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Understanding oxygen evolution mechanisms
by tracking charge flow at the atomic level

Changming Zhao,1,2,5 Hao Tian,1,3,5 Zhigang Zou,1 Hu Xu,2,* and Shuk-Yin Tong1,2,4,5,6,*

SUMMARY

Current classifications of oxygen evolution catalysts are based on energy levels of
the clean catalysts. It is generally asserted that a LOM-catalyst can only follow
LOM chemistry in each electron transfer step and that there can be no mixing be-
tween AEMand LOM stepswithout an external trigger.We use ab initio theory to
track the charge flow of the water-on-catalyst system and show that the position
of water orbitals is pivotal in determiningwhether an electron transfer step is wa-
ter dominated oxidation (WDO), lattice-oxygen dominated oxidation (LoDO), or
metal dominated oxidation (MDO).Microscopic photo-catalytic pathways of TiO2

(110), amaterial whose lattice oxygen bands lie above themetal bands, show that
viable OER pathways follow either all AEM steps or mixed AEM-LOM steps. The
results provide a correct description of redox chemistries at the atomic level and
advance our understanding of how water-splitting catalysts produce desorbed
oxygen.

INTRODUCTION

Understanding the oxygen evolutionmechanism is crucial to rational design of active catalysts that can split

water efficiently to obtain green hydrogen fuel. Two milestones have been achieved in more than a decade

of research. The first milestone is reached by Nørskov et al.1,2 who established that oxygen evolution reac-

tion (OER) involves removing four electrons from a water-on-catalyst system. The electron removal may be

achieved by action of photo-holes (as in photocatalysis of water) or by an external battery connected to the

system with a proper voltage (as in electrolysis of water). After four electrons are removed, an oxygenmole-

cule desorbs from the surface. The early works of Nørskov et al. mainly focused on rutile oxides2,3 and pe-

rovskites4 where the desorbed oxygen molecule is made up of Ow1-Ow2. Here, Ow1 and Ow2 denote the

oxygen atoms from the first and second water respectively. A second milestone was reached recently

when anionic activity of lattice oxygen was proposed with experimental observations and theoretical expla-

nations.5–7 Grimaud et al.8 further used oxide catalysts with O18 isotopes and detected lattice oxygen in the

desorbed oxygen molecule (i.e., Ow1-Olattice). Since then, numerous works have focused on finding OER

mechanisms at the atomic level9–12 to explain the measured catalytic performance of different cata-

lysts.13–15 Although OER pathways at the microscopic level with reaction barriers of intermediates, etc.,

are still largely missing, there seems to be general consensus on a few points. The first general view is

that OER pathways follow one of two routes: either an adsorbate evolution mechanism (AEM) or a lattice

oxygen mechanism (LOM).9,11 The second view is that a metal-oxide catalyst can be classified according to

whether its metal bands are above (i.e., nearer to the Fermi level) or below its lattice oxygen bands. If the

metal bands are above, then the catalyst is classified as an AEM-catalyst. Conversely, if lattice oxygen

bands are above, then the catalyst is a LOM-catalyst.6,16 A third generally accepted view is that an AEM-

catalyst can only follow the AEM route in each of its four electron transfer steps, whereas a LOM-catalyst

can only follow the LOM route in each of its four electron transfer steps. There can be no mixing between

AEM and LOM steps without the action of an external trigger.16

In this work, we investigate the validity of the above views using ab initio theory. Our calculations differ from

previous studies in a number of aspects. The Hamiltonian used is the spin-polarized density functional the-

ory with HSE06 hybrid functionals.17,18 This Hamiltonian provides more accurate electronic levels than or-

dinary (semi)-local DFT functionals employed in previous studies.19–22 Partial density of states (PDOS) pro-

vides information of water, lattice oxygen and metal derived orbitals relative to the Fermi level. However,

PDOS does not inform how much charge is removed from a particular atom because: (1) PDOS is informa-

tion in reciprocal space, and (2) the sum of PDOS does not add up to the total DOS of the system. To
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determine quantitatively how much charge is removed from each atom, we use the Bader charge

method.23,24 The detailed movement of charge taken from or given to each atom at each step is extremely

important to differentiating between AEM and LOM steps. To our knowledge, no previous work has pre-

sented Bader analyses to track down the source of charge transfers, to determine howmuch charge is taken

from water, lattice oxygen or metal atoms respectively.

For illustration, we showOER of photocatalysis on rutile TiO2. Rutile TiO2 is the benchmark catalyst used to

demonstrate fundamental processes of photocatalysis because it is abundant, inert, non-toxic and photo-

stable.25 On TiO2 (110), the electronic states at (near) the Fermi level are dominated by lattice oxygen or-

bitals.26 Thus, it is a LOM-catalyst according to consensus two.6,16 Figure 1 shows its PDOS near the Fermi

level. We choose two well-established pathways: the first is the one proposed by Nørskov et al.,1,2,4

whereas the second pathway is proposed by Wang et al.27 The results and implications differ substantially

from the current viewpoints. They are presented in the next section. Discussions then follow.

