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Abstract

Objectives The recent viral pandemic poses a unique challenge for healthcare

providers. Despite the remarkable progress, the number of novel antiviral agents

in the pipeline is woefully inadequate against the evolving virulence and drug

resistance of current viruses. This highlights the urgent need for new and

improved vaccines, diagnostics and therapeutic agents to obviate the viral pan-

demic.

Key findings Benzothiazole plays a pivotal role in the design and development

of antiviral drugs. This is evident from the fact that it comprises many clinically

useful agents. The current review is aimed to provide an insight into the recent

development of benzothiazole-based antiviral agents, with a special focus on their

structure-activity relationships and lead optimisation. One hundred and five arti-

cles were initially identified, and from these studies, 64 potential novel lead mole-

cules and main findings were highlighted in this review.

Summary We hope this review will provide a logical perspective on the impor-

tance of improving the future designs of novel broad-spectrum benzothiazole-

based antiviral agents to be used against emerging viral diseases.

Introduction

The current global scenario indicates that new microbial

threats will continue to emerge at an accelerating pace,

mainly due to globalisation and unprecedented climate

change.[1,2] As compared to the only 260 known human

pathogenic viruses, the unknown varieties of viruses repre-

sent 99.9% of potential zoonoses, which cannot be diag-

nosed until symptoms are noticed.[3] Moreover, the recent

unusual worldwide outbreaks of Nigerian Lassa virus in

2018,[4] Indian Nipah virus in 2018,[5] Brazilian yellow

fever in 2017,[6] West African Ebola in 2017,[7] Brazilian

Zika virus in 2015[8] and worldwide coronavirus disease

2019 (COVID-19)[9] took terrible tolls, both on human life

and on the global economy.

Viruses are obligate intracellular pathogens consisting of

a DNA or RNA genome enclosed within a proteinaceous

capsid.[10] Due to its rapid replications, mutations and

adaptions in host cells, the treatment of viral infections

with vaccines or small molecules is an arduous task facing

healthcare providers.[11] However, due to the advent of

newer techniques such as virome, robust cell culture, cyto-

pathic effect, immunofluorescence, high-throughput

screening (HTS) and other drug discovery tools, antiviral

chemotherapy has witnessed a revolution in controlling

HIV-1, HBV, HCV and herpes viruses (HSV and

CMV).[12,13] In the last three decades approximately 88

new antiviral drugs have been approved by the US Food

and Drug Administration (FDA), which includes a diverse

array of small molecules, interferons, monoclonal antibod-

ies, peptides and oligonucleotides.[14] All these drugs are

either acting as host targeting agents such as immunomod-

ulating agents, toll-like receptor (TLR)7 agonists, human

inosine-50-monophosphate dehydrogenase (IMPDH) inhi-

bitors, C-C chemokine receptor type 5 (CCR5) modulators

or viral targeting agents such as polymerase, protease, inte-

grase, non-structural protein 5A (NS5A) and neu-

raminidase inhibitor.[15–19] Gene therapies are also now

popular in the field of medicine, and they define a new-age

viral treatment where genes are delivered into infected cells

to interfere with viral replications.[20] Despite this remark-

able progress, the number of novel antiviral agents in the
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pipeline is woefully inadequate against the evolving viru-

lence and drug resistance of current viruses.[21] This high-

lights the urgent need for new and improved vaccines,

diagnostics and therapeutic agents to obviate the viral pan-

demic. The antiviral potential of benzothiazole derivatives

has recently gained momentum due to its robust in-silico

virtual and HTS, which result in higher hit-to-lead discov-

eries (Figure 1).[22] To date, a fair number of related articles

have been published but not a single review on this topic

has been reported. Thus, there appears to be a real need for

a review article summarising the benzothiazolyl antiviral

agents. This mini-review makes no attempt to be compre-

hensive but highlights the potential of benzothiazole ana-

logues against various viral diseases with a focus on

structure–activity relationships (SAR), as well as their

molecular targets. This review will surely help in generating

significant multiple pharmacophore hypotheses and draw

novel insights which contribute to the development of ben-

zothiazole-based antiviral agents.

Anti-dengue agents

Dengue is a mosquito-borne haemorrhagic fever caused by

a single positive-stranded RNA virus of family Flaviviridae.

According to WHO, an estimated 50 million dengue infec-

tions occur every year which accounts for thousands of

deaths from dengue haemorrhagic fever (DHF) and dengue

shock syndrome (DSS). Dengue genotypes, viz. DEN1,

DEN2, DEN3 and DEN4, are very closely related serotypes;

thus their cross-reactive antibodies aggravate the risk of

severe dengue shock in people experiencing repeated den-

gue virus (DENV) infections.[23,24] Currently, no effective

treatments are available for dengue. Most investigational

new anti-dengue agents directly target the viral structural

proteins (capsid [C], prM and E) or nonstructural (NS)

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5)

by cellular proteases and viral serine protease, composed of

NS2B and NS3.[25]

DENV NS2B/NS3 protease inhibitors

The NS2B/NS3 protease (PR) represents an important

molecular target for anti-dengue drug design. Currently, no

clinically available PR inhibitors (PIs) exist for the treat-

ment of dengue. Recently, a novel compound library of

hybrid benzothiazole-quinoline derivatives was developed

as PIs by Lai et al. This hybrid pharmacophore demon-

strated interesting anti-dengue activity and became a

potential lead in the further development of various hybrid

PIs. One of the potent compounds identified was com-

pound 1, which was found to be a competitive inhibitor of

DENV2 NS2B/NS3 PR with an IC50 value of

0.91 � 0.05 µM (Ki 2.36 � 0.13 µM).[26] Furthermore, a

group of scientists led by Lai et al. performed HTS research

of 250 compounds with the aim of developing nonpeptidic

PIs. They identified benzothiazole containing naph-

thalenoxybenzamide as a potential candidate for a novel

anti-dengue drug targeting DENV PR. Initially, a thiophene

derivative (2) was discovered to inhibit the DENV-2 PR

which was optimised by replacing it with the benzothiazole

ring system (3), and the thioether linkage was bioisosteri-

cally replaced by an ether function (Figure 2).[27].

DENV helicase inhibitors

RNA helicase is a common key enzyme in various viruses,

such as HIV, HCV, influenza A and swine fever viruses.

This enzyme unwinds both DNA and RNA, as well as

affecting many DNA and RNA metabolic processes. Thus,

RNA helicase represents a key target for new therapeutics

against the aforementioned viruses.[28] Moreover, drugs

targeting one viral variant could be useful for treating

another virus. Keeping this in mind, Sweeney et al. evalu-

ated potential anti-HCV agents against the DENV using

robust DENV NS3 ATPase assay and DENV helicase-catal-

ysed RNA unwinding assays. Surprisingly, NIH molecular

probe ML283, a previously reported benzothiazole oligo-

mer (14) derived from the dye primuline (12), emerged as

a novel lead template inhibiting DENV NS3 with an IC50

value of 500 nM. and DENV RNA helicase with an IC50

value of 3.5 µM.[29] Encouraged by the persuasive results of

this benzothiazolyl oligomer, a ligand-based pharma-

cophore model was also generated to screen 1 201 474

Figure 1 Antiviral potential of benzothiazole. [Colour figure can be

viewed at wileyonlinelibrary.com]
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Figure 2 Benzothiazole as DENV NS2B/NS3 PIs. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 3 Development of DENV helicase inhibitors by pharmacopore-based ligand search. [Colour figure can be viewed at wileyonlinelibrary.c

om]
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compounds of the ZINC Database. Filtered compounds

were then docked at the active site of NS3 helicase which

yielded five potential benzothiazole hits (4–8) with satisfac-

tory ADMET properties. However, the results of in silico

studies are yet to be validated in a wet lab (Figure 3).[30]

DENV RNA dependent RNA polymerase
(RdRp) inhibitors

The RdRp is responsible for viral replication and represents

a selective flavivirus molecular target as its homologue is

absent in humans. Recently, several new chemotypes target-

ing DENV RdRp have been discovered by re-evaluating the

previously reported compounds that are effective against

the HCV NS5B RdRp. In this context, Tarantino et al.

reported the biochemical and crystallographic characterisa-

tion of a pyridobenzothiazole lead (9) as an inhibitor of fla-

vivirus RdRp in micromolar range possessing very high

selectivity against DENV2.[31] Subsequently, optimisation

of a pyridobenzothiazole scaffold by a substituted phenyl

ring provided a broad-spectrum antiviral agent 10 (Fig-

ure 4).[32]

Anti-hepatitis C virus

Hepatitis C virus (HCV) infection is a major global health

concern. It is known as the chief cause of liver failure that

often leads to hepatocellular carcinoma. Globally, approxi-

mately 150 million people are living with HCV infec-

tions.[33] HCV is a single-stranded RNA virus of the

Flaviviridae family with seven major genotypes (HCV1-

7).[34] High-throughput antiviral drug discovery screens

have been extensively performed to identify inhibitors of

viral protease (serine protease for HCV) and inhibitors of

the RNA-dependent RNA polymerase (RNA replicase).[35]

Vaccines for preventing hepatitis A and B are now clinically

available. Although available directly acting antiviral agents

have been successful in managing HCV, emerging resis-

tance, unfavourable pharmacokinetic properties and high

treatment costs continue to present challenges.[36] Thus,

there is a pressing demand to discover novel anti-HCV

therapeutic agents. A significant number of benzothiazole

analogues have demonstrated promising anti-HCV activity,

as noted in the following.

HCV NS3 helicase inhibitors

Replication of HCV in human cells requires the action of

the HCV non-structural protein 3 (NS3), which exhibits

both protease and helicase activities. The HCV polyprotein

is comprised of 3000 amino acids that can be divided into a

structural region (C–p7 proteins) and a non-structural

(NS) region (NS2–NS5B proteins). Only the NS3–NS5B
region of the polyprotein is required for genome replication

in cell cultures. Thus, HCV NS3 is an imperative drug tar-

get due to its main role in viral replication.[37,38]

Using the HTS of 827 compounds in the National Can-

cer Institute (NCI, US) mechanistic set, Li et al. discovered

commercial dyes thioflavin S (11) and primuline (12) as

the most potent inhibitors of NS3 catalysed DNA and RNA

unwinding at the micromolar range. Further resolutions

into their pure components resulted in potent benzothia-

zole tetramer (13). Subsequent insight into the contribu-

tion of the carboxamide group (14) as a more specific

agent helped to obtain a potent helicase inhibitor with an

IC50 value of 2.6 � 1 µM (Figure 5).[39]

Figure 4 DENV RdRp inhibitors. [Colour figure can be viewed at wileyonlinelibrary.com]
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HCV NS5B polymerase inhibitors

HCV NS5B polymerase is an attractive target for HCV ther-

apeutic intervention as it is responsible for the replication

of positive-strand genomic RNA. HCV NS5B polymerase

selectively utilises the viral RNA template which the host

mammalian cells are lacking.[40] Manfroni et al. reported

novel pyridobenzothiazole derivatives (15) as HCV NS5B

polymerase inhibitors through scaffold hopping strategy.

These compounds were shown to have interesting poly-

merase inhibitory activity. However, in-vitro studies failed

to predict its anti-HCV activity due to poor permeability.

Detailed biochemical studies confirmed the allosteric

modulation of pyridobenzothiazoles through non-competi-

tive inhibitions of the ribonucleotide substrate and compet-

itive inhibitions of the RNA template (Figure 6).[41]

In the pursuit of identifying novel small molecule inhibi-

tors of hepatitis C virus replication, scientists at the Merck

Research laboratory, USA, identified a new library of car-

banucleoside derivatives (16) as lead molecules.[42] SAR

studies were conducted around the pyrimidine core to

improve the potency and pharmacokinetic profile of these

inhibitors. A benzothiazole moiety was found to be the

optimal substituent at the pyrimidine 5-position (com-

pounds 17 and 18). The 4-methyl derivative emerged with

enhanced rat in vivo profile demonstrating a very good

Figure 5 Benzothiazolyl dyes as potent NS3 helicase inhibitors. [Colour figure can be viewed at wileyonlinelibrary.com]
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replicon potency, selectivity and rodent plasma/target

organ concentration.[43] Further, introduction of a nitrogen

atom into the benzene ring of a previously identified HCV

replication (replicase) benzothiazole inhibitor, resulted in

the discovery of more potent pyridothiazole analogues (19)

(Figure 7).[44]

HCV replicon inhibitors

HCV replication in cell lines was practically impossible

before the development of subgenomic replicons which

replicate freely in the human hepatoma cell line Huh-7.

Significant progress has been achieved with regard to the

replicon system, allowing for the validated protocols of

replication assays for HCV genotypes 1a, 1b, and 2a. The

HCV replicon system has opened new venues for detailed

molecular studies of RNA replication and HCV-host inter-

actions as well as for the discovery of novel inhibitors of

HCV replication.[45] Considering the uses of the HCV

replicon assay, researchers at Second Military Medical

University, China performed a cell-based anti-HCV screen

of an intramural compound against the HCV genotype 2a

variant. Their finding demonstrated that benzothiazo-

lamide derivative (20) possesses significant HCV inhibitory

activity (IC50 = 26.81 µM) with little cytotoxicity

(CC50 = 155 µM). The compound was found to be effective

against other genotypes such as the1b HCV replicon (IC50

9.3 µM). Further optimisation has resulted in a disulphona-

mide analogue of benzothiazole (21) as potent anti-HCV

agent with good selectivity towards the target NS5A.[46]

Similarly, another scientist, Montalvao et al., similarly

Figure 6 Pyridobenzothiazoles as NS5B polymerase inhibitors. [Col-

our figure can be viewed at wileyonlinelibrary.com]

Figure 7 Benzothiazolyl-carbanucleoside as NS5B polymerase inhibitors. [Colour figure can be viewed at wileyonlinelibrary.com]
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reported some benzothiazole carboxamide derivatives as

HCV replicon inhibitors. Indole containing benzothiazole

derivative (22) demonstrated 70% suppression of the HCV

replicon and 35% cytotoxicity against the host cells (Fig-

ure 8).[47]

3.4 Miscellaneous anti-HCV agents

Some of the reported anti-HCV agents do not have any

selectivity against the specific molecular targets and act

through multiple or unknown mechanisms. Neyts et al.

reported the benzothiazolyl-coumarin conjugated com-

pounds linked through -SCH2- as potential antiviral agents

inhibiting HCV replications. A methoxy-substituted cou-

marin analogue (23) exhibited low micromolar EC50 at

29 µM against HCV.[48] Peng et al. also demonstrated the

significant inhibitory anti-HCV activity of 2-(4-ni-

troanilino)-6-methylenzothiazole (24). The benzothiazole

derivative 24 was found to inhibit HCV RNA-dependent

RNA polymerase (RdRp) and HCV RNA replication in a

dose-dependent manner (EC50 8 � 0.5 µM), consistent

with a non-competitive model of inhibition (kinetic con-

stant Ki 7.76 µM) (Figure 9).[49]

Anti-herpes agents

Herpes simplex virus (HSV) 1 (cold sores, fever and blis-

ters) and 2 (genital herpes) are highly contagious human

viruses of the Herpesviridae family. Many of the common

antiviral drugs are in clinical use for the treatment of HSV,

e.g. idoxuridine, trifluridine, acyclovir, famciclovir and

foscarnet. Nevertheless, research is still ongoing in the

development of newer agents with enhanced activity.[50] El-

Sherbeny et al. evaluated some pyrimido[2,1-b]benzothia-

zole and benzothiazolo[2,3-b]quinazoline derivatives for

anti-HSV activity. These compounds showed potential

antiviral effects against HSV1 with a 50–61% reduction in

the viral plaques.[51] Abdel-Aziza et al. also synthesised

Figure 8 Benzothiazolyl-carboxamide as HCV replicon inhibitors. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 9 Miscellaneous anti-HCV benzothiazoles. [Colour figure can be viewed at wileyonlinelibrary.com]
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some benzothiazolyl-arylhydrazones. Evaluation against

HSV1 revealed that piperidinyl amidrazones (25) possessed

significant antiviral activity (Figure 10).[52]

A non-toxic benzothiazolyl urea drug, frentizole (26)

which was approved by the FDA for the treatment of

rheumatoid arthritis and systemic lupus erythematosus has

been studied for the immunosuppressive and super-

immunosuppressive dose levels on the resistance of the

mice to viral infections. The mean survival time of specific

pathogen-free male mice pre-treated with frentizole or aza-

thioprine at 100, 50 or 25 mg/kg and infected with herpes

simplex and influenza virus was reduced.[53]

Anti-HIV agents

Acquired immunodeficiency syndrome (AIDS) is mainly

caused by human immunodeficiency virus type 1 (HIV-1)

and continues to be a major contributor to the global bur-

den of disease as it has claimed more than 32 million lives

so far.[54] Recently, outstanding progress in the discovery of

novel anti-HIV agents has led to implementing better ther-

apeutic regimes for this devastating virus.[55] The develop-

ment of a combination antiretroviral therapy has

completely transformed HIV from a progressive illness with

a fatal outcome into a chronic manageable disease.[56] The

majority of the currently utilised anti-HIV drugs exert their

effects through validated HIV molecular targets which

include transcriptase, integrase and protease enzymes.[57]

Hence, developing potential anti-HIV agents targeting

these enzymes remains a main research interest. Towards

this end, numerous benzothiazolyl derivatives have been

reported to exhibit potent anti-HIV activity both in vitro

and in vivo; however, the clinical efficacy of benzothiazole

has not yet been demonstrated.

Reverse transcriptase inhibitors

HIV-1 reverse transcriptase (RT) is one of the vital targets

of retroviruses. It catalyses the conversion of HIV-RNA

into a double-stranded DNA which then integrates into the

human genome.[58] In recent years, there has been increas-

ing evidence of the importance of non-nucleoside RT inhi-

bitors (NNRTIs) for HIV therapeutic intervention.

Encouraged by this response, Akbay et al. synthesised some

benzothiazole derivatives as potential RT inhibitors deter-

mined through the scintillation proximity assay using bro-

modeoxyuridine (BrdUMP). Its antiviral potency was

indicated by the in vitro binding inhibition of thymidine

with the RT enzyme. Compound 2-(p-chlorophe-

noxymethyl)benzothiazole (27) was found to be more

active than the other compounds, having an IC50 value of

0.34 µmol/l (Figure 2).[59] More recently, Cheung et al. also

performed a screening of a library of 256-compounds to

identify a structural “mimic” of a lead fused tetracyclic

indole derivative (28).[60] Diheteroarylamide-type com-

pounds, containing a common 5-nitroisobenzothiazole

derivative (29), emerged as potent anti-HIV agent. This

compound was evaluated against the isolate (E00443),

which greatly reduced susceptibility to NNRTI’s and

remained active, with an EC50 of 1.3 µM (Figure 11).[61]

Protease inhibitors

HIV-1 protease (HP) is essential for the life-cycle of HIV

and the maturation of infective HIV virion by catalysing

the hydrolysis of Gag and Gag-pol polyproteins resulting in

the production of structural proteins, such as viral envelope

glycoproteins and the enzymes reverse transcriptase, inte-

grase, and protease.[62] Thus, it is an important target for

HIV treatments. Research efforts aimed at developing a

protease inhibitor (PI) led to the approval of many PI drugs

in the mid-90s which are now being used in combination

with RTIs in highly active antiretroviral therapy

(HAART).[63] Previously, the structure-based drug design

(SBDD) and X-ray crystallographic analysis of HP has

resulted in exciting peptide-based PIs as preclinical drug

candidates, however, the majority of them failed in clinical

trials due to their poor physicochemical properties. This

Figure 10 Benzothiazoles as anti-herpes agents. [Colour figure can be viewed at wileyonlinelibrary.com]
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inspired the development of several PIs containing non-

peptidic fragments with superior biopharmaceutical prop-

erties.[64] In pursuit of this goal, the research laboratory of

Prof. A. K. Ghosh in collaboration with Tibotec Inc., Bel-

gium, also extensively studied on the SBDD strategies based

upon promoting extensive interactions in the active site of

HP, particularly with the backbone atoms. They were the

pioneers in discovering a range of exceptionally potent

non-peptide HIV-1 PIs, of which one drug darunavir

(DRV) (IC50 3.8 nM) (30), was approved in 2006 by the US

FDA for the treatment of drug-resistant HIV. DRV, a 3

(R),3a(S),6a(R)-bis-tetrahydrofuranyl-urethane (bis-THF)

analogue is now utilised as a frontline therapy for HIV/

AIDS. Based on the protein crystallography of darunavir

bound to HP, they proposed a pharmacophore model for

PI effective against drug-resistant HIV. The model suggests

that the hydrophobic, electrostatic and critical hydrogen

bonding with the backbone atoms located in the S2 to S20-
subsites of protease is essential. The transition hydroxyl

group binds to a catalytic aspartate, while a P1 and P10

ligand occupy the S1 and S10 subsites (Figure 12).[65]

To further optimise the bis-THF structural template,

they introduced an unprecedented 6-5-5 ring-fused crown-

like tetrahydropyranofuran as the P2 ligand and an

aminobenzothiazole as the P20 ligand with the (R)-hydrox-

yethylsulfonamide isostere. The resultant analogue 31

emerged as a potent PI against drug-resistant viruses with

several fold higher potency (IC50 0.39 nM) than the drug

DRV (Ghosh et al.,[66]). Further modification was carried

out by introducing a 6-5-5 ring-fused octahydrocy-

clopentylpyranofuran as the P2 ligand and difluorophenyl-

methyl as the P1 ligand. The resulting analogue 32 showed

excellent enzyme inhibitory potency (IC50 27 pM) with a

strong antiviral activity against a panel of highly multidrug-

resistant HIV 1 variants.[67] Extensive lead optimisation at

the P20 region was aimed at improving the broad-spectrum

activity as well as the overall ADME profile of these deriva-

tives.

Surleraux, et al., 2005, at Tibotec BVBA, Belgium, did

parallel research exploring the P20 region to identify new

classes of broad-spectrum PIs with improved pharmacoki-

netic properties. They developed an aminobenzothiazolyl

analogue (33) of DRV with pronounced broad-spectrum

activity.[68] Although DRV has a high genetic barrier to the

development of HIV-1 resistance, many DRV-resistant

strains have recently been reported.[69] Keeping these in

mind Takamatsu et al. delved more into the development

of PI-resistant antiviral drugs. They reported a new series

of compounds produced by introducing P2-amino-

substituted-bis-tetrahydrofuranylurethane (bis-THF) (34).

The bis-THF derivative compounds emerged as potent

agents inhibiting the replication of wild-type HIV-1 (EC50

Figure 11 Development of novel benzothiazolyl reverse transcriptase

Inhibitors (RTIs). [Colour figure can be viewed at wileyonlinelibrary.

com]

Figure 12 Pharmacophore model of PI to combat drug resistance. [Colour figure can be viewed at wileyonlinelibrary.com]
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0.22–10.4 nM) and multi-PI-resistant HIV-1 variant,

including highly DRV-resistant HIVDRVRP51. This com-

pound had an EC50 ranging from 1.6 nM to 30.7 nM.[70] Ali

and collaborators, at the University of Massachusetts Medi-

cal School, developed a series of novel PIs having phenylox-

azolidinone P2 ligands (35). SAR studies showed that the

introduction of polar substituents, such as methylsulfonyl

group at the 3-position of the phenyl ring as P2 ligand sig-

nificantly increased in-vitro antiviral activity. A benzothia-

zole ring as P2ꞌ ligand was found to be optimal for

enzymatic and antiviral activity against wild-type viruses

and MDR viruses.[71] Another group of scientists at Janssen

Infectious Diseases BVBA, Belgium, discovered a new class

of benzothiazole amide derivatives as novel pharmacoki-

netic enhancers of PIs inhibiting the CYP3A4 enzyme by

replacing the sulphonamide with an amide linkage. The

in vitro antiviral activity of amide derivatives against the

wild type HIV-1 demonstrated that the replacement of sul-

phonamide group was not a good choice, as none of the

compounds were active. However, an in vitro human liver

microsomes (HLM)-based CYP3A4 inhibition assay

showed a promising result. The amide analogue 36 demon-

strated excellent ‘boosting’ properties when tested in dogs

(Figure 13).[72]

In an effort to identify novel agents effective against the

multidrug-resistant mutant HP, Ung, et al., 2014, per-

formed a virtual screening of the Center of Chemical Geno-

mics (CCG) library against the eye site pharmacophore

model of HP. Further evaluation of the computational hits

resulted into the identification of quinolinyl analogue (37)

as a promising protease proteolytic agent. A subsequent

ligand-based lead-hopping method yielded a novel potent

4-nitro-2-(2-thioxo-2,3-dihydrobenzo[d]thiazol-6-yl)isoin-

doline-1,3-dione (38) as an allosteric modulator of HP pro-

teolytic activity (Figure 14).[73]

Integrase inhibitors

The HIV-1 integrase (IN) enzyme is the retroviral enzyme

that catalyses the insertion of the virally derived cDNA ends

generated by the viral RNA genome through RT into host

chromosomes. Since the approval of the IN inhibitor (INI)

raltegravir, research on the development of INI has gained

huge attention and several derivatives of different classes

have been identified so far.[74,75] Towards this end, Gu

et al. reported the discovery of a novel benzothiazolyl INI.

In this study, a total of 80 000 natural compounds were vir-

tually screened for their INI properties and subsequently

tested for cell-based antiviral activities. Out of these,

3-(1,3-benzothiazol-2-yl)-8-{[bis(2-hydroxyethyl)amino]

methyl}-7-hydroxy-2H-chromen-2-one) (D719, 39) inhib-

ited IN nuclear translocation in the immunofluorescence

assay at 10 µM (Figure 15). The in-vitro anti-HIV activity of

D719 revealed that p24 antigen production in HIV-1IIIB-in-

fected human T cells was drastically reduced to half of its

maximal effective concentration of 4.33 µM. Thus, D719

provides a novel lead and new insight into the molecular

mechanism for future drug development of INI.[76]

Miscellaneous anti-HIV agents

Molecular hybridisation of bioactive pharmacophores has

become a major contributor to the development of several

synergistic biologically active molecules.[77] Based on this

approach, different moieties have been clubbed with a ben-

zothiazole derivative to optimise the antiviral potential of

benzothiazole leads. Most of these hybrid benzothiazolyl

analogues do not have any specific mechanism of HIV inhi-

bitory activity but possess remarkable in-vitro anti-HIV

potential (Figure 16). Based on these, Vicini et al. prepared

two series of benzo[d]isothiazole (40) and benzothiazole

(41) analogues containing Schiff bases and evaluated in-

vitro against the HIV-1 (Retrovirus). The EC50 value of

hybrid methyl derivative of benzo[d]isothiazole (40) was

found to be > 5 µM.[78] Bhavsar et al. reported the hybrid

benzothiazolyl-coumarins as potential anti-HIV agents.

The synthesised compounds were evaluated for their anti-

HIV activity using the MTT method and showed potent

antiviral activity against the wild type HIV-1 strain. Among

these, a 6-chlorobenzothiazole derivative (42) showed a

promising anti-HIV effect with an EC50 < 7 lg/ml. The

SAR of these compounds showed that hydroxy substitution

at the coumarinyl ring increased its activity, whereas bulky

substitutions at the phenyl ring decreased the antiviral

potency of these benzothiazole derivatives.[79] A series of

benzothiazole-containing dioxothiazolines connected

through an acetamide linkage (43) was also reported. While

these compounds were not that much active against HIV-1

as compared to the reference drug, they provided an

important lead for future development.[80] Heredia et al.

screened some in house antimicrobial compounds against

the TZM-bl cells with the CCR5-dependent HIV-1 BaL

strain in vitro. A benzothiazolyl compound containing an

indole moiety 5660386 (44) emerged as the most potent

antiretroviral agent, having potency in the nanomolar

range. This hybrid derivative inhibits HIV-1 entry into cell

lines, binds to the HIV-1 envelope protein and inhibits the

interaction of GP120 to CD4. This compound had a unique

and broad-range activity against primary HIV-1 isolates

from different subtypes and geographical areas.[81] In 2011,

Urano et al. discovered a benzothiazolyl-pyrimidine

(BMMP, 45) small molecule as an inhibitor of the

oligomerisation of HIV-1 Pr55Gag which is a key process

in HIV-1 virion production.[82] The BMMP template was

further optimised by linking with biotin, then evaluated

against the presumed target, HIV-1 Pr55Gag or CA, by
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Figure 13 Benzothiazole PIs discovered by Tibotec BVBA. [Colour figure can be viewed at wileyonlinelibrary.com]
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means of surface plasmon resonance. The newly synthesised

Biotin–BMMP hybrid (46) inhibited HIV-1 replication but

showed no interaction with Pr55Gag or CA, suggesting that

antiviral activity occurs through a different mechanism.[83]

The 6-aminoquinolones have also emerged as a promis-

ing new class of HIV expression inhibitors, interfering with

the Tat-mediated transactivation of the HIV-1 LTR pro-

moter. On the basis of these recent findings, Tabarrini et al.

did extensive research on 6-desfluoroquinolones showing

marked anti-HIV activity in acutely, chronically, and

latently HIV-1 infected cell cultures.[84] Further optimisa-

tion of 6-desfluoroquinolones demonstrated that the

bioisosteric replacement of the quinolone (47) nucleus by

an 1,8-naphthyridone (48) is beneficial when a suitable

arrangement of the functional groups is present at the C-6,

N-1, and C-7 positions. The SAR results showed that a sub-

stitution with 1-(1,3-benzothiazol-2-yl)piperazine present

at the C-7 position was advantageous.[85–87]

Anti-influenza agents

Human influenza also known as ‘flu’ is mainly caused by

influenza A or B virus infections. This virus consists of sin-

gle-stranded RNA enveloped in a glycoprotein surface,

along with haemagglutinin and neuraminidase (NA). Infec-

tions with influenza A viruses of the subtypes H1N1 and

H3N2 are the main causes of respiratory tract disease. Cur-

rent antiviral drugs target the M2 ion-channel protein (e.g.

adamantanes) and NA (e.g. zanamivir and oseltamivir).

However, many resistant influenza virus strains have been

reported in several countries, highlighting the need for new

antiviral drugs.[88] The first report on benzothiazole deriva-

tives as anti-influenza came in 1969 from Paget et al. They

reported the structure naphthothiazolylureas (49) effective

against the coxsackievirus A21 Coe virus.[89] Encouraged by

this, Akerfeldt at KABI group, Sweden performed the

in vivo preclinical screenings of aminobenzothiazoles

Figure 14 Development of PI through ligand-based lead-hopping. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 15 D719 inhibiting the integrase nuclear translocation.[76] [Colour figure can be viewed at wileyonlinelibrary.com]
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(ABT) on mice infected with influenza A2 strains. A

4-chloro substituted ABT (50) (LD50 180 mg/kg) showed

100% animal survival against the Influenza A2 virus (Fig-

ure 17).[90].

IRF3 agonists

The RIG-I-like receptors (RLRs) are pathogen recognition

receptors which play a major role in the pathogen sensing

of RNA virus infections to initiate antiviral immunity.[91]

Following the AViiD HTS platform against a very large

library of 47 000 small compounds, a benzobisthiazole hit

compound KIN1000 (51) was identified as an RLR signal

activating agent. This HTS procedure utilised the Huh7

reporter cell lines containing the ISG54, ISG56, or IFN-b

promoters, all IRF3-genes triggered through the RLR path-

way. Finally, a new lead analogue KIN1148 (52), was

designed by structural modifications of the phenyl with

naphthyl ring. Compound KIN1148 showed increased pro-

tection and reduced viral load when administered along

with suboptimal dose of H1N1 vaccine to influenza virus

A-infected mice. KIN1148 also induced an influenza virus-

specific IL-10 and Th2 response by T cells in the lymph

nodes (Figure 18).[92]

AKT Inhibitors

The protein kinase-B (AKT) pathway is an important

mechanism in the infection and replication of influenza

viruses. Inhibition of AKT kinase activity has been reported

Figure 16 Hybrid benzothiazoles as anti-HIV agents. [Colour figure can be viewed at wileyonlinelibrary.com]
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to suppresses the entry and replication of influenza

virus.[93] To probe its significance, Peterson et al. at the

University of Kansas, USA, focused on the discovery of

novel antiviral agents targeting the AKT-IV. They identified

a potent benzothiazolyl AKT-IV inhibitor (ChemBridge

5233705) (53), having broad-spectrum antiviral and anti-

cancer activity. SAR showed that the replacement of the

N-ethyl substituent with N-hexyl (54) and N-dodecyl (55)

groups increased the antiviral potencies of AKT-IV inhibi-

tors against the recombinant parainfluenza virus 5 (PIV5),

expressing luciferase in HeLa cells.[94] Further, detailed

biomolecular studies revealed that the cationic benzimida-

zole moiety exhibited dose dependent paradoxical positive

or negative effects on the phosphorylation of AKT. More-

over, compound 53 was found to trigger swelling, disinte-

gration and depolarisation of mitochondria, elevation of

ROS, and essentially, the complete inhibition of the cellular

consumption of oxygen (Figure 19).[95]

Neuramidase inhibitors

Galochkina et al. reported that a novel tricyclic structure

containing 2-substituted 7,8-dihydro-6H-imidazo[2,1-b]

[1,3]benzothiazol-5-ones (56) was a promising anti-

influenza A virus. The thiophene substituted derivative

demonstrated excellent antiviral activity (CC50 > 1000 µM,

SI = 77). To get insight into the molecular mechanism of

its anti-influenza potential, a detailed NA enzyme inhibi-

tion assay was also carried out; however, the result was not

significant (Figure 20).[96]

Bcl-2 inhibitors

Apoptosis is a host cellular defence mechanism against

virus infections generally initiated by the pattern recogni-

tion receptors (PRRs). These receptors recognise the attack-

ing viruses and signal to Bcl-2 proteins which leads to

mitochondria membrane permeabilisation (MoMP),

Figure 17 ABTs as potential anti-influenza agents. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 18 A benzobisthiazole IRF3 agonist as an influenza vaccine adjuvant. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 19 Benzothiazolyl AKT-IV inhibitors. [Colour figure can be viewed at wileyonlinelibrary.com]
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cytochrome c release and ultimately cell death (Shim,

et al.[97]). Bulanova et al. identified some safer benzothia-

zole derivatives (57, 58 & 59) as inhibiting cellular anti-

apoptotic Bcl-2 proteins (Bcl-2i), which induced the

premature cell deaths of RNA/DNA virus infected cells.

The apoptosis assay was performed on the viability and

death of influenza A virus infected cells (Figure 21).[98]

Anti-West Nile virus

West Nile virus (WNV) is a single-stranded RNA flavivirus

typically spread by mosquitoes. Currently, no drug or vac-

cine is available for the treatment of WNV. Similar to the

other flaviviruses, WNV NS2BNS3 protease is also a

promising target for WNV treatment.[99] Using robust

screening procedures, including in silico, HTS, in vitro and

in vivo assessments, on a large array of compounds through

hit-to-lead (H2L) optimisation has resulted in many potent

WNV PIs. Scientists at Georgetown University Medical

Center, USA, also performed an HTS assay for the WNV

protease by assessing approximately 32 000 small mole-

cules. Interestingly, they discovered an 8-hydroxyquinoline

(8-HQ) chemotype analogous with compound 60 as a

promising PI (Mueller, et al.,[100]). Further insight into the

SAR of 8-HQ was also established by making substitutions

Figure 20 7,8-Dihydro-6H-imidazo[2,1-b][1,3]benzothiazol-5-ones as

anti-influenza. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 21 Benzothiazoles inhibiting Bcl-2i. [Colour figure can be viewed at wileyonlinelibrary.com]
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around the core template. Replacement of thiazole (60)

with a benzothiazole (61) moiety at the R3 position pro-

vided the analogues with great inhibitory activity that

formed strong interactions with the WNV NS2B/NS3pro

residues Asp75 at the active site.[101] Likewise, NUS-Singa-

pore researchers implemented a preliminary screening of

approximately 110 compounds for the WNV NS2BNS3

protease inhibition assay at 100 µM and identified a ben-

zothiazolacetamide derivative (62) as a WNV PI. This hit

molecule underwent more extensive optimisation in a sub-

sequent step to yield a potent lead compound (63) contain-

ing an ethyl group at the para position of the phenyl ring.

The affinity of the lead was found to improve by several

orders of magnitude against WNV NS2B NS3 protease than

DENV2 NS2B NS3 protease (Figure 22).[102]

Discussion

Benzothiazole ring has gained much attention because of

its easy functionalisation at various ring positions, which

makes them attractive synthetic compounds for designing

and development of the novel antiviral drugs in future.

Various benzothiazole analogues were reported to have

promising antiviral properties. We summarised their

antiviral potential along with their molecular frameworks

in Table 1. Many of these compounds had desired pharma-

cokinetic properties and broad spectrum of antiviral activ-

ity against the wide range of viruses acting through

different molecular targets such as protease, helicase, poly-

merase, reverse transcriptase, integrase and neuramidase.

Ongoing research shows that aminobenzothiazoles

(ABTs) are a very promising and common pharmacophore

for the design and development of inhibitors/agonists

against the NS2B/NS3 protease, RNA helicase, Bcl-2i, IRF3

and reverse transcriptase. ABT containing 8-hydroxyquino-

line (8-HQ) compounds (1) exhibited very promising

antiviral activity by DENV2 NS2B-NS3 protease inhibition.

These inhibitors bind into the active site of the NS3pro

near to the catalytic triad residues: His51, Asp75 and

Ser135 like the peptide-based inhibitors. The observed

Figure 22 Hit-to-lead optimization of WNV PIs. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table 1 Benzothiazoles as antiviral agents

Chemical classes Pharmacophore

Mechanisms of

action Viruses Clinical status

8-Hydroxyquinoline analogue of

benzothiazole
S

N
NH

NHO

NS2B/NS3

protease inhibitor

DENV2 & WNV NA

Benzothiazolyl carboxamide O

NH
S

N

RNA helicase

inhibitor

Bcl-2i inhibitor

DENV

Influenza A

NA

Pyridobenzothiazole
S

N

O

RNA polymerase

(RdRp)Inhibitor

NS5B polymerase

inhibitor

DENV2

CV

NA

Benzothiazolyl oligomers (Dyes)

N

S
N

SSO3H
H3C

NS3 helicase

inhibitors

HCV NA

Benzothiazolyl carbanucleoside
N

S

N

N

N

HN

OH OH

HO

NS5B polymerase

inhibitors

HCV NA

Disulphonamide analogue of

benzothiazole

N

SN
S
O

S
O
O O HCV replicon

inhibitors

HCV NA

Benzothiazolyl urea

N

S
NH

O
NH

O

Frentizole

– HSV &

Influenza

Immunosuppressive

drug

Benzoisothiazolyl-dihydropyridine-

3-carboxamide N

O

O

N
H

SN

NO2

Reverse

transcriptase

Inhibitors

HIV NA

bis-Tetrahydrofuranyl-urethane

analogue of benzothiazole

H
NO

O

OH
N
S

O

O
H

H

O O
S

N
NH

N

TMC-310911
ASC-09

64

Protease Inhibitor HIV & COVID-

19

Phase I & IIa-

completed

(HIV)[104]

Phase 3-ongoing

(COVID-19)[105]

(Janssen R&D

Ireland)
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potency of compounds could be attributed due to the

favourable hydrophobic interactions of lipophilic benzoth-

iazole and 8-HQ moieties at S2 and S1 hydrophobic pock-

ets, respectively. Another ABT derivative containing

pyrimidine nucleus (4) strongly inhibited DENV NS3 heli-

case. The amino group of compound 4 formed a hydrogen

bond with Arg599 at the active site. Docking analysis of

6-methyl-N-(4-nitrophenyl)benzothiazol-2-amine (24) at

the active site of HCV RdRp protein structure showed that

it occupied the thumb domain of the enzyme and made

close contacts with the surrounding residues, Leu419,

Leu497, Arg501 and Trp528. It is thus observed that, in

general, ABT analogues could interact strongly with varied

molecular targets of different viruses and these ligands have

broad-spectrum structural features that make them profi-

cient for inhibiting numerous significant target proteins.

Figure 23 reveals a common structural features ABTs where

the lipophilic benzothiazole moiety is linked to the terminal

aryl/heteroaryl nucleus through amino/amide linkage as

hydrogen bonding domain.

In addition, bis-THF analogue containing ABTs (34)

have proved to be effective HIV-1 PIs. Bis-THF analogues

with HIV-1 protease shows extensive interactions at the

active site. The pharmacophore model suggests the

hydrophobic, electrostatic and hydrogen bonding with the

backbone atoms located in the S2 to S20-subsites whereas
the hydroxyl group binds to a catalytic aspartate while a P1

and P10 ligand occupy the S1 and S10 subsites (Fig 12).

Using the X-ray crystallography, the bis-THF template was

further optimised and developed into the first clinical can-

didate ABT derivative TMC310911 (ASC09, 64) with

improved resistance profile and higher genetic barrier to

resistance. TMC310911 has completed phase I and phase

IIa clinical trials and the drug was reported to be safe and

well tolerated. TMC310911 formed hydrogen bond net-

works with the ASP25, ASP25ꞌ, ASP29, ASP30, ASP30ꞌ

and GLY27 residues.[103]

Conclusion, authors comments and
future perspective

Despite some progress in recent years, the fight against

antiviral diseases remains a great challenge. Antiviral drug

discovery has seen huge leaps in scientific research and

Figure 23 Suggested pharmacophore model of ABT analogues for eliciting antiviral activities. [Colour figure can be viewed at wileyonlinelibra

ry.com]

Table 1 (Continued)

Chemical classes Pharmacophore

Mechanisms of

action Viruses Clinical status

Isoindoline-1,3-dione analogue of

2-thioxobenzothiazole
H
N

S N

O

O

S
N O

O

HIV-1 protease MDR-HIV NA

Coumarin analogue of

benzothiazole
N

S O
O

OH

Integrase inhibitors HIV NA

Benzobisthiazole

S

N
NH

OS
N

IRF3 agonists Influenza virus

A

NA

Cationic benzimidazole analogue

of benzothiazole
N

N+
S

N

I-

Protein-kinase-B

inhibitor

Parainfluenza

virus 5 (PIV5)

NA

NA, Not available.
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technological innovations. During the past few years, sig-

nificant advancements have been made in understanding

the molecular targets of viral proteins and based on these

many biochemical assays have been developed. In silico

screening, robust in vitro HTS and in vivo models have

become increasingly important tools for the discovery of

antiviral leads. Several antiviral compounds containing a

benzothiazole scaffold have emerged as excellent leads in

HTS viral enzyme assay and subgenomic replicon cells

assay. After an overview of the antiviral benzothiazole

analogues, it was noticed that there is a general trend of

designing molecules with simple substitutions at the C-2

position with amide or aryl ring. Some of these com-

pounds were unusually effective against a broad spectrum

of viruses, as their target genome shares a common

homology. This clearly indicates that there is still room

for improvement in terms of efficacy, toxicity and physic-

ochemical properties.

Moreover, the ongoing pandemic of COVID-19 is defin-

ing global health crisis of our time and underscores the

urgency to develop effective vaccine or medicine against

this virus. In this regards, hundreds of reports have been

published uncovering the whole genome sequence of

SARS-CoV-2 variants. Experts around the world have been

gearing up to repurpose existing drugs especially antiviral

drugs against the coronavirus. One PI, benzothiazolyl ana-

logue ASC09 (64), is currently under evaluation in clinical

trials as combinational therapy to assess the efficacy of

ASC09F and ritonavir for 2019-nCoV pneumonia.

No doubt, significant advancement in the discovery of

novel benzothiazolyl antiviral agents has been made, and

there is a plethora of preclinical candidates. There are still

lots of benzothiazoles having drug like properties with var-

ied biological activities have not been investigated for their

antiviral potential. Putting drug repurposing of these large-

scale data will play a principal role in clinical development

of novel antiviral drugs in the future. Various computa-

tional approaches along with HTS can be used to design

novel antiviral agents not only effective against COVID-19

but against any deadly viruses.
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