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Abstract

Our research aims to assess the performance of a new generation of consumer activity

trackers (Fitbit Charge 4TM: FBC) to measure sleep variables and sleep stage classifications

in patients with chronic insomnia, compared to polysomnography (PSG) and a widely used

actigraph (Actiwatch Spectrum Pro: AWS). We recruited 37 participants, all diagnosed with

chronic insomnia disorder, for one night of sleep monitoring in a sleep laboratory using

PSG, AWS, and FBC. Epoch-by-epoch analysis along with Bland–Altman plots was used to

evaluate FBC and AWS against PSG for sleep-wake detection and sleep variables: total

sleep time (TST), sleep efficiency (SE), waking after sleep onset (WASO), and sleep onset

latency (SOL). FBC sleep stage classification of light sleep (LS), deep sleep (DS), and rapid

eye movement (REM) was also compared to that of PSG. When compared with PSG, FBC

notably underestimated DS (-41.4, p < 0.0001) and SE (-4.9%, p = 0.0016), while remark-

ably overestimating LS (37.7, p = 0.0012). However, the TST, WASO, and SOL assessed

by FBC presented no significant difference from that assessed by PSG. Compared with

PSG, AWS and FBC showed great accuracy (86.9% vs. 86.5%) and sensitivity (detecting

sleep; 92.6% vs. 89.9%), but comparatively poor specificity (detecting wake; 35.7% vs.

62.2%). Both devices showed better accuracy in assessing sleep than wakefulness, with

the same sensitivity but statistically different specificity. FBC supplied equivalent parame-

ters estimation as AWS in detecting sleep variables except for SE. This research shows that

FBC cannot replace PSG thoroughly in the quantification of sleep variables and classifica-

tion of sleep stages in Chinese patients with chronic insomnia; however, the user-friendly

and low-cost wearables do show some comparable functions. Whether FBC can serve as a

substitute for actigraphy and PSG in patients with chronic insomnia needs further

investigation.
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Introduction

Adults (over 18 years) should sleep at least 7 hours in the evening to maintain the best health

status [1]. Epidemiological studies’ results demonstrate that lack of sleep is linked to multiple

diseases, risk of accidents, and increased mortality [2–5]. Moreover, sleep disorders have

become one of the most important social issues in the United States [6], with 35% of adults

sleeping less than 7 hours every evening, 30% sleeping less than 6 hours, and more than 40%

experiencing lack of sleep due to certain types of jobs [7]. Chronic insomnia is the most com-

monly reported sleep disorder and more than 15% of Chinese adults have difficulty falling

asleep and maintaining sleep [8]. Despite the association between insufficient sleep and

adverse health outcomes, most medical workers are unable to successfully identify sleep prob-

lems. It is estimated that unrecognized sleep problems are more common and harmful than

recognized sleep problems [9].

Traditional methods for measuring sleep have some disadvantages. Polysomnography

(PSG), for example, is considered the “gold standard” of sleep measurement owing to its objec-

tivity and accuracy in measuring sleep variables [10]. However, being an expensive technique,

PSG can only be carried out in an unfamiliar sleep environment, such as a sleep center, and

requires medical assistance for its application and the interpretation of its results. This also

means that it can typically only be implemented for one or two nights [11]. Furthermore,

although sleep diaries are inexpensive and can be conducted outside the sleep center, they still

have problems such as subjectivity and recall bias [11]. Actigraphy, the measurement of sleep

and wakefulness using accelerometer technology according to activity level, can offer objective

sleep variables for up to 60 days [12, 13] and support the diagnosis and monitoring of sleep

problems [14]. Validation studies in infants, children, and adolescents have shown that while

actigraphy is sensitive in assessing actual sleep, it over- or underestimates waking after sleep

onset (WASO), thus providing a poor estimate of sleep disruption when compared to PSG

[15–17]. Even though actigraphy is less expensive and more reflective of natural sleep patterns

than PSG, it still needs professional researchers to extract and analyze data from a unique soft-

ware [18].