RESULTS

Pathway 1: A LOM-catalyst with four AEM steps

Photocatalysis of water on TiO2 (110) starts with an initial state (IS) comprising the TiO2 (110) slab and two

unattached water molecules in the ambient (see Computational Method). The first water adsorbs at an on-

top Ti surface site (a 5-fold coordination site Ti5) and the adsorption is slightly exothermic. The first photo-

hole arrives and removes an electron from the system and sheds a proton from the adsorbedwater, forming

structure S1. A second hole arrives and removes a second electron and sheds a second proton to form

structure S2. The second free water adsorbs at a neighboring Ti5 site. A third hole arrives and removes a

third electron and sheds a proton from the second water, leaving an Ow2-H dimer on the neighboring

Ti5. The dimer hops to form a Ti5-Ow1-Ow2-H chain (structure S3). A fourth hole arrives to remove a fourth

electron and shed the proton from the chain. An oxygen molecule, comprising Ow1-Ow2, desorbs from the

system and the final state (FS) is arrived. The four electron transfer steps can be represented by the

following four equations:

1) * + H2O / *OH + H+ + e-

2) *OH / *O + H+ + e-

3) *O + H2O / *OOH + H+ + e-

4) *OOH / * + O2 + H+ + e-

Two new water molecules from the ambient arrive and the process repeats, releasing more Ow1-Ow2 mol-

ecules. The four electron removal steps and intermediates formed are shown schematically in Figure 2, up-

per panel.

Figure 1. PDOS of TiO2 (110) slab

The vertical dotted line marks the Fermi level. The

PDOS is dominated by lattice oxygen orbitals, making

TiO2 a LOM-catalyst.
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Figure 2. Pathway 1

Upper panel: Schematic diagrams with metal: blue, oxygen: red, hydrogen: white. Middle panel: PDOS of adsorbed

water, lattice oxygen and metal for structures S1, S2 and S3. The vertical dotted line marks the Fermi level. Because at

most only two water molecules are adsorbed, for easier visualization of the water PDOS, the metal and lattice oxygen

PDOS include only 16 Ti and 32 lattice oxygen atoms in the ‘‘top layer’’. However, the full slab is used everywhere else, in

calculations of Bader charge, etc. Lower panel: Bader analysis of net charge, in units of e = �1.6 3 10�19 C, collectively

taken from or taken by water, lattice oxygen or metal atoms by action of each photo-hole. The charge at the Ti5 site where

the surface chain is anchored is indicated in the upper panel schematic diagram for states IS, S1, S2, S3 and FS. It is worth

noting that the charge fluctuation is of the order 0.04e or less.
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Pathway 1 essentially follows the four-step process outlined by Nørskov et al.1,2,4 where each of the four

photo-holes removes an electron with charge e =�1.63 10�19 C from the system. At the time of each elec-

tron removal, a proton is released, in a concerted electron-proton transfer (CEPT) process.28,29 We show in

Figure 2, middle panel, the PDOS of water, lattice oxygen and metal for structures S1, S2 and S3. Although

PDOS diagrams show substantial presence of water and lattice oxygen orbitals at (near) the Fermi level, the

reciprocal space distributions do not provide information on charge movement at individual atoms in the

system. Bader analysis provides such real space information and the results are shown in the lower panel of

Figure 2 (see also Computational Method and Supplementary Information). For example, the first photo-

hole takes a total of 0.89e from the first water molecule and very small amounts (a net total of 0.1e and

0.01e) respectively from lattice oxygen and metal atoms in the catalyst. Similar charge analyses from

each of the three sources-water, lattice oxygen and metal atoms-are shown for the subsequent three elec-

tron transfers in Figure 2 lower panel. Because of orbital hybridization, the charge comes frommany atoms

of each source. For each step, water, lattice oxygen, or metal atoms may experience a net outflow (oxida-

tion) or inflow (reduction) of electrons. Collectively, the two water molecules are oxidized at each of the four

steps; lattice oxygen atoms are collectively oxidized at steps 1, 2 and 4, reduced at step 3; whereas metal

atoms are collectively oxidized at steps 1 and 3, reduced at steps 2 and 4. The order of redox depends

sensitively on the structure and composition of the intermediates. After the four steps, the two water expe-

rience a net outflow of 4e, whereas both lattice oxygen and metal atoms experience zero charge change. If

we define an electron removal step as either being water-dominated oxidation (WDO), lattice-oxygen

dominated oxidation (LoDO) or metal-dominated oxidation (MDO), depending on from which source

the majority of charge is removed, then pathway 1 is made up of four WDO steps. According to the

consensus viewpoint, pathway 1 should be classified as adsorbate evolution mechanism (AEM)3,8,16

because all four electrons are removed from water (adsorbate) and none from lattice oxygen or metal

atoms. However, TiO2 is a LOM-catalyst according to current viewpoint9,16 and this creates a contradiction.

