increased at the 18 month time-point compared to recruitment for

the progressors (median[IQR] = 15.3[14.4–16.7] and 12.1[11.6–

14] respectively; p,0.01, Fig. 1A). When the progressors at

recruitment were analysed based on those progressing early

(,median time-point of 507 days; EP) compared to those pro-

gressing late (.median time-point of 507 days; LP), there was a

significantly lower level of MCV in EP compared to LP (median

[IQR] = 82[78–88] and 88[81–90] respectively; p = 0.043; Table 1).

Comparison of lymphocyte subsets between progressors
and non-progressors

Lymphocyte populations were gated according to FSC and SSC

profile (Fig. 2A) and analysed for specific subsets (CD4+, CD8+
and NKT cell populations are shown (Fig. 2A). Analysis at

recruitment showed a significantly lower level of CD4+ T cells

from progressors compared to non-progressors (median[IQR] =

21[17–34] and 30[22–37] respectively; however this was not seen

at the other time-points (Fig. 2C, Table 1). B cells were significantly

Figure 1. Analysis of hematological parameters in progressors versus non-progressors. Hemoglobin (A) and MCV (B) levels, Total white
blood cell (WBC) (C), and platelet (D) counts, were obtained from the Hematology lab at MRC, Fajara. Bar indicates median of 13 progressors and 28
non-progressors at recruitment (0), 9 progressors and 30 non-progressors at 3-months (3) and 7 progressors and 19 non-progressors at 18 months
(18). Data were analysed using a Kruskal-Wallis test followed by Dunn’s post-test comparison. Significant differences are indicated.
doi:10.1371/journal.pone.0025230.g001
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higher at 3 months in progressors compared to non-progressors

(p = 0.001; Fig. 2F, Table 1) but were relatively low at the

recruitment time-point and were comparable to the non-progressors

at 18 months. In progressors we also found a significantly lower

frequency of Va24+Vb11+ NKT cells (median[IQR] = 0.06[0.05–

0.11]; p,0.05) but a significantly higher level of CD4+CD25+ cells

(median[IQR] = 1.5[1.0–1.9]; p,0.05) at recruitment compared to

non-progressors (median[IQR] = 0.09[0.05–0.33] and 1.1[0.7–1.4]

respectively; Figs. 3A and 3C; Table 1). However, no differences in

T regulatory (CD4+CD25+CD127lo) cell frequency was observed,

indicating that the CD4+CD25+ cells were most likely activated

T cells. While we saw a trend towards a higher proportion of

CD45RO+CD27+ (central memory) and lower levels of

CD45RO2CD272 (terminal effector) cells in both the CD4+
and CD8+ subsets for progressors, these were not significantly

different from non-progressors at any time-point (Table 1).

However, we did see a significant decrease in the proportion of

terminal effector cells within the CD4+ subset at 3 and 18 months

compared to the recruitment time-point for the progressors (p,0.05

for both; data not shown). The only other subset that showed a

difference between recruitment and 18 month time-points for the

progressors were CD4+CD127+ cells (%) which were significantly

higher at 18 months (p,0.01; Fig. 3F). We also compared early to

late progressors at the recruitment time-point and found that CD4+
T cells were significantly lower in EP compared to LP (media-

n[IQR] = 19[11–32] and 24[18–42] respectively; p = 0.029;

Table 1) and also compared to the non-progressors (p = 0.002).

Indeed, there were no significant differences between the LP and

the non-progressors for any lymphocyte subset evaluated (Table 1).

The lower proportion of NKT cells from progressors at the

recruitment time-point was also due to a significant difference

between non-progressors and the early progressors (median[IQR]

= 0.09[0.05–0.33] and 0.08[0.05–0.13] respectively; p = 0.011;

Table 1).

Comparison of plasma cytokine levels in progressors and
non-progressors

Analysis of ex-vivo plasma cytokine levels showed very low

levels in all samples. IL-18 was detectable at the highest level for all

groups and was significantly higher in progressors at all time-

points compared to non-progressors (median[IQR] = 89[68–120],

99[55–147], 120[42–180] and 20[5–36] respectively; p,0.001 for

all; Fig. 4A). No significant differences were observed for any other

cytokine, presumably due to the low levels in all samples.

However, the proportion of non-progressors with detectable levels

of IFN-c was higher than in the progressors at all time-points

(Fig. 4B).

