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ABSTRACT Linkage and association mapping populations are crucial public resources that facilitate the
characterization of trait genetic architecture in natural and agricultural systems. We define a large nested
association mapping panel (NAM) from 14 publicly available recombinant inbred line populations (RILs) of
Arabidopsis thaliana, which share a common recurrent parent (Col-0). Using a genotype-by-sequencing
approach (GBS), we identified single nucleotide polymorphisms (SNPs; range 563-1525 per population) and
subsequently built updated linkage maps in each of the 14 RIL sets. Simulations in individual RIL populations
indicate that our GBS markers have improved power to detect small effect QTL and enhanced resolution of
QTL support intervals in comparison to original linkagemaps. Using these robust linkagemaps, we imputed a
common set of publicly available parental SNPs into each RIL linkage map, generating overlapping markers
across all populations. Though ultimately depending on allele frequencies at causal loci, simulations of the
NAM panel suggest that surveying between 4 to 7 of the 14 RIL populations provides high resolution of the
genetic architecture of complex traits, relative to a single mapping population.
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Most phenotypes segregating in natural and agricultural populations
are quantitative traits which are commonly regulated by numerous
genes of small to moderate effect (Falconer andMackay 1996; Mackay
et al. 2009). Dissecting the genetic architecture of quantitative trait
variation is fundamental in characterizing evolutionary processes in
natural plant populations and is crucial to the development of new
agricultural accessions (Bergelson and Roux 2010; Alonso-Blanco
et al. 2009; Huang and Han 2014). Linkage disequilibrium mapping

in segregating progenies (e.g., F2, backcross, recombinant inbred lines
(RILs), etc.) is a powerful statistical approach used to uncover trait
genetic architecture in which marker defined chromosome intervals
in an experimental population are tested for statistical associations
with phenotypes of interest (Bergelson and Roux 2010; Mackay et al.
2009). This traditional mapping strategy has been crucial in further-
ing our understanding of the complex inheritance of life history traits
(e.g., flowering time; Buckler et al. 2009; Dittmar et al. 2014),
physiological traits (e.g., carbon assimilation or water use efficiency;
Edwards et al. 2011; Hausmann et al. 2005) and plant fitness/yield
(Malmberg et al. 2005). RIL populations (and more recent deriva-
tions, e.g., advanced intercrossed RILs, (AIRILs); Balasubramanian
et al. 2009; Darvasi and Soller 1995) are the product of crossing two
parents, followed by numerous generations of selfing and single-seed
decent—producing homozygous lines that are a mosaic of chromo-
somal regions from the parental founders. Once established and
genotyped, RIL populations are a convenient community resource
with high power to detect segregating QTL at moderate genomic
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resolution. Additionally, their “immortal” status allows researchers to
replicate genotypes within an experiment, improving genotypic trait
estimation, and to raise RIL populations across environments, allow-
ing for the examination of genetic variation in trait responsiveness to
the environment (i.e., G · E; El-Soda et al. 2015).

In spite of the many benefits of RIL populations, they are, by
definition, limited to a maximum of two alleles at any one locus, and
thus discount a majority of the additive and epistatic interactions that
contribute to phenotypic variation in natural populations (Kalisz and
Kramer 2008; Rakshit et al. 2012). Additionally, the extent of re-
combination in RILs is largely restricted to early generations as
opportunities for detectable recombination events decline as homo-
zygosity via inbreeding increases, limiting the mapping resolution of
QTL in these populations. Nested association mapping (NAM)
designs seek to mitigate these weaknesses by incorporating numerous
RIL populations that share a common recurrent parent (Buckler et al.
2009; Yu et al. 2008). Specifically, NAM populations allow for a more
complete picture of trait genetic architecture via increased sampling
of segregating genetic variation, which increases with the number of
founding parental lines. Moreover, this strategy benefits from en-
hanced mapping resolution due to the coupling of historic recom-
bination unique to each founding accession with contemporary
recombination during RIL population development. Recent NAM
populations have been formed for important agricultural crops (e.g.,
maize, soybean, rice, etc.), and have been integral to the genetic
characterization of important agricultural traits (e.g., flowering time)
and fundamental evolutionary mechanisms (e.g., heterosis; Buckler
et al. 2009; Song et al. 2017; Fragoso et al. 2017).

