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Abstract: Principal component analysis (PCA)-based method is popular for detecting the damage
of bridges under varying environmental temperatures. However, this method deletes some
information when the damage features are projected in the direction of nonprincipal components;
thus, the effectiveness of PCA-based methods will decrease if the deleted information is related to
bridge damage. To address this issue, a hybrid method is proposed to detect the damage of bridges
under environmental temperature changes. On one side, the PCA-based method is applied to deal
with the nonprincipal components; on the other side, the Gaussian mixture method (GMM) is used to
classify all the principal components into different clusters, and then the novel detection method is
implemented to detect bridge damage for each cluster. In this way, all the damage feature information
is saved and used to detect bridge damage. The numerical example and example of an actual bridge
show that the proposed hybrid method is effective in detecting bridge damage under environmental
temperature changes. The GMM is effective for classifying the natural monitoring frequency data
of actual bridges, and the relationship between the natural frequencies of actual bridges and the
environmental temperature is not always linear.

Keywords: damage detection; bridges; time-varying temperature; principal component analysis;
Gaussian mixture method

1. Introduction

Using the advanced sensing technique, structural health monitoring (SHM) technique can diagnose
the structural damage and assess the structural safety of bridges by using the different types of structural
response [1–4]. The core mission of SHM is to detect potential damage of bridges; thus, some methods
for damage detection have been proposed [5–8], and among them, vibration-based approaches have
shown excellent potential. Bridges inevitably suffer from the actions caused by varying environmental
temperatures; furthermore, the abovementioned actions may mask the changes in damage features—e.g.,
the natural frequencies of bridges—caused by structural damage. Sohn et al. found out that the natural
frequencies of the Alamosa Canyon Bridge changed about 6 percent per day with the variation of
environmental temperature [9]. Farrar et al. investigated the change of the natural frequencies of the
I-40 Bridge, the results showed that the serious artificial damage occurred in this bridge only caused little
change of the natural frequencies [10]. The similar research results were obtained in references [11,12],
and the results showed that the changing of natural frequencies caused by the structural damage of
the Z24 Bridge in Switzerland was less than the variation of the natural frequencies induced by the
environmental temperature changes. Therefore, some vibration-based methods, especially data-driven
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methods, focus on mitigating the influence of environmental temperatures on the results of damage
detection for bridges.

One type of data-driven algorithm [13–17] focuses on establishing the relationship between the
environmental temperature and damage features first, and then the generated model is applied to
eliminate the effects of the environmental temperature. Additionally, the relationship between the
environmental temperature and damage features of bridges is not always close to linear. Although
some metamodel-based methods [18–22] is investigated to establish the abovementioned relationship,
it is difficult to obtain an accurate relationship model, which may decrease the sensitivity of the method
for structural damage assessment. Another type of data-driven diagnostic algorithms [23–25] do not
require environmental temperature data at all, and the effects of environmental temperature on damage
features are described as latent variables during the entire process of damage detection.

Among these methods, PCA [26] is widely adopted for detecting the damage of structures by
using the data obtained from SHM system. With the orthogonal decomposition technique, PCA is
proper to establish the baseline statistical model (pattern) using the measured data of structures
under the healthy condition, and then the damaged condition of structure could be detected by
utilizing the pattern recognition techniques [27,28]. Using this idea, PCA has been applied to detect
the nonlinearity effects of structural integrity of an offshore structure [29], diagnose the abnormal
condition of composite structures [30], and monitor the stress conditions of cylindrical specimens using
PZTs [31]. Additionally, PCA only needs the simple calculation process, so it also has been adopted for
detecting the damage of structures under the environmental temperature changes. Koo et al. proposed
a temperature-free damage index based on PCA [32] by using the impedance information of structures.
Bellino et al. verified that PCA is effective to detect the damage of both the linear time-invariant
systems and the linear time-varying system [33]. Giraldo et al. proposed a method to localize the
damage in the structure regardless of the environmental conditions [34]. Reynders et al. proposed
kernel PCA based method to eliminate environmental influence for damage detection of structures [35].
Zhu et al. presented a temperature-driven moving PCA method to separate the thermal-induced
response and detect the abnormal condition of structures [36].