Gene expression differences between progressors and
non-progressors

We used RT-MLPA to detect differences in expression of

specific genes between progressors and non-progressors. We saw a

Table 1. Hematological and Immunological peripheral blood analysis: comparison of non-progressors with total progressors, early
progressors and late progressors at the recruitment time-point.

Subset Early Progressors Late Progressors Total Progressors Non-Progressors

Hemoglobin (g/dL) 13[11–14] 12[12–15] 12[12–14] 13[12–14]

WBC (6109/L) 4.2[3.9–4.8] 6.1[3.9–6.6] 4.5[3.9–6.1] 5.1[4.4–7]

MCV (fL) 82[78–88] 88[81–90] 85[80–90] 84[80–89]

Platelets (6109/L) 244[196–299] 217[141–286] 237[169–283] 215[184–237]

% CD3 52[38–61] 52[35–62] 52[35–60] 54[48–62]

% CD4 19[11–32]* 24[18–42] 21[17–34]* 30[22–37]

% CD8 17[10–31] 16[9–18] 16[10–22] 16[13–20]

% B CELLS 6.5[3–11] 8[6–10] 6.5[5–10] 11[8–16]

% NK CELLS 9.2[9–16] 13[8–21] 11.1[9–17] 12[6–19]

% NKT CELLS 0.08[0.05–0.13]* 0.06[0.02–0.09] 0.06[0.05–0.11]* 0.09[0.05–0.33]

% cd T CELLS 7.3[3.8–14.6] 5.4[2.3–8.5] 7.3[2.5–11] 6.9[4.3–10.4]

% CD4+CD25+ 1.3[0.7–1.8] 1.9[1.1–2.0] 1.5[1.0–1.9]* 1.1[0.7–1.4]

% CD4+CD25+127lo 0.6[0.4–1.1] 0.7[0.4–0.9] 0.6[0.4–0.9] 0.6[0.3–0.9]

% CD4+IL7R+ 67[47–89] 80[78–91] 79[67–89] 80[72–88]

%CD8+IL7R+ 47[26–54] 46[32–65] 46[32–59] 54[41–61]

%CD4+ NAÏVE 37[17–46] 39[27–59] 38[25–51] 35[21–43]

%CD4+ CM 32[29–43] 33[23–44] 32[27–40] 32[27–45]

%CD4+ EM 19[14–32] 16[11–29] 19[12–26] 18[14–27]

%CD4+ TE 10[8–14] 5[4–7] 7[5–10] 6[2.3–15]

%CD8+ NAÏVE 49[24–55] 45[10–53] 46[15–53] 43[25–55]

%CD8+ CM 15[9–18] 12[10–18] 13[10–18] 13[10–21]

%CD8+ EM 8[4–16] 11[6–43] 9[6–28] 10[4–16]

%CD8+ TE 33[25–48] 30[26–35] 31[26–38] 29[20–40]

Data expressed as median[interquartile range]. WBC = White Blood Cells; MCV = Mean Corpuscular Volume; Early Progressors (#507 days to progression); Late
Progressors (.507 days to progression); CM = central memory; EM = effector memory; TE = terminal effectors.
* = significantly different to non-progressors (please refer to text for actual p-values).
doi:10.1371/journal.pone.0025230.t001

TB Biomarkers

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e25230



Figure 2. Percentage of T, B and NK cells in progressors and non-progressors. Cryopreserved PBMC were thawed and analysed.
Representative FACS plots indicating our gating strategy are shown in (A): following gating on the lymphocyte population as determined by the FSC/
SSC profile, we analysed lymphocyte populations. Shown are a representative CD4+ and CD8+ profile and a comparison of Va24+Vb11+ invariant
NKT cell levels in a progressor (left) and non-progressor. All subjects were analysed for percentages of total T cells (B), CD4+ (C), CD8+ (D), CD4:CD8
Ratio (E), B cells (F) and NK cells (G). Bars indicate median of 14 progressors and 31 non-progressors at recruitment (0), 9 progressors and 35 non-
progressors at 3 months (3) and 9 progressors and 22 non-progressors at 18 months (18). Data were analysed using a Kruskal-Wallis test followed by
Dunn’s post-test comparison. Significant differences are indicated.
doi:10.1371/journal.pone.0025230.g002
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significantly lower level of Bcl2 in the progressors (median

[IQR] = 2109[1616–2591] compared to non-progressors (2882

[2123–1353] respectively; p = 0.011; Table 2). Conversely,

progressors had significantly higher levels of chemokine receptor

7 (CCR7) compared to non-progressors (median[IQR] = 19126

[17384–21655] and 15849[14602–19971] respectively). Analysis

of the fold-differences between progressors and non-progressors

showed the highest fold-difference (2.51) for Bactericidal Perme-

ability Increasing gene (BPI) and the lowest for FCGR1A (0.57) in

progressors compared to non-progressors, although neither of

these were significant due to high standard deviations (Table 2).