Arabidopsis thaliana RIL populations have long been used to
examine the inheritance of complex traits (Lister and Dean 1993;
Reiter et al. 1992). This system has many well-known advantages for
experimental and natural studies including: short generation time,
numerous genomic resources useful in exploring causal genes un-
derlying QTL (e.g., publicly available mutants, resequencing data
etc.), numerous segregating populations founded by a broad array of
accessions, and translational relevance to agro-ecologically important
members of the Brassicaceae family (e.g., Brassica napus, Camelina
sativa, and Boechera stricta). The NAM design has been implemented
in A. thaliana using three RIL populations (Li et al. 2011), but would
benefit from a larger number of founders as well as a higher density of
molecular markers. We expand on the Arabidopsis NAM design by
utilizing 14 publicly available RIL populations that result from crosses
between the recurrent Columbia accession (Col-0) and fourteen
alternate founders (Table 1; Simon et al. 2008; available at http://
publiclines.versailles.inra.fr). We utilize a genotyping-by-sequencing
(GBS) approach to augment existing marker genotyping and linkage
maps in each RIL population, improving linkage mapping resolution
for individual populations. Additionally, we impute an overlapping
set of single nucleotide polymorphisms (SNPs) from all parental
accessions (Atwell et al. 2010), producing a high-density SNP data-
set and a joint-linkage map for genome-wide association studies
(GWAS) across all 14 populations.

MATERIALS AND METHODS

SNP discovery and curation
We selected 14 Arabidopsis thaliana RIL populations from the
Institut National de la Recherche Agronomique (INRA; Versailles,
France) that utilize Col-0 as a common recurrent parent (Table 1).
From each population, the most informative 150 RILs were selected,
favoring lines with greater number of recombination events and lower

levels of heterozygosity (Simon et al. 2008); ultimately yielding
2100 unique F8 RIL lines. To build high density linkage maps across
all 14 A. thaliana RIL populations, we took a genotyping-by-sequenc-
ing (GBS) approach to SNP discovery. We obtained DNA samples
from Versailles, and used GBS methodologies slightly modified from
those detailed in Parchman et al. (2012). Briefly, we digested each
DNA sample with the restriction endonucleases EcoRI and HindIII
and then ligated customized adapters to each fragment containing the
Illumina adaptor sequences and 8-10 bp barcode sequences. We
substituted HindIII (with a 6-base recognition sequence; Table S1) in
combination with EcoRI for the commonly used MseI 4-base cutter
(Parchman et al. 2012) in order to reduce representation of chloro-
plast relative to nuclear derived reads as determined in silico using the
A. thaliana reference genome. Ligated fragments were PCR amplified
using two separate reactions and resulting products were pooled to
limit stochastic effects on relative abundance of fragments. PCR
products were then pooled across individuals and libraries were size
selected for fragments between 250-700bp using a BluePippin (Bev-
erly, MA, USA). Initial GBS libraries were sent to the RTSF Genomics
Core (Michigan State University, East Lansing, MI, USA) and
follow-up runs were sent to the Genomic Sequencing and Analysis
Facility (University of Texas, Austin, TX, USA). At both facilities,
libraries were sequenced on the Illumina HiSeq 2500 platform (1 ·
100 bp) and over 1 billion reads were assigned to barcoded samples.

Reads were mapped onto the A. thaliana reference genome
(TAIR10) using two separate approaches and resulting SNPs calls
were merged. First, we used SOAP (SOAPaligner ver. 2.21 and
SOAPsnp ver.1.03) in order to set priors on genotype calls based
on the probability of expected homozygosity in an F8 RIL population.
Second, we utilized BWA’s aln and samse algorithms (ver. 0.7) to map
reads to the TAIR10 reference. We then called SNPs using SAMtools
mpileup and BCFtools view (ver. 0.1.19) algorithms. In both ap-
proaches, we retained only uniquely mapping reads and only SNP
genotype calls with a read depth of eight or more. We used custom perl
scripts to combine SNP calling approaches, merging the novel SNPs
from BWA/SAMtools into the SOAPsnp results. Finally, we merged
SNPs originally genotyped from each RIL population (INRA; Versailles,
France) into our GBS approach after converting INRA SNPs to the
TAIR10 coordinate system. We visually inspected each RIL population
to confirm that Col-0 vs. alternate parentalmarker states were congruent
between our GBS data andmarkers available at INRA; inconsistent lines
were dropped. Additionally, lines with excessive heterozygosity or
limited genotyping were dropped; in total 4.1% of lines were excluded
bringing the final population to 2028 RILs (Table 1).