Although wearables have been in the consumer market for just over ten years, they have

become almost ubiquitous in modern society due to scientific and technological advance-

ments. According to data from the International Data Corporation (IDC), 172.2 million units

of wearable devices were shipped globally in 2018, with an increase of 49.2% year-on-year. It is

expected that shipments will increase to 27.9 billion units in 2023 [19]. In view of their wide

range of functions, it is crucial to determine wearables’ most relevant indicators in the science

of sleep and circadian rhythms. The rise of consumer wearables has offered another low-cost,

good-looking, and user-friendly choice to assess sleep-wake patterns, which would be helpful

considering clinical and research needs [19–21]. In addition to being low cost, these devices

generally utilize consumer-oriented cloud computing platforms and/or mobile technologies

that allow consumers to collect and retrieve data continuously for a certain period. Although

there has been little study measuring sleep parameters by wearables in participants with sleep

disorders, the enormous potential of these devices is acquiring more and more recognition

among health and clinical studies. Moreover, these wearable devices have been used as auxil-

iary tools to diagnose and treat sleep disorders [22].

As one of the most promising wearables, the accurateness of Fitbit Charge 4TM has not been

proved among Chinese participants with chronic insomnia. Previous validation studies com-

pared various types of Fitbit devices, including Fitbit Classic [23], Fitbit Flex [24], Fitbit Ultra

[18], Fitbit Charge 2 [21], and Fitbit Charge 3 [25] with PSG. The outcomes of these studies

varied according to the model of commercial activity trackers, the demographic and clinical
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state of the participants, study design, and data algorithm. It is thus necessary to implement

utility research on clinical populations with sleep problems [23]. Although the majority of the

published research was conducted on young volunteers, it appears that none of them focused

on Chinese patients with chronic insomnia.

Therefore, the purpose of our research was to: (a) detect differences in sleep-wake detection

and sleep variables (including total sleep time, TST; sleep efficiency, SE; sleep onset latency,

SOL; and WASO) between the Actiwatch Spectrum Pro (AWS) and the Fitbit Charge 4TM

(FBC) against PSG; and (b) examine whether similarities in sleep staging exist between FBC

and PSG.

Materials and methods

Design and sample

Our research (registration ID: ChiCTR2100051429) was certified by the Research Ethics Com-

mittee of the First Affiliated Hospital of Zhengzhou University (approval number: 2021-KY-

0876-001). All participants signed written informed consent forms before the sleep monitoring

process in the sleep laboratory. The Standards for the Reporting of Diagnostic Accuracy

(STARD) guidelines were followed where applicable [26].

Participants were recruited between October 2021 and February 2022 and included in the

sample if they were: (a) between the ages of 18 and 60 years; (b) diagnosed with chronic insom-

nia, according to the DSM-5 criteria, for at least 3 months; (c) assessed as experiencing sleep

disturbance according to the Pittsburgh Sleep Quality Index (PSQI), with a score above 8; and

(d) receiving no treatment for the disorder during the preceding half month. Participants were

excluded if they: (a) had suffered from mental illness; (b) had unhealed sleep disorders except

for chronic insomnia, such as obstructive sleep apnea (OSA) and rapid eye movement sleep

behavior disorder (RBD); (c) had other kinds of diseases (such as Parkinson’s disease or

dementia), which could impact their capacity to understand and deal with information; (d)

worked night shift in the preceding half year; and (e) were gestating or lactating women.

Clinical questionnaires

All the participants took the Chinese version of PSQI, the Insomnia Severity Index (ISI), and a

self-designed questionnaire including general demographic information and sleep habits, such

as age, gender, height, weight, time to sleep and wake up, and history of diseases [27].