Levels of b2-microglobulin were similar between the groups (data

not shown).

Discussion

This study provides the first detailed comparison of the immune

system between contacts of TB cases who progress to active disease

and those who don’t progress, thus increasing our knowledge of

what constitutes protective immunity in TB. The major differences

between progressors and non-progressors included a significantly

lower percentage of CD4+ T cells and NKT cells but significantly

higher percentage of CD4+CD25+ cells in progressors at

recruitment. We also found significantly higher plasma IL-18

levels and higher CCR7 but lower Bcl2 gene expression in

progressors compared to non-progressors. These differences

were generally due to early progressors: the immune system of

Figure 3. Percentage of NKT cells, cd T cells, T regulatory cells and CD127 expression in progressors and non-progressors.
Cryopreserved PBMC were thawed and analysed for percentages of Va24+Vb11+ NKT cells (A), cd T cells (B), CD4+CD25hi cells (C),
CD4+CD25hiCD127lo cells (D), CD4+CD127+ cells (E) and CD8+CD127+ cells (F). Bars indicate median of 14 progressors and 31 non-progressors at
recruitment (0), 9 progressors and 35 non-progressors at 3 months (3) and 9 progressors and 22 non-progressors at 18 months (18). Data were
analysed using a Kruskal-Wallis test followed by Dunn’s post-test comparison. Significant differences are indicated.
doi:10.1371/journal.pone.0025230.g003
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non-progressors and late progressors was comparable at the

recruitment time-point, whilst subjects who progressed between

90–507 days following recruitment showed the most immunolog-

ical differences to non-progressors.

While we found significant differences at the hematological,

lymphocyte, plasma and RNA levels, our analyses also raised

many limitations which can only be addressed in a much larger

cohort study such as the Gates Grand Challenge for TB [3].

Firstly, the number of progressors used in this study was small.

While this could be overcome in part by increasing the number of

non-progressor samples we analysed, it could not overcome the

fact that we had such variability in progression time. Secondly, the

interval between the 3 month and 18 month sample collection

time points did not facilitate a precise analysis of the changes in the

immune system prior to progression to active disease; which is

highlighted by the fact that the early-progressors showed the most

differences to the non-progressors. Future work should allow for

increased time-points of sample collection to ensure the immune

responses are captured at the closest possible time-point to

progression.

Despite these difficulties, there were several parameters that

showed differences between progressors and non-progressors and

Figure 4. Analysis of cytokine levels in the plasma of progressors and non-progressors. 7-plex Luminex analysis was performed on
cryopreserved plasma samples. Data shown are for IL-18 (A) and IFN-c (B). Bars indicate median of 13 progressors at recruitment, 3 and 18 months
and 31 non-progressors. Data were analysed using a Kruskal-Wallis test followed by Dunn’s post-test comparison. Significant differences are
indicated.
doi:10.1371/journal.pone.0025230.g004
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should be further validated as potential biomarkers for protective

immunity to TB. Interestingly differences were observed in both

the innate and the adaptive immune systems, reinforcing the

requirements for triggering the innate immune response (through

use of adjuvants) in the design of new and improved vaccines [17].

At the RNA level, we saw the highest fold-difference in BPI and

the lowest fold-difference in FCGR1A (CD64) in progressors

compared to non-progressors; both of which are expressed by

neutrophils and are important in the control of bacterial infections

[18,19]. CD64 is important in the immune response to TB with

defects in this gene resulting in increased susceptibility to TB [19],

although recent work has shown subjects with active disease to

have significantly higher levels of this gene in comparison to

latently infected individuals [8]. IL-18 is produced by the innate

immune system, acts as a precursor to IFN-c production and is

highly increased in patients with advanced tuberculosis [20,21].

This suggests that the observed increase in plasma IL-18 levels in

progressors compared to non-progressors is important in the early

stages of the immune response to Mycobacterium tuberculosis

infection. No difference in NK cell proportion was observed at

any time-point but a significantly lower proportion of invariant

NKT cells were seen in progressors compared to non-progressors.