The method proposed by Yan et al. [37,38] is a representative and effective PCA-based method to
mitigate the influence of environmental temperatures on the results of damage detection of structures.
The basic concept of this PCA-based method is to generate the covariance matrix of damage features
first, and then all the damage features are projected in the direction of the nonprincipal component
of the abovementioned covariance matrix. All these projected damage features are believed to be
uncorrelated with the effects of environmental temperature variations because the direction of the
principal component represents the influence of the environmental temperature. Next, the novelty
detection [39,40] is applied to detect bridge damage by using the projected damage features. As described
above, with the PCA-based method, some information is removed when the damage features are
projected in the direction of nonprincipal components. If this deleted information is related to bridge
damage, the effectiveness of the PCA-based method will weaken. Similar conclusions were also
found in [41].

To overcome the abovementioned issue, a hybrid method which combines the PCA-based
method and Gaussian mixture method (GMM) [42,43] is proposed in this study. GMM is a density
model comprising a number of Gaussian distribution components, so GMM also is a method for
the cluster analysis. PCA combined with GMM has been carried out for several fields such as
speaker identification [44,45], tracing of moving objects [46], process monitoring of industry chemical
processes [47], flood damage detection [48], fault diagnosis [49], etc. In this study, the combination
between PCA and GMM is being applied for the first time to detect the damage of bridges under
changing environmental temperature. With the proposed hybrid method, all the damage features
are simultaneously projected in the direction of the principal components and the direction of the
nonprincipal components. The PCA-based method is applied to address the nonprincipal components.
For the damage features projected in the direction of the principal components, the GMM is utilized
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to classify all the projected damage features into different clusters. For each cluster, all the projected
damage features satisfy the Gaussian probability distribution; thus, the novelty detection based on
Gaussian probability distribution is implemented to detect bridge damage. Using this approach, all the
damage feature information is saved and used to detect the damage of bridges.

In this context, the layout of this paper is as follows. In Section 2, the details of the proposed hybrid
method are described. A numerical example is used to compare the damage detection performance of
the PCA-based method and the proposed hybrid method in Section 3. In the next section, the natural
frequency data collected for an actual bridge are utilized to verify the effectiveness of the proposed
method. Finally, the conclusions are drawn.

2. Hybrid Method for Damage Detection of Bridges under Environmental Temperature Changes

In this section, the PCA based method is briefly reviewed, and then the issue of weakening
the effectiveness of this method for detecting damage of bridges is proposed. To address this issue,
the novelty detection method combined with GMM cluster analysis is presented to address the main
components of damage features, which are introduced in detail. Finally, the procedure of the proposed
hybrid method is described.

2.1. Discussion of the Effectiveness of the PCA-Based Method for Damage Detection of Bridges

Different response information for a structure can be used to establish damage features and
detect the damage of bridges. For convenient description, the natural frequency monitoring data for a
bridge are adopted to establish the damage features in this study. Assuming that n modes of natural
frequencies are observed for a bridge, the matrix of natural frequency monitoring data, i.e., the damage
feature matrix, is generated as

f= [f1, f2, · · · , fv, · · · , fm

]
n×m

(v = 1, 2, · · · , m), (1)

where fv =
{
fv1, fv2, · · · , fvi, · · · , fvn

}T(i = 1, 2, · · · , n) is the vector of natural frequencies at the vth
sampling time and m is the total number of monitoring samples. According to statistical theory,
the sample mean and covariance of f are defined as the following vector and matrix, respectively

-
f =

{
E(f)

}
=

1
m

m∑
v=1

fv, (2)

Σ =
1
m

m∑
v=1

(
fv −

–
f
)(

fv −
–
f
)T

, (3)

with Equation (3), the covariance matrix of f is obtained by using the natural frequency monitoring
data. The above generated covariance matrix can be divided into three parts by using the technique of
singular value decomposition (SVD). The decomposition of the covariance matrix is carried out as

Σ = USVT, (4)

where S is the singular value matrix, which is a diagonal matrix, and U and V are the singular vector
matrices. The singular value matrix is defined as

S =

[
S1 0
0 S2

]
S1= diag

(
s1, s2, · · · , sr

)
S2= diag

(
sr+1, sr+2, · · · , sn

) (5)
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where diag(·) represents the diagonal matrix and sr is the rth normalized singular value. All the
singular values are arranged in descending order.

For the PCA-based method, the larger a singular value is, the more information the component
possesses; thus, the singular values are applied to determine the principal components and
nonprincipal components. As described in Equation (5), the matrices S1 and S2 represent the
singular values corresponding to the principal components and nonprincipal components, respectively.
Correspondingly, the singular vector matrix U is divided into two parts as

U= [ U1 U2
]
, (6)

where U1 consists of the first r column vectors of matrix U and U2 is composed of the last n− r column
vectors of matrix U.

For convenient description, an example with two-dimensional damage features is used to express
the basic concept of the PCA-based method. As shown in Figure 1, each sample point is obtained by
using two damage features, f1 and f2, and it is obvious that there are two directions among all the
damage features. The direction of the principal components represents the main trend of the damage
features, and for a healthy bridge, this trend is determined by the effects of environmental factors such as
the environmental temperature. Conversely, the direction of the nonprincipal components is orthogonal
to the direction of influence of the environmental temperature, so all the damage features are projected
in this direction to alleviate the effect of the environmental temperature. Specifically, the damage
features projected in the direction of nonprincipal component θ2 are obtained by the equation

θ2 = UT
2 f, (7)
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Figure 1. Schematic diagram of the PCA-based method with a two-dimensional example.

After obtaining θ2, the probability distribution of θ2 for a healthy bridge state is generated
by statistical analysis. With the generated statistical characteristics of the probability distribution,
the Mahalanobis distance is applied to calculate the discriminant metrics of θ2, and then the threshold
is established by using all the discriminant metrics. When the damage features of the state to be
diagnosed are obtained, with Equation (7), the damage features are projected in the direction of the
nonprincipal components generated using the monitoring data in the healthy state, which are defined
as θ∗2. The discriminant metric of θ∗2 is calculated in the same way as θ2. If the values of a discriminant
metric is larger than the established threshold, the bridge is considered to be damaged.

With the abovementioned approach, the PCA-based method is commonly applied to mitigate the
influence of fluctuating environmental temperatures on the results of damage detection of bridges.
The key of the PCA-based method is to utilize the information projected in the direction of the
nonprincipal components, i.e., θ2 and θ∗2, and all this information is believed to be uncorrelated with
the effects of varying environmental temperatures and mainly measurement noise. When structural
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damage occurs to a bridge, θ∗2 includes some structural damage that does not satisfy the probability
distribution of θ2, so the damage will be detected successfully.

For the healthy state of bridge, the damage features projected in the direction of principal
component θ1 are obtained by the equation

θ1 = UT
1 f, (8)

Similarly, for the state to be detected for damage, the damage features projected in the direction of the
principal components θ∗1 can be obtained. In theory, when damage occurs to a bridge, the information
related to damage should be included in all the components of the damage features, i.e., θ∗1 and θ∗2.
When θ∗2 includes the information related to structural damage, the PCA-based method works well
for detecting bridge damage under varying environmental temperatures if the difference between
θ2 and θ∗2 caused by damage is larger than the effects of measured noise included in θ2. When θ∗2
does not have any information related to structural damage, the PCA-based method cannot detect the
structural damage, regardless of how serious the bridge damage is. Unfortunately, we cannot know in
advance when and where the structural damage will occur; thus, it cannot be assured that θ∗2 includes
information related to the structural damage. Accordingly, the PCA-based method may weaken the
effectiveness of bridge damage detection in some cases. To address this issue, we proposed a hybrid
method to simultaneously use all the information included in θ∗1 and θ∗2. The PCA-based method
is utilized to deal with the nonprincipal component information, and the novel detection method
combined with GMM cluster analysis is applied to deal with principal component information. In this
way, all the information related to structural damage is saved and used to detect bridge damage.

2.2. Classification of the Damage Features Projected in the Direction of Principal Components Using GMM

As discussed in the above section, the Mahalanobis distance based on a Gaussian probability
distribution is applied to calculate the discriminant metrics of θ2; however, for the damage features
projected in the direction of principal component θ1, a Gaussian probability distribution is not valid
because the environmental temperature is nonstationary. To address this issue, the GMM is used
to classify θ1 into several clusters, and for each cluster, the components of θ1 satisfy the Gaussian
probability distribution. Therefore, the novel detection approach based on the Mahalanobis distance is
implemented for every cluster.

After obtaining θ1, combined with the environmental temperature monitoring data, the following
matrix is defined as

Ξ =
[
T, [θ1]

T
]
m×(r+1)

T = {T1, T2, · · · , Tm}
T

θ1= [θ11,θ12, · · · ,θ1g · · · ,θ1r

]T
, (g = 1, 2, · · · , r)

(9)

where the vectorθ1g consists of m terms, e.g.,
{
θ1g,1,θ1g,2, · · · ,θ1g,m

}
, and T represents the environmental

temperature monitoring data. Ξ is sampled from a (r + 1) dimensional continuous random
distribution, and the density of the abovementioned probability distribution F(Ξ) is estimated
by the following equation.

F(Ξv) =
α∑
β=1

τβΦβ

(
Ξv

∣∣∣µβ,σβ), (10)

where α represents the total number of clusters; τβ is the mixing proportion of the βth cluster (
∑
τβ = 1).

Φβ

(
Ξv

∣∣∣µβ,σβ) is the multivariable Gaussian density for the βth cluster with mean µβ and covariance
σβ, which is defined as

Φβ

(
Ξv

∣∣∣µβ,σβ) = 1√
(2π)r+1∣∣∣σβ∣∣∣ exp

[
−

1
2

[
Ξv − µβ

][
σβ

]−1[
Ξv − µβ

]T
]
, (11)
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Expectation maximization (EM) algorithm is a common way to estimate the parameters defined in
Equations (10) and (11) by using the following two steps.

For the first step, the following posteriori probability is obtained by given τβ, µβ, and σβ of the
βth cluster

γξβ =
τβΦβ

(
Ξv

∣∣∣µβ,σβ)
α∑
β=1

τβΦβ

(
Ξv

∣∣∣µβ,σβ) , (ξ = 1, 2, · · · ,ϑ), (12)

where γξβ is the posteriori probability; ϑ is the total number of samples for the βth cluster.
For the second step, after obtained γξβ, the new values of τβ, µβ, and σβ can be calculated by

the equations

τβ =
Φβ

ϑ
, (13)

µβ =
1

Φβ

ϑ∑
ξ=1

γξβΞv, (14)

σβ =
ϑ∑
ξ=1

γξβ
[
Ξv − µβ

][
Ξv − µβ

]T
, (15)

If we assume that all the elements of θ1 defined in Equation (9) are independent of each other,
repeating the abovementioned two steps, the log-likelihood estimation is utilized to estimate the
parameters τ, µ, and σ by maximizing the following objective function.

ς(τ,µ,σ) = ln

 m∏
v=1

F(Θϑ)

 = m∑
v=1

ln

 α∑
β=1

τβΦβ

(
Ξv

∣∣∣µβ,σβ)
, (16)

With the GMM described above, the damage features projected in the direction of principal
components are separated into different clusters. Under each cluster, all the projected damage features
satisfy the Gaussian probability distribution. Therefore, the novel detection method based on the
Mahalanobis distance can be applied to detect bridge damage.

2.3. Procedure of the Proposed Hybrid Method

Following the contents described in the previous two sections, all the damage features are projected
in the direction of principal components and the direction of nonprincipal components. For the healthy
state of bridge, the residuals of the projected damage features are defined as

γh1 =
{
γh1,1,γh1,2, · · · ,γh1,β, · · · ,γh1, α

}
γh1,β = θh1,β −

–
θh1,β

(17)

γh2 = θh2 −
–
θh2, (18)

where θh1 and θh2 represent the projected damage features θ1 and θ2 under the healthy state of bridge,
respectively; γh1 and γh2 are the residuals of the projected damage features θh1 and θh2, respectively;

the subscript h represents the healthy state of bridge;
–
θh1,β is the mean value of θh1,β; and

–
θh2 is

the mean value of θh2. Using Equation (3), the covariance values of γh1 and γh2 can be obtained,
and with the Mahalanobis distance, the discriminant metrics of residuals are calculated with the
following equations.

ηh1 =
{
ηh1,1,ηh1,2, · · · ,ηh1,β, · · · ,ηh1,α

}
ηh1,β =

√
Diag(

[
γh1,β

]T[
¶h1,β

]−1[
γh1,β

]) (19)
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ηh2 =
√

Diag([γh2]
T[¶h2]

−1[γh2]
)
, (20)

where ηh1 and ηh2 are the discriminant metrics of γh1 and γh2, respectively; ¶h1,β is the covariance
matrix of θh1,β; ¶h2 is the covariance matrix of θh2; and Diag(·) represents the operator used to generate
the vector based on the diagonal elements of the matrix.