Therefore, the current viewpoint needs revision.We shall provide suggestions to fix the contradiction in the

Discussion section.

Pathway 2: A LOM-catalyst with mixed AEM and LOM steps

The second pathway, first suggested by Wang et al.,27 starts with the same initial state (IS) and structure S1

of pathway 1. Then, the Ow1-H dimer on Ti5 moves to interact with a nearby bridge oxygen (Obr) and when a

second photo-hole arrives to remove an electron from the system, a (Ti6)2-Obr-Ow1-H chain is formed (struc-

ture S4, Figure 3). A third hole arrives, removes an electron and sheds the chain of its proton. This results in

the upright (Ti6)2-Obr-Ow1 structure of S5. A fourth hole arrives to remove an electron and an oxygen mole-

cule, comprising a lattice oxygen and a water oxygen, desorbs from the surface, thereby creating a vacancy

at the bridge site (S6). A second water fills the vacancy and the oxygen of the second water forms bonds

with Ti6 and releases its two protons. After shedding two protons, the final state (FS) is reached, except

now, the oxygen of the second water has replaced the desorbed lattice Obr. Two new water molecules

arrive and the OER process repeats. The four electron transfer steps can be represented by the following

four equations (here, *(Obr) means that the OH adsorbs at a bridge oxygen site, and *(Vac) means that the

slab has a vacancy at a bridge oxygen site):

5) * + H2O / *OH + H+ + e-

6) *OH / *(Obr)OH + e-

7) *(Obr)OH / *(Obr)O + H+ + e-

8) *(Obr)O / *(Vac) + O2 + e-

9) *(Vac) + H2O / * + 2H+

Again, we turn to Bader analysis for real space information on chargemovements (lower panel, Figure 3). As

in pathway 1, the first photo-hole takes 0.89e from the first water molecule and a net of 0.1e, 0.01e respec-

tively from lattice oxygen and metal atoms. The second photo-hole takes a net of 0.67e from lattice oxygen

atoms, and lesser amounts 0.17e and 0.16e respectively from water and metal atoms. Thus, this step is lat-

tice oxygen dominated oxidation (LoDO). The third photo-hole takes 0.87e from the first water molecule
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and a net of 0.07e, 0.06e respectively from lattice oxygen and metal atoms. This is a WDO step. The fourth

photo-hole takes a net of 0.93e from lattice oxygen atoms, 0.07e from the first water and no charge from

metal atoms. This step is LoDO. After four photo-holes, an aggregate of 2.0e is taken from the first water

molecule, 1.77e from lattice oxygen atoms and 0.23e from metal atoms. The Obr atom connected to Ow1

Figure 3. Pathway 2

Upper panel: Schematic diagrams with metal: blue, oxygen: red, hydrogen: white. Middle panel: PDOS of adsorbed

water, lattice oxygen and metal for structures S4, S5 and S6. The vertical dotted line marks the Fermi level. Because only

one water molecule is adsorbed, for easier visualization of the water PDOS, the metal and lattice oxygen PDOS include

only 16 Ti and 32 lattice oxygen atoms in the ‘‘top layer’’. However, the full slab is used everywhere else, in calculations of

Bader charge, etc. Lower panel: Bader analysis of net charge, in units of e = �1.6 3 10�19 C, collectively taken from or

taken by water, lattice oxygen or metal atoms by action of each photo-hole.
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has 6e remaining, so does the Ow1 atom. The pair desorb from the lattice, leaving a vacancy. A second wa-

ter fills the vacancy, with Ow2 carrying 6.93e to fill the vacancy and become a new bridge atom. The second

water also gives 0.84e to the rest of the lattice oxygen atoms and 0.23e to the metal atoms. With that, the

charge in the catalyst is restored. In this pathway, water, lattice oxygen and metal atoms are collectively

oxidized at each step. The pathway switches between WDO and LoDO steps, following WDO, LoDO,

WDO and LoDO.

In Figure 4, we show a schematic diagram of state S1 with numbers identifying the atoms shown in the sup-

plementary information.

DISCUSSION

To better understand redox mechanisms in OER pathways, it is essential to gain charge flow information at

the atomic level. From our analysis, we make the following observations and suggestions.