PSG, FBC, and AWS

PSG measures. The participants were requested to arrive at the sleep center between

18:00 and 19:00 for their sleep monitoring. Standard overnight PSG recordings were carried

out in the sleep laboratory with the computerized sleep recorder EMBLA S4500 (Embla Sys-

tem, Kanata, Ontario, Canada). An electroencephalography (EEG; F3/F4, C3/C4, O1/O2),

electrooculogram (EOG-L, EOG-R), submental electromyogram (EMG), leg electromyogram

(EMG-L, EMG-R), and left and right electrocardiograms (ECG-L, ECG-R) were obtained and

recorded. Nasal pressure, abdominal breathing movements, and blood oxygen saturation were

recorded to identify respiratory events. Sleep periods were set according to the times the lights

were turned on and off.

Actigraphy. Participants wore an Actiwatch Spectrum Pro (Philips Respironics Inc., Pitts-

burgh, Pennsylvania, United States) on their non-dominant hand for a research-grade actigra-

phy. Data for AWS were collected in 30-second epochs using the medium threshold
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(value = 40), with five-minute immobility time for sleep onset/offset. This setup is proved to

generate the best outcomes when compared with PSG [28].

Fitbit Charge 4. Each participant wore a consumer-grade activity tracker, the Fitbit

Charge 4TM (Fitbit, Inc.; San Francisco, California, United States), on their non-dominant

hand while the PSG was being performed. This device tracks motion, heart rate (HR), and

heart rate variability (HRV) via accelerometers and optical plethysmography in 30-second

epochs. Furthermore, the “normal” setting was chosen as the default setting to meet most con-

sumers’ preferences.

Data collection. The times at which the lights were turned on and off for PSG were con-

sidered the beginning and ending points for AWS and FBC [18]. Sleep stages were automati-

cally scored in 30-second epochs using RemLogic 3.4.1 (Embla Systems, Kanata, Ontario,

Canada) and visually reviewed by a trained technician (intra-rater reliability, 94.8%) following

the criteria set by the AASM Scoring Manual Version 2.2 to ensure accuracy of the staging

[29]. PSG registered five stages of sleep: awake, stage N1, N2, N3, and rapid eye movement

(REM) sleep. Owing to the difficulty in distinguishing between the N1 and N2 sleep stages for

Fitbit, a summation of N1 and N2 sleep stages in PSG was categorized as “light sleep” and N3

as “deep sleep" to compare with FBC. Data from AWS were processed using Actiware version

6.6.7 (Philips Respironics Inc., Pittsburgh, Pennsylvania, United States). Automatically ana-

lyzed data were refined according to lights off and on times from PSG. The FBC sleep informa-

tion was extracted from the Fitbit web interface once the device synchronized with the

interface via the Bluetooth capabilities of a USB-connected dongle. As soon as data synchroni-

zation was complete, the start and end time of the sleep cycles were manually revised to be con-

sistent with that of PSG. FBC classifies epochs into awake or one of three sleep stages: light

sleep (LS), deep sleep (DS), or REM sleep. Sleep stage was manually collected from summary

figures on the web interface.

The sleep variables were TST (min), SE (%), SOL (min), WASO (min), stage N1 (min),

stage N2 (min), stage N3 (min), and REM (min). In order to compare with PSG stage classifi-

cations, the sum of N1 and N2 assessed by FBC was assumed to represent LS (min) and N3,

DS (min). All the authors earnestly protected the participants’ privacy and none of the authors

had access to information that could identify individual participants during or after data

collection.

Data analysis. All statistical analyses were conducted using SPSS version 22.0 software

(IBM Corp., Armonk, New York, United States) and MedCalc version 12.6 (MedCalc Software

Ltd, Ostend, Belgium). Statistical significance was established at p< 0.05, with two-sided tests

for every sleep variable. We calculated the mean and standard deviation(SD) of each sleep vari-

able provided by the PSG, AWS, and FBC devices.

The Bland–Altman technique was used to plot the difference between FBC and AWS

against the PSG measurement for every parameter, including TST, SOL, WASO, and SE [30].

The mean difference and 95% confidence interval are demonstrated [30]. A positive mean dif-

ference shows that a device overestimates the sleep variables when comparing them to the gold

standard. A negative bias demonstrates that the variable is underestimated. A significant value

indicates that the difference in scores between two devices changes according to the level of

the measured sleep variable.

To quantify the agreement in sleep-wake categorization between AWS, FBC, and PSG,

epoch-by-epoch(EBE) analyses were calculated for deriving three agreement measures: accu-

racy (ability to correctly classify epochs), sensitivity (ability to detect sleep), and specificity

(ability to detect wakefulness) for each device setting (Table 1) [31]. Epoch-by-epoch compari-

sons were executed on pairwise matching. Sleep data for 8.1% (n = 3) of FBC were unavailable

and were excluded from pairwise analyses. In order to assess potential biases in PSG, FBC, and
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AWS data synchronization, we calculated EBE specificity by sliding the epoch alignment up to

90s (1–3 epochs forward and backward).

Results

A total of 37 patients with chronic insomnia were chosen to participate in this study, including

20 women and 17 men (mean age = 48.8 ± 2.1). Their PSQI scores (mean score = 11.7 ± 2.8)

and ISI scores (mean score = 19.8 ± 3.2) indicated mild to moderate sleep disturbance. The

overall results, including sleep variables, are summarized in Table 2.

FBC: Fitbit Charge 4TM; AWS: Actiwatch Spectrum Pro; PSG: Polysomnography

Bland–Altman mean difference analysis

The Bland–Altman technique was chosen to plot the difference between AWS and FBC against

the gold standard PSG measurement for each sleep variable (Table 3). When the AWS values

were compared to PSG, non-significant overestimations of TST (2.3, p = 0.7549), as well as non-

significant underestimations of SE (-1.5%, p = 0.2572), SOL (-1.0, p = 0.6907), and WASO (-14.

8, p = 0.0509), were identified. Corresponding Bland–Altman plots are shown below (Fig 1).

Direct comparison of FBC to AWS showcased remarkably lower assessment of SE (-3.6%,

p = 0.0008) and TST (-13.8, p = 0.0112) for FBC, as well as comparably higher assessment of

WASO (19.2, p = 0.0001). FBC and AWS demonstrated similar assessments of SOL (-0.8,

p = 0.7141) (see Fig 3).

Sensitivity, specificity, and accuracy

When compared epoch-by-epoch against PSG, AWS showed good sensitivity and accuracy,

with poor specificity. Furthermore, FBC demonstrated a relatively better sensitivity and

Table 2. Sleep variables of PSG, AWS, and FBC.

PSG AWS FBC

Sleep variables

TST(min) 421.9±64.8 424.2±65.6 412.6±56.1

SE(%) 90.9±8.6 89.4±4.8 85.5±5.4

WASO(min) 42.7±44.5 27.8±17.3 47.6±23.5

SOL(min) 12.2±12.7 11.2±12.7 10.9±9.6

LS(min) 221.3±57.2 - 259.4±48.6

DS(min) 114.4±35.9 - 73.0±26.5

REM(min) 90.5±29.1 - 85.8±29.3

Sleep variables include: total sleep time (TST; min), sleep efficiency (SE; percent), sleep onset latency (SOL; min),

wake after sleep onset (WASO; min), sleep stages N1 + N2 (LS; min), stage N3 (DS; min), and rapid eye movement

sleep duration (REM; min)

https://doi.org/10.1371/journal.pone.0275287.t002

Table 1. Calculation formula for sensitivity, specificity, and accuracy.

PSG

AWS/FBC Sleep Wake Total

Sleep True Sleep(TS) False Sleep(FS) TS+FS

Wake False Wake(FW) True Wake(TW) FW+TW

Total TS+FW FS+TW TS+FS+TW+FW

https://doi.org/10.1371/journal.pone.0275287.t001

PLOS ONE Assessing sleep in chronic insomnia patients using Fitbit Charge 4

PLOS ONE | https://doi.org/10.1371/journal.pone.0275287 October 18, 2022 5 / 14

https://doi.org/10.1371/journal.pone.0275287.t002
https://doi.org/10.1371/journal.pone.0275287.t001
https://doi.org/10.1371/journal.pone.0275287


Table 3. Bias, SD, upper and lower agreement limits for Bland–Altman plots.

Variable Device Mean bias Lower limit of agreement Upper limit of agreement p
TST(min) AWS vs. PSG 2.3 -83.5 88.0 0.7549

FBC vs. PSG -11.0 -99.3 77.2 0.1620

AWS vs. FBC -13.8 -72.4 44.8 0.0112�

SE(%) AWS vs. PSG -1.5 -16.6 13.7 0.2572

FBC vs. PSG -4.9 -21.2 11.4 0.0016�

AWS vs. FBC -3.6 -14.6 7.5 0.0008�

SOL(min) AWS vs. PSG -1.0 -30.3 28.3 0.6907

FBC vs. PSG -1.8 -22.0 18.4 0.2134

AWS vs. FBC -0.8 -25.4 23.8 0.7141

WASO(min) AWS vs. PSG -14.8 -102.4 72.7 0.0509

FBC vs. PSG 2.8 -66.6 72.3 0.6426

AWS vs. FBC 19.2 -31.4 69.7 0.0001�

LS(min) FBC vs. PSG 37.7 -84.2 159.6 0.0012�

DS(min) FBC vs. PSG -41.4 -122.6 39.8 <0.0001�

REM(min) FBC vs. PSG -4.7 -72.4 63.1 0.4371

Notes: �indicate statistically significant (p< 0.05).

When compared to PSG, FBC demonstrated a visible overestimation of LS (37.69, p = 0.0012), while significantly underestimating DS (-41.38, p< 0.0001) and SE

(-4.9%, p = 0.0016). Non-significant overestimations of WASO (2.8, p = 0.6426), as well as non-significant underestimations of TST (-11.0, p = 0.1620), SOL (-1.8,

p = 0.2134), and REM (-4.7, p = 0.4371), were also identified (see Fig 2).

https://doi.org/10.1371/journal.pone.0275287.t003

Fig 1. Bland–Altman plot demonstrating mean bias, and upper and lower limits of agreement between PSG and

AWS for all sleep variables (TST, SE, SOL, and WASO).

https://doi.org/10.1371/journal.pone.0275287.g001
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Fig 2. Bland–Altman plot demonstrating mean bias, and upper and lower limits of agreement between PSG and FBC for

all sleep variables (TST, SE, SOL, WASO, LS, DS, and REM).

https://doi.org/10.1371/journal.pone.0275287.g002
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accuracy, with moderate specificity. The results of the sensitivity, specificity, and accuracy are

presented in Table 4.

Discussion

It appears that our study is the first investigation to explore the accuracy of new generation fit-

ness-trackers’ (specifically FBC) use in Chinese patients with chronic insomnia. This disorder

can remarkably influence both clinical care and research in the field of sleep medicine. In clini-

cal practice, it is becoming increasingly popular to obtain sleep information from commercial

activity trackers [18]. Thus, expounding the wearables’ disadvantages and advantages is

increasingly essential in the field of sleep disorder diagnosis and treatment. Additionally, clari-

fying these devices’ potential to accurately estimate sleep is essential in interpreting longitudi-

nal, field-based assessments of circadian rhythm in patients with sleep problems who may use

these devices. Our research results show that FBC displays a similar performance in quantify-

ing sleep variables and classifying sleep stages in chronic insomnia when compared to the gold

standard of PSG. Although the outcomes are exciting, and indirectly enable a more accurate

measuring of sleep in a larger sample size using consumer activity trackers, several limitations

exist that need to be recognized.

Fig 3. Bland–Altman plot demonstrating mean bias, and upper and lower limits of agreement between AWS and

FBC for all sleep variables (TST, SE, SOL, and WASO).

https://doi.org/10.1371/journal.pone.0275287.g003

Table 4. Sensitivity, specificity, and accuracy in an epoch-by-epoch comparison of FBC and AWS with PSG.

Comparison Sensitivity(%±SD) Specificity(%±SD) Accuracy(%±SD)

AWS vs. PSG 92.6±15.7 35.7±20.1 86.9±10.1

FBC vs. PSG 89.9±4.0 62.2±26.2 86.5±5.4

FBC vs. AWS 89.1±4.8 75.7±23.3 87.9±5.3

https://doi.org/10.1371/journal.pone.0275287.t004
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Consumer-grade Fitbit has caught up with research-grade actigraph

FBC is among the new generation of wearables that apply a multisensory technology to distin-

guish between sleep stages. In the current study, the primary outcomes demonstrate that FBC,

in comparison to PSG, remarkably overestimates LS, while underestimating SE and DS. More-

over, FBC demonstrates no bias in the assessment of TST, WASO, SOL, or REM sleep relative

to PSG and fully tracks nightly sleep cycles. However, the data about the accuracy of FBC in

assessing sleep variables are conflicting. No significant differences were found between FBC

and the gold standard PSG in assessing TST, WASO, and SOL. This is inconsistent with other

studies’ results [32, 33]. This may be due to the FBC high data loss as three participants’ FBC

data were lost. This corresponds to a recent longitudinal survey that showed high rates of data

loss for the Fitbit [34]. Missing data were caused by patient factors (such as patients taking off

the FBC during the night) or equipment failure (such as FBC recording ceased due to battery

malfunction), which probably reduces the reliability of the FBC. However, when explaining

the capability of FBC compared to different Fitbit models and other kinds of consumer activity

trackers, we should not fully exclude certain influencing factors. For example, the participants

included in the study or the type of study design and methodology could influence the consis-

tency of results. Although no statistical difference was found, the absolute biases we observed

for TST (approximately 11 min), SE (approximately 4.9%), and WASO (approximately 9 min)

were in the lower tail of bias distributions shown by motion-based Fitbit devices (i.e., 7–67

min for TST, 2–15% for SE, and 6–44 min for WASO) [35]. These outcomes demonstrate that

measuring TST and SE in normal populations with newer models of Fitbit devices tends to

reduce the degree of overestimation. Our research results are consistent with the trend

highlighted for consumer activity trackers’ performance. This trend suggests increasing accu-

racy for the newer generation of consumer activity trackers [35, 36], possibly due to the imple-

mentation of a multi-sensor approach (integration of motion and photoplethysmographic

data to quantify sleep and wake duration), and advancements in algorithm refinement.

Interestingly, the validated actigraph AWS performed comparably to PSG in assessing TST,

SE, WASO, and SOL. However, AWS shows an incapability to exactly recognize wake epochs

compared to PSG (specificity = 35.7%). The high reliability of AWS for estimating sleep vari-

ables corresponds to previous findings [37]. According to those studies, AWS is widely used

both in research [38, 39] and clinical [40] settings. However, to study this reliability, users

would have to remember bed and wake times and experienced researchers would be required

to process the data from the software. This would be labor- consuming and the results would

not be immediately obtainable. One of the disadvantages of actigraphy-based consumer activ-

ity trackers, for example AWS, is the relatively low specificity (accuracy to detect wakefulness).

The specificity of FBC and AWS showed in this study differed significantly (62.2% and 35.7%).

These findings also differed from previous reports that used the original Fitbit and Actiwatch

and showed worse specificities for the former (19.8% and 38.9% respectively) [23]. In the cur-

rent study, the specificity of FBC is 62.2%. Although there are no basic principles for determin-

ing a "good" or "bad" property [36], a specificity of 62.2% is better than that shown in previous

studies measuring the accurateness of former Fitbit types. These studies depended only on

movement to distinguish between sleep and wake (Fitbit "original", specificity of 20.0% [23];

Fitbit Flex, specificity of 35.0% and 36.0% [41]; Fitbit Ultra, specificity of 52.0% [18]; Fitbit

Charge HR, specificity of 42.0% [42]; and Fitbit Charge 3TM, specificity of 61.0% [43]). Previ-

ous studies have shown low specificity for former Fitbit types relative to PSG, usually less than

0.5 [44, 45]. However, the current study has found a specificity of 62.2%, which is within the

specificity range (0.3 to 0.7), and is consistent with previous reports validating Fitbit devices

against PSG [46]. To summarize, the results demonstrate that FBC’s measurement of sleep
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variables is comparable to that of PSG, as is the more traditional actigraphy. Moreover, these

may also show more advantages in detecting wakefulness.

Fitbit sleep staging

Several reports have discussed the accuracy of commercial fitness-trackers in measuring sleep

stages against PSG. Our current findings demonstrate that FBC shows a significant overesti-

mation of LS, while significantly underestimating DS. However, REM sleep estimation by FBC

was accurate on average. Therefore, our findings replicate those of de Zambotti [43] and Men-

ghini [25]. Owing to the development in transducer ability and signal processing technology,

FBC has recently applied a multisensory information detection system for sleep detection.

Such devices declare that sleep stages can be detected through various information sources

besides motion, including HR and HRV. Theoretically, it is a reasonable assumption that the

use of HR and HRV measurements are beneficial for sleep stage classification and the assess-

ment of quiet wakefulness, when participants lay motionless on the bed. Particularly, sleep-

stage specific shifting in autonomic activity, as monitored by HRV, is an accepted finding [47],

with EEG and HRV measures tightly coupled overnight [48]. However, phasic sleep events

(such as arousals and k-complexes), which are considered signs of sleep stage transitions in

PSG [49], are accompanied by stereotypical HR fluctuations [50]. There is thus no reason to

doubt the comparatively better specificity that the current research shows. It is a rising trend

for superior accuracy in the new generation of multisensory activity trackers, owing to the use

of other information sources besides movement, to demonstrate better ability to distinguish

between sleep-wake states and sleep stages.

Limitations

This investigation has certain limitations. As our study included participants who had been

diagnosed with chronic insomnia for at least 3 months, the results may not be generalizable to

participants with other sleep problems. Additionally, these conclusions may not be generaliz-

able to longitudinal assessments of sleep-wake patterns using FBC since measurement was

conducted for only one night in the current study. Considering that FBC would likely be most

helpful in a longitudinal study, this study design should be used to assess multisensory wear-

ables’ accuracy over several nights in future studies. Moreover, depending on the participants

included and the devices and algorithms used, variation in estimation of sleep parameters and

staging among the studies would be great. Thus, conclusions from the current research may

not be generalizable to other types of Actiwatches and Fitbits. A previous study has shown that

various algorithms used to assess the same information generate a variety of results [16]. Thus,

results from various studies assessing similar wearables with differing scoring systems would

also not be generalizable.

Conclusions

In conclusion, although our research shows that FBC cannot completely replace PSG in the

quantification of sleep variables and the classification of sleep stage in patients with chronic

insomnia, the user-friendly and low-cost wearables do show some comparable functions to

PSG. The disadvantage in detecting wakefulness, complications surrounding the proprietary

nature of the staging algorithm, privacy and regulatory concerns, and repeated information

loss at the present time result in the restriction of clinical and research applications of the

device in patients with chronic insomnia. Nevertheless, FBC has capacity as an estimator of

sleep-wake patterns on par with standard actigraphy and PSG in a sleep laboratory. Addition-

ally, FBC demonstrates better performance compared to other Fitbit models. This suggests
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that, with future improvements, such multisensory activity trackers could be helpful when

working with patients who have chronic insomnia.
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