Invariant NKT cells act as a link between the innate and adaptive

immune systems and are important in the control of bacterial

infections [22,23], thus a reduction in NKT cell numbers will

invariably have downstream effects on the efficacy of the adaptive

immune response. The major difference in the adaptive immune

system was a significantly lower proportion of CD4+ T cells in

progressors compared to non-progressors. The crucial role of

CD4+ T cells in protection against TB disease progression is

supported by the profound increase in TB associated with HIV-

induced CD4 depletion [24]. The decrease in CD4+ T cells in

progressors may be associated with the decreased levels of the anti-

apoptotic gene, Bcl2 that we observed. The role of apoptosis in

Table 2. Differences in RT-MLPA gene expression levels in progressors and non-progressors.

Description Variable Non-Progressors Progressors Fold difference

apoptotic factors BCL2 2882[2123–3338] 2109[1616–2591] 0.73

Caspase8 12034[10076–14078] 10960[8272–13771] 0.91

TNFRSF1A 13682[11793–15626] 14396[10648–17683] 1.05

TNFRSF1B 3656[3249–4180] 4124[3790–4620] 1.13

Cytokines/chemokines TNF 200[200–1392] 200[200–1874] 1.00

BLR1 1443[1035–1777] 1734[1273–2190] 1.20

CXCL10 200[200–386] 271[200–746] 1.36

CCL19 565[308–735] 537[200–650] 0.95

CCL22 276[200–664] 375[200–695] 1.36

CCL4 200[200–261] 200[200–200] 1.00

CCR7 15849[14602–19971] 19307[17648–22192] 1.22

Innate immunity CD163 1224[1144–1518] 1251[1154–1752] 1.02

FPR1 14203[11336–19155] 13540[10369–20923] 0.95

LTF 200[200–200] 200[200–200] 1.00

BPI 518[200–1677] 1300[281–2055] 2.51

NCAM1 1850[1532–2374] 1617[1345–2258] 0.87

B cell factors CD19 597[249–946] 664[497–874] 1.11

FCGR1A 883[310–1270] 505[200–1811] 0.57

MMP9 200[200–539] 280[200–594] 1.40

TIMP2 15285[12874–16946] 17429[13864–20035] 1.14

T cell factors CD3e 21509[17293–25332] 21207[19301–22977] 0.99

CD4 4165[3440–5119] 4880[3333–7075] 1.17

CD8a 200[200–2560] 200[200–4699] 1.00

IL7R 16796[13231–21510] 16048[13606–18574] 0.96

Regulatory T cells CTLA4 200[200–436] 200[200–309] 1.00

FOXP3 245[200–434] 235[200–475] 0.96

TGFB1 5211[4616–5811] 5420[4579–6268] 1.04

TGFBR2 5745[5114–6523] 6161[4583–7252] 1.07

Intracellular trafficking RAB13 1073[396–1189] 1082[746–1384] 1.01

RAB24 2229[1976–3125] 2678[2275–3096] 1.20

Rab33A 200[200–287] 219[200–318] 1.10

SEC14L1 15727[13077–19137] 18310[15395–26280] 1.16

Data expressed as median[interquartile range]. Fold difference is shown as expression in progressors compared to non-progressors. BPI showed the highest fold
increase and FCGR1A the lowest.
doi:10.1371/journal.pone.0025230.t002
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protection against TB disease is complicated as there are

differential effects depending on the cell type involved. For

instance, induction of apoptosis of infected macrophages is crucial

for control of disease [25] and is induced by TNF-a [26]. It is

thought this allows removal of infected cells while minimizing

tissue destruction in adjacent, uninfected cells [27]. Conversely,

apoptosis of T cells is detrimental to control of disease progression

[25]. Thus, further studies should separate cells into monocytes

and lymphocyte subsets in order to identify which cells are affected

by the reduced Bcl2 expression. Indeed, a recent study which

separated lymphocytes from monocytes prior to RT-MLPA,

showed differential levels of Bcl2 in patients with sepsis compared

to controls in the lymphocyte but not monocyte populations [28].

In conclusion, this study provides the basis for further

exploration of protective immunity to TB using a case-contact

study platform and nested case-control study. Our findings suggest

that several markers may predict the onset of active TB in exposed

asymptomatic household contacts. These markers, once validated

in a larger cohort study, may help to prospectively identify patients

at risk of developing active TB as well as demonstrating natural

protective immune requirements for the next generation of TB

vaccines. Once these markers have been validated in larger

studies, they provide avenues to prospectively identify people at

risk of developing TB, a key issue in the testing of new TB vaccines

[29].
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