1) For metal-oxide catalysts, each e removal may be either water dominated (WDO), lattice oxygen

dominated (LoDO), or metal dominated (MDO), depending on which of the three sources is most

oxidized.

2) For goodOER catalysts, water should occur as a lightly adsorbed surface impurity.30 Thus, the water-

derived orbitals would occupy energy levels at (near) the Fermi level. For metal-oxide catalysts

whose lattice oxygen bands are substantially above the metal bands, the levels at (near) the Fermi

level would be either water dominated or water-and-lattice-oxygen co-dominated. In the former

case, the four steps of OER would followWDO. In the latter case, the four stepsmay be either entirely

WDO or a mixture of WDO and LoDO, depending on the intermediates formed.

3) For metal-oxide catalysts whose metal bands are substantially above the lattice oxygen bands, the

levels at (near) the Fermi level would be water dominated or water-and-metal co-dominated. In the

former case, the four steps of OER would follow WDO. In the latter case, the four steps would be

either entirely WDO or a mixture of WDO and MDO. However, catalysts that follow MDO steps

are rare and tend to be unstable because strong metal oxidation would lead to dissolution of the

catalyst.

4) It is inappropriate to classify clean catalysts without considering the energy levels of water-derived

orbitals.

In the literature, we find many schematic diagrams of OER pathways where the metal atoms take in or give

out more than one electronic charge.6,8,16 Such redox processes are impossible for catalysts whose

metal bands are below the oxygen bands. An example is TiO2, where charge flow into or out of metal atoms

is minimal at all steps for either pathway 1 or 2. Bader charge analysis provides real space charge flow in-

formation. Its use reveals precise information of redox effects. This information greatly aids the design of

better water splitting catalysts. We suggest that any schematic diagram of pathway steps should be accom-

panied by Bader charge analysis, to lend credibility to the charge flow charts.

Limitations of the study

The charge on each atom of the intermediates is calculated by ab initio theory for the four steps in photo-

catalysis. The zero-order assumption is that the charge on similar intermediates of electrocatalysis is

the same.

Figure 4. Schematic diagram of the S1 state, some atoms are identified with numbers

Blue: Ti, red: oxygen, white: hydrogen.
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Data and code availability
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lead contact upon request

METHOD DETAILS

(a) We perform spin-polarized DFT calculations with HSE06 functionals17,18,31–33 because the Hamilto-

nian describes better the polaronic hole within the O p shell.19–21 The electron-ion interaction is

described by the projected augmented wave (PAW) method34 with 3d24s2 and 2s22p4 treated as

valence states for Ti and O, respectively. The rutile TiO2 (110) slab is modeled using a (432) two-

dimensional supercell with four Ti layers and rectangular surface cell of 11.808 3 13.013 Å2. There

are 64 Ti atoms and 128 lattice O atoms in the slab. The slabs are separated by a�12 Å vacuum. We

use a plane wave cutoff energy of 450 eV, and k sampling is restricted to the G point. The structures

are fully relaxed at each step with forces converged to % 0.05 eV/Å on each atom. Charge removal

from the system is by the jelliummethod.35 The 4e removal steps involve the adsorption of two water

molecules. Previous work36 have shown that water adsorbs molecularly at the Ti5 site.

(b) The charge of oxygen and hydrogen in water: The neutral oxygen atom carries 6e (2s22p4) in its

valence band. In a water molecule, DFT calculates that each hydrogen gives 0.62e to oxygen

(ionicity = 62.0%), resulting in each Ow carrying 7.24e while each H carrying 0.38e.

(c) The charge of titanium and lattice oxygen in the TiO2 (110) slab: The neutral Ti atom carries 4e

(3d24s2) in its valence band. In the TiO2 (110) slab, DFT calculates that each bulk Ti atom gives a total

of 2.1e to its six lattice oxygen neighbors (ionicity = 52.5%), resulting in each Ti carrying an average

charge of 1.9e. Each bulk lattice O atom receives a total of 1.05e from its three Ti neighbors, result-

ing in each O carrying an average charge of 7.05e. The actual amount of charge carried by each

atom in the slab varies and is shown in the charge distribution tables (supplementary information).

(d) Charge flow at metal atoms in pathway 1: On TiO2 (110), where the metal bands are well below the

Fermi level, there is little chargemovement into or out of metal atoms in the four steps. For example,

the 5-fold surface metal atom Ti5 carries 1.92e before water adsorption (Figure 2 upper panel, the IS

state). Upon water adsorption with the formation of an OH dimer on Ti5 (the S1 state),the charge on

Ti5 becomes 1.88e. Thus, only 0.04e has flowed out of the anchoring metal atom, a totally insignif-

icant amount.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

VASP G. Kresse et al. https://www.vasp.at/

VESTA Koichi et al. http://jp-minerals.org/vesta/en/
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