Under the healthy state of the bridge, the threshold values of discriminant metrics are defined as

ρ1 =
{
ρh1,1,ρh1,2, · · · ,ρh1,β, · · · ,ρh1,α

}
ρh1,β = ηh1,β

∣∣∣
0.95

(21)

ρ2 = ηh2

∣∣∣
0.95, (22)

where ·| 0.95 is the calculation operator used to obtain the median of the 95% confidence level of the
probability distribution of the discriminant metrics.

Under the state to be diagnosed for damage, using the same process as described above,
the residuals of the projected damage features are defined as

γd1 =
{
γd1,1,γd1,2, · · · ,γd1,β, · · · ,γd1,α

}
γd1,β = θd1,β −

–
θh1,β

(23)

γd2 = θd2 −
–
θh2, (24)

where θd1 and θd2 represent the projected damage features θ1 and θ2 under the state to be detected
for damage of bridge, respectively; γd1 and γd2 are the residuals of the projected damage features
θd1 and θd2, respectively; and the subscript d represents the state to be diagnosed for damage of
bridge. Similar to Equations (19) and (20), the discriminant metrics of residuals are calculated by the
following equations.

ηd1 =
{
ηd1,1,ηd1,2, · · · ,ηd1,β, · · · ,ηd1,α

}
ηd1,β =

√
Diag(

[
γd1,β

]T[
¶h1,β

]−1[
γd1,β

]) (25)

ηd2 =
√

Diag([γd2]
T[¶h2]

−1[γd2]
)
, (26)

where ηd1 and ηd2 are the discriminant metrics of γd1 and γd2, respectively.
Assuming the total number of monitoring data samples under the state to be diagnosed is l,

ηd1 and ηd2 are vectors consisting of l elements, e.g., ηd2 is described as

ηd2 =
{
η1

d2, η2
d2, · · · , ηp

d2, · · · , ηl
d2

}
(p = 1, 2, · · · , l), (27)

Then, the discriminant factor is defined as z = 1
(
ηd1,β ≥ ρ1

)
or

(
η

p
d2 ≥ ρ2

)
z = 0

(
ηd1,β < ρ1

)
&

(
η

p
d2 < ρ2

) , (28)

where η j
d2 is the jth element of ηd2, i.e.,

{
η1

d2, η2
d2, · · · , η j

d2, · · · , ηl
d2

}
1×l

. If the value of z is equal to one,
the results obtained with the monitoring data are abnormal at this moment; if the value of z is equal to
zero, the results obtained with the monitoring data are normal.

In theory, when structural damage to bridges occurs, abnormal results will be identified by
using the proposed method. If the abnormal results calculated by Equation (28) are obtained at some
measurement times, the occurrence of structural damage is not guaranteed. When damage occurs to
bridges, e.g., the generation of concrete cracks, structural damage is generally not self-healing, and the
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extent of damage increases over time. Therefore, abnormal results should be treated as a trend change.
Based on this point, the cumulative damage index is defined in this study, and it is described as

qd =
l∑

p=1

zp, (29)

where zp, as described in Equation (28), is a sample of a Bernoulli trial with a given success rate PR
and qd is the cumulative damage index. As shown in Equation (29), the cumulative damage index
follows a binomial probability distribution. Therefore, the inverse cumulative distribution function of
the binomial distribution can be used to determine the cumulative threshold for damage detection of
bridge, which is defined as

Pr =

Q∑
p=0

l!
p! · (l− p)!

PRp(1− PR)l−p, (30)

where P is the probability that there are Q successes in l trials based on the given success rate PR,
such as 0.95. The value Q is the threshold for the damage decision. If the value of the cumulative
damage index qd is larger than the value of Q, the bridge is believed to be in a damage state, and vice
versa. The entire procedure of the proposed hybrid method is shown in Figure 2.

1 

 

Calculating the discriminate 
metric of residual by 

using Eq. (19)

Generating the damage 
feature matrix defined in 

Eq. (1) by using the 
monitoring response data 

of bridge under the 
healthy state

Establishing the threshold of 
discriminate metric      by using 

Eq. (21)
1ρ

Generating the residual of 
projected damage features 
under different cluster by 

using Eq. (17)

Classifying all the 
projected damage 

features by using Eq. 
(9) to Eq. (16)

Determining z equal to one or 
zero by using Eq. (28)

    >      ?dq Q

Damaged 
bridge

Healthy 
bridge

Yes

No

Obtaining the damage 
features projected to the 
direction of principal 

components by using Eq. (8)

Establishing the threshold of 
discriminate metric      by 

using Eq. (22)

Calculating the 
discriminate metric of 

residual by using Eq. (20)

Generating the 
residual of projected 
damage features by 

using Eq. (18)

2

Obtaining the damage 
features projected to the 
direction of non-principal 

components by using Eq. (7)

Generating the damage 
feature matrix defined in 

Eq. (1) by using the 
monitoring response data 
of bridge under the state 

to be diagnosed

Generating the residual of 
projected damage features 
under different cluster by 

using Eq. (25)

Classifying all the 
projected damage 

features by using Eq. 
(9) to Eq. (23)

Obtaining the damage 
features projected to the 
direction of principal 

components by using Eq. (8)

Calculating the 
discriminate metric of 

residual by using Eq. (26)

Generating the 
residual of projected 
damage features by 

using Eq. (24)

Obtaining the damage 
features projected to the 
direction of non-principal 

components by using Eq. (7)

Generating the 
accumulative damage 
index by using Eq. (29)

Determining the 
accumulative threshold by 

using Eq. (30) 

 

Figure 2. Diagram of the proposed hybrid method for detecting the damage of bridges.
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3. Numerical Example

3.1. Description of the Numerical Bridge-Like Model

The bridge-like structure introduced by Yan et al. [37] is depicted in Figure 3; this structure has three
spans and is discretized with 32 equal-size beam elements. The modules of elasticity of the materials
are temperature dependent according to Figure 4, as in [37]. The first six modes of natural frequencies
are used to form the damage features. The values of these frequencies are contaminated with Gaussian
noise with a standard deviation equal to 5% of the frequency of interest. In this study, to make the
simulated variation of air temperature close to the real condition, the annual air temperature changing
and the daily air temperature fluctuation are simultaneously considered during the simulation process.
The annual air temperature variation is simulated by extending the changing trend of environmental
temperature monitoring data which are described in Section 4. The changing range of simulated air
temperature is also similar to the results of measured data. The daily air temperature fluctuation is
simulated by considering the daily temperature difference and the daily temperature changing trend.
The daily temperature difference is defined as 10 ◦C, and the daily temperature changing trend is
simulated by using the sinusoidal function, which simulates the temperature changing from 6:00 a.m.
to 6:00 a.m. the next day. The simulated environmental temperature is shown in Figure 5. The changes
in the first six modes of the natural frequencies are shown in Figures 6 and 7. As shown in these figures,
the correlation between natural frequencies and the environmental temperature is obvious. We use
this example to compare the damage detection performance of the proposed hybrid method with that
of the PCA-based method.
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3.2. Comparison of the Performance Levels of the PCA-Based Method and the Proposed Hybrid Method

Using the data for the first six modes of the natural frequencies of this bridge-like structure,
the singular values of the covariance matrix described in Equation (3) are obtained by using singular
value decomposition. As shown in Figure 8, it is obvious that there is only one principal component.
With the GMM, the results of the cluster analysis are obtained, as shown in Figure 9. All the natural
frequency data shown in Figures 6 and 7 are applied to generate the healthy state model of this
bridge-like structure, i.e., to generate θ1 and θ2. Additionally, other data (each mode of a frequency
is simulated for 720 samples) are simulated for different cases to compare the damage detection
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performance of the PCA-based method with that of the proposed hybrid method. A total of three cases
are considered, as described in Table 1.
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Table 1. Descriptions of all cases for the numerical example.

Case Number Description of Case

Case 1 Healthy structure
Case 2 Damaged structure with 20% reduction in stiffness at element 17
Case 3 Damaged structure with 20% reduction in stiffness at element 7

As shown in Figure 10, for the healthy case, both the PCA-based method and the proposed hybrid
method make the correct decision because all the values of the cumulative damage index are lower
than the threshold. For case 2, it is obvious that the values of the cumulative damage index are larger
than the threshold at the first sampling point for both methods. Case 2 is similar with the damage
case described in [37], and the result of PCA-based method, shown in Figure 11, is similar with the
result obtained by [37]. Notably, both methods can effectively detect structural damage. However,
the PCA-based method is more sensitive to the damage that occurred at element 17 than is the hybrid
method. Moreover, in case 3, the PCA-based method cannot detect the damage that occurred at element
7. In this case, most of the information related to the damage that occurred at element 7 should exist in
the principal component θ1, and this information is deleted by the PCA-based method. For the hybrid
method, no information related to damage at element 7 is deleted; thus, the hybrid method can work
well for case 3, shown as Figure 12.
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4. Example of an Actual Bridge

In this section, the natural frequencies monitoring data obtained from an actual bridge are applied
to verify the performance of the proposed hybrid method. This bridge is healthy, and there is no known
damage to the structure, so only the damage detection performance of the proposed hybrid method is
verified. As shown in Figure 13, a three-span continuous-beam bridge [50], which is one part of an
interchange bridge, is taken as an example. The SHM system of this bridge began operation in October
2015. The acceleration monitoring data for the first year are utilized to demonstrate the effectiveness
of the proposed hybrid method. The arrangement of six acceleration sensors is shown in Figure 14.
The hourly acceleration data are used to identify the natural frequencies of the bridge by using the
eigensystem realization algorithm (ERA) [51]. The variations in the natural monitoring frequencies are
shown in Figure 15. Additionally, the changes in the environmental temperature monitoring data are
shown in Figure 16. Each point on the curve shown in Figure 16 represents the average environmental
temperature in each hour. By comparing the results in the above two figures, it is obvious that the
natural frequencies of this bridge exhibit a negative correlation with the environmental temperature.
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Figure 16. Environmental temperature monitoring data.

The covariance matrix of natural monitoring frequency data is generated by using all the
monitoring data shown in Figure 16. Then, the singular values of the abovementioned covariance
matrix are obtained by using singular value decomposition. As shown in Figure 17, the first four
components are selected as the principal components. With the GMM, the results of cluster analysis are
obtained, as shown in Figure 18. The results of cluster analysis show that all the natural frequencies are
generally classified into two clusters, which correspond to the winter and summer. The relationship
between the natural frequencies of this bridge and the environmental temperature is nonlinear.

Except for the last 500 samples of natural monitoring frequency data shown in Figure 15, all the
other data are applied to generate the healthy state model of this bridge, i.e., to generate θ1 and θ2.
The last 500 samples are utilized to verify whether the proposed hybrid method will make the wrong
decision in damage detection. The results of damage detection are shown in Figure 19, and both the
PCA-based method and the proposed hybrid method make the correct decision.
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Figure 18. Results of the cluster analysis of principal components for an actual bridge:
(a) two-dimensional results of the first principal component; (b) three-dimensional results of
the first principal component; (c) two-dimensional results of the second principal component;
(d) three-dimensional results of the second principal component; (e) two-dimensional results of
the third principal component; (f) three-dimensional results of the third principal component;
(g) two-dimensional results of the fourth principal component; (h) three-dimensional results of
the fourth principal component.
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5. Conclusions

In this study, a hybrid method is proposed to detect the damage of bridges under environmental
temperature changes. The following conclusions are drawn from the analysis.
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(i) The results of the numerical example show that the PCA-based method may fail to detect
damage when the information related to structural bridge damage is mostly stored in the principal
components of the covariance matrix composed of damage features because some effective information
is deleted by the PCA-based method. The proposed hybrid approach can effectively solve the
abovementioned issue.

(ii) The numerical example and example of an actual bridge show that the proposed hybrid
method is effective in detecting bridge damage under environmental temperature changes.

(iii) The results of cluster analysis for the actual bridge example show that the GMM is effective
for classifying the natural monitoring frequency data of actual bridges, and the relationship between
the natural frequencies of actual bridges and the environmental temperature is not always linear.

(iv) Compared with the PCA-based method, the proposed hybrid method requires environmental
temperature monitoring data to classify the principal components. If these environmental temperature
data cannot be supplied by the SHM system of a bridge, the application conditions of the proposed
hybrid method will not be satisfied.
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