RIL linkage map construction and SNP imputation
For each population, we combined our new GBS SNP markers with
existing INRA markers and imported these data into the R/qtl
package (Broman et al. 2003) with SNP order based on physical
location. In each RIL population, we estimated marker map locations
(est.map; R/qtl) for each chromosome using a Kosambi mapping
function (Kosambi 1943). We then imputed missing data across
markers in each RIL set using R/qtl’s fill.geno function to “fill in”
missing genotypes between markers with identical genotypes (ignoring
chromosome ends and recombination breakpoint regions). We then
removed any imputed genotypes where multipoint marker data esti-
mated genotype probabilities (calc.genoprob; R/qtl) were less than 99%.

QTL simulations in individual RIL populations
To explore how our GBS SNPs improve mapping resolution and
efficiency in each RIL population, we ran 1000 simulations, in which
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small and large effect QTL (�10% and 30% percent variance
explained (PVE), respectively) were simulated at a randomly selected
SNP in each RIL population following imputation. In each simulation
run, we used the maximum likelihood algorithm in R/qtl’s scanone
procedure to identify each QTL (testing genome-wide significance
following 1000 permutations) and recorded effect size and 1.5 LOD
intervals of each QTL. We then dropped the new GBSmarkers from the
dataset and repeated mapping of the simulated trait with the mapping
procedure outlined above using only the original INRA markers. We
recorded if the simulatedQTLwas detected in each population using just
the INRA markers and, if so, the effect size and 1.5 LOD interval size.

NAM population SNP imputation and joint-linkage
map construction
Because our GBS markers rarely overlapped across populations, we
used the robust linkage maps of each individual population to impute
a common set of SNP markers across all 14 RIL sets. We utilized the
publicly available 250K SNP Arabidopsis dataset for imputation
(Horton et al. 2012; Atwell et al. 2010) because it contained
211,786 overlapping SNPs from 13 of the 14 alternate parents. For
the remaining parent, Ita-0, we interrogated publicly available bam
files (Durvasula et al. 2017) at each SNP location in the 250K dataset
to determine Ita-0 marker states.

In each RIL population, we interpolated map positions of the
250K SNPs and again used fill.geno to impute the 250K marker states
from each parent between GBS markers with identical marker states,
e.g., we filled alternate parent SNP states from the 250K dataset into
intervals anchored at both ends by alternate GBS marker states. Given
that the intervals in the GBS derived linkage maps are on average 0.4cM
(see results), this fill in approach has an average imputation error rate of
0.0016% (i.e., the probability of a double crossover in intervals anchored
by like parental marker states) and a maximal error rate of 1.93% (in
the largest interval across all populations, 13.9cM). All 14 RIL pop-
ulations weremerged together based on imputed, overlapping SNPs and
neighboringmarkers in perfect linkagewith respect to bothmarker state
and missing data were reduced to a single entry. These SNPs could
be used to map trait genetic architecture via GWA style analyses that
control for population structure (Zhou and Stephens 2014; Yu et al.
2008). Alternatively, the genetic architecture of complex traits in NAM
populations can be resolved via extensions of traditional linkage
mapping approaches in concert with a joint-linkagemap (Li et al. 2011).

Using the final imputed SNP files of our merged NAMpopulation,
we also generated a joint-linkage map for all 14 populations. Because
recombination events can only be detected between polymorphic SNPs,
we selected SNPs for which at least 11 of the 14 alternate parents shared
a SNP state and differed from the recurrent parent. SNPs in popula-
tions that were not polymorphic for a specific marker were encoded as
missing data (Li et al. 2011). Markers were imported into R/qtl with
ordering based on physical location and genetic map locations were
estimated using the Kosambi mapping function (est.map; R/qtl).

We estimated patterns of intra- and inter-chromosomal linkage
disequilibrium as measured by correlations (r2; TASSEL; Bradbury
et al. 2007) between 10000 randomly selected imputed SNPs in the
14 RIL populations of the NAM population. To explore how LD
changes with the number of RIL populations included in NAM, we
dropped seven populations and re-estimated LD values and finally
estimated LDwithin each of these seven populations as a baseline range.

NAM population power analyses
The ability to identify and characterize segregating genetic variation
in NAM analyses depends upon the QTL effect size, the degree of
linkage between causal gene and adjacent markers, the frequency of
each allele in the founding parental lines (and subsequently in the RIL
progeny of that specific cross), and the overall sample size of RILs in
each allelic class from which to estimate mean and standard error.
Moreover, the cost-benefit relationship of phenotyping multiple RIL
populations will vary given both the trait (e.g., how difficult the trait is
to measure) and its genetic architecture. To broadly examine the
ability of different combinations of the 14 Arabidopsis RIL popula-
tions in resolving QTL across a range of effect sizes, we simulated two
QTL scenarios. First, we selected all markers where all alternate
parental lines were identical and differed from the recurrent Colum-
bia parental line (i.e., all RIL populations segregated at these SNPs).
We randomly selected a SNP marker and simulated a QTL at this
marker for all RILs in all 14 populations; we then created 13 additional
datasets of this trait by progressively dropping a randomly selected
RIL population. This process was repeated 1000 times for each of
seven QTL effect sizes (5%, 7.5%, 10%, 15%, 20%, 40%, 80% PVE).
Second, we selected markers that varied in only one of the 14 RIL
populations to explore how power to detect a rare causal QTL in a
single population was influenced by adding additional invariant
populations (which would influence sample size and trait mean

n■ Table 1 Metadata and metrics for each of 14 Arabidopsis thaliana recombinant inbred line populations (RIL) that share a common
recurrent parent (Col-0) and form a nested association mapping population described herein. RIL populations are available at Institut
National de la Recherche Agronomique (INRA; Versailles, France; http://publiclines.versailles.inra.fr)

INRA
population

Alternate
parent

Population
size

Total
Markers

GBS
Markers

Overall
Length (cM)

Avg.
interval (cM)

Max
interval (cM)

Avg. missing
data GBS

Avg. missing data
post-imputation

2RV bla1 141 641 563 443.1 0.7 13.9 27.1% 3.2%
3RV tsu0 145 1254 1175 449.8 0.4 6.4 23.6% 1.4%
4RV nok1 144 1243 1158 462.6 0.4 7.1 23.0% 1.1%
6RV ri0 144 1503 1419 489.5 0.3 7.5 16.6% 0.8%
8RV cvi0 147 1615 1525 634.5 0.4 11.7 22.7% 1.0%
13RV sha 148 796 711 417.4 0.5 7.9 20.2% 1.3%
17RV ge0 149 1201 1119 485 0.4 5 23.6% 1.2%
19RV can0 148 1561 1477 481.5 0.3 6.1 26.0% 1.2%
20RV bur0 142 1344 1257 433 0.3 5.5 21.5% 1.1%
21RV blh1 137 1074 1000 485.1 0.5 6.8 23.3% 1.3%
23RV yo0 150 1351 1269 477.5 0.4 7.2 20.6% 0.8%
27RV oy0 149 1349 1264 488.7 0.4 9.7 19.7% 1.1%
28RV jea 147 1435 1348 482.2 0.3 6.5 17.8% 0.8%
29RV ita0 137 1183 1096 430.8 0.4 9 16.4% 0.9%
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estimation). We followed a similar approach to that above by
simulating QTL of seven effect sizes for a randomly selected marker
and repeating this 1000 times for each PVE category. In this second
simulation, PVE settings were consistent with those above; however,
because only one population varied, target PVEs were only realized in
the single segregating population. We again created 14 separate
datasets by progressively dropping a randomly selected RIL popu-
lation that was not polymorphic.

For each simulation scenario, we used a univariate linear mixed
model to perform a likelihood ratio test while controlling for re-
latedness within and across RIL populations for each of the 1000 sim-
ulated traits for each of the 14 datasets. We recorded if a significant
effect was detected for the SNP selected during QTL simulation
(GEMMA ver. 0.97; Zhou and Stephens 2014), using a LOD score of
�3 (P-value = 0.0001; Nyholt 2000) as a generally accepted, albeit
somewhat liberal, genome-wide significance threshold.

Data availability
In addition to data within this manuscript, we present supplemental
files via FigShare. Fig. S1 and Fig. S2 contain linkage map and LD
plots of RILs and the NAM population, respectively. Table S1
contains sequences of custom adapters described in the methods.
We have submitted all individual RIL linkage maps, imputed SNPs
across all 14 NAM populations, and a joint-linkage map where at
least 11 alternative parents share a common SNP state to the dryad
repository (https://doi.org/10.5061/dryad.c2fqz614w). Supplemental
material available at figshare: https://doi.org/10.25387/g3.12683750.

RESULTS & DISCUSSION
Most traits segregating in natural and agricultural populations have a
quantitative genetic basis, which have often been characterized
through the use of traditional LD mapping (Doerge 2002; Mackay
2001) and more recent association mapping approaches (Yu et al.
2008). RIL populations have long been used to detect QTL of broad
chromosomal regions with strong statistical power, which results
from loci segregating at intermediate allele frequencies and the ability
to robustly estimate genotypic means through averaging replicate
plants of the same multilocus genotype (Bergelson and Roux 2010).
However, a single RIL population fails to characterize much of the
genetic diversity segregating across natural populations because each
RIL population can carry at most two alleles at any causal locus and
will be fixed at the majority of causal loci segregating in the species.
Nested-association mapping panels (NAM) consist of multiple RIL
populations that all share a common, recurrent parental line; this
design should enhance segregating genetic diversity, power, and

mapping resolution while maintaining the utility and immortality
of RIL populations (Yu et al. 2008). Here we present GBS genotyping
of 14 Arabidopsis RIL populations that all share the well-character-
ized recurrent parent Col-0. These GBS data were used to estimate
robust linkage maps in each population and subsequently leveraged
to impute shared whole-genome SNP data into each RIL set, creating
a large 14-population NAM panel of Arabidopsis.

RIL Linkage map construction, SNP imputation, and
QTL simulations
We identified an average of 1170 SNPs per RIL population (range:
563-1525 SNPs). Combining our new GBS markers with the original
markers developed at INRA (range: 74-90 markers), we estimated
new linkage maps in each of the 14 populations resulting in an
average marker spacing of 0.4 cM (range: 0.3-0.7 cM) and an average
maximum spacing of 7.9 cM (range: 5.0-13.9 cM; Table 1; individual
RIL linkage maps available at Dryad: Brock et al. 2020). These results
substantially add to previous linkage map versions (available at http://
publiclines.versailles.inra.fr; Simon et al. 2008), reducing the average
and maximum interval size by 92.3% and 40.7%, respectively. Our
improved RIL linkage maps are comparable to other recently con-
structed maps that also used a GBS approach, producing high-density
genetic maps with increased genomic resolution of recombination
events (e.g., Serin et al. 2017). Rates of missing genotype data at our
GBS SNPs varied across RIL populations, averaging 21.6% (range:
16.4–27.1%; Table 1); however, following a conservative “fill in”
imputation approach, which ignored breakpoints and chromosome
ends, levels of missing data fell to an average of 1.2% across all RIL
populations (range: 0.8–3.2%). Recombination fraction plots (not
presented) support using physical location from the Col-0 TAIR10
reference genome to order markers in each population. Moreover, we
note regions with significant inter-chromosomal linkage disequilib-
rium in 8 of the 14 RIL populations (Table 2; Figure 1; Fig. S1). Several
of these instances of inter-chromosomal LD are pronounced—lack-
ing one of the four possible allelic combinations for these interacting
regions.

Segregation distortion has been previously reported in many of
these RIL populations (Simon et al. 2008), and several have sub-
sequently been well-characterized as prominent examples of Dobz-
hansky-Muller incompatibilities. Genetic incompatibilities between
Chr 1 and Chr 5 identified in Cvi-0 x Col-0 and Ita-0 x Col-0 have
been shown to result from reciprocal loss of a historically duplicated
essential gene. Specifically, the combination of a homozygous null
copy of the histidinol-phosphate aminotransferase 1 gene (HPA1) on
Chr 1 (donated by Col-0) combined with a homozygous null copy of
HPA2 on Chr 5 (donated by Ita-0 or Cvi-0) results in recessive

n■ Table 2 Regions of significant linkage disequilibrium and specific allelic combinations with distorted low frequency (REF and ALT indicate
Col-0 and alternate parent alleles, respectively) in each of eight Arabidopsis thaliana recombinant inbred populations. Regions are denoted
as chromosome @ nucleotide position (in MB)

INRA
population

Alternate
parent LD region 1

low frequency
allelic combination 1 LD region 2

low frequency
allelic combination 2

3RV tsu0 3@17.6MB x 4@ 1.2MB 13.3% REF & REF
4RV nok1 1@13.6MB x 5@ 8.5MB 0% REF & ALT
6RV ri0 1@ 2.2MB x 3@23.1MB 11.1% REF & REF
8RV cvi0 1@ 6.6MB x 3@ 2.2MB 2.3% REF & ALT 1@27.1MB x 5@ 3.4MB 0% REF & ALT
13RV sha 4@13.2MB x 5@26.7MB 3.7% REF & ALT
21RV blh1 4@ 0.1MB x 5@ 4.4MB 8.5% REF & REF
28RV jea 4@10.9MB x 5@ 4.0MB 2.1% REF & ALT 2@14.9MB x 4@12.2MB 16.1% REF & ALT
29RV ita0 1@27.1MB x 5@ 3.9MB 1.6% REF & ALT 4@ 1.4MB x 5@ 3.1MB 3.4% ALT & ALT
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embryo lethality and lines with these allelic combinations were lost
during RIL development (Bikard et al. 2009; Simon et al. 2008).
Similar genetic mechanisms have been shown to produce incompat-
ibilities in Sha x Col-0 between null and epigenetically silenced
versions of paralogous duplications of a folate transporter gene
(FOLT) present on Chr 4 and Chr 5 (Durand et al. 2012) as well
as in Nok-1 x Col-0 RILs that exhibit incompatibilities between
variation in the presence of functional alleles and silenced epialleles
of the tRNA-specific adenosine deaminase 3 gene (TAD3) found on
Chr 5 and Chr 1 (Agorio et al. 2017; Balasubramanian et al. 2009).
Additional extreme distortions in Jea x Col-0 and in Ita-0 x Col-0 (in
both cases between regions on Chr 4 and Chr 5) suggest additional
incompatibilities that are, as yet, unexplored.

In simulations of small and large effect QTL (average PVE: 10.2%
and 28.8%, respectively) within each individual RIL family, the
addition of our GBS markers reduced 1.5 LOD intervals by an
average of 23.3% (range: 13.4–34.4%) and 56.6% (range: 40.4–
63.3%), respectively (Table 3). These small and large effect QTL
average genetic intervals translate to 5.1 to 7.6 Mb and 1.5 to 2.9 Mb,
respectively, for our estimated 1.5 LOD support intervals in which we
have �95% confidence of localizing the simulated QTL (Alonso-
Blanco et al. 1998; Dupuis and Siegmund 1999). Although the
additional GBS markers did not appreciably improve power to detect
large-effect QTL (Table 3), the GBS datasets were on average 31.2%
more likely to detect a simulated small-effect QTL relative to analyses
with only the original INRA markers. QTL mapping resolution is
correlated with the number of recombination events in a mapping
population, which has led to alternative mapping population designs
with additional generations of intercrossing (e.g., advanced intercross
RILs (AI-RILs); Balasubramanian et al. 2009; Darvasi and Soller
1995). Additional genotyping within the individual RIL populations
is unlikely to dramatically improve resolution beyond the gains
presented here; instead, future efforts should incorporate additional
lines (i.e., beyond the�150 per population here) to capture additional
recombination events while concomitantly improving power through
more accurate estimation of genotype means.

NAM population SNP imputation, joint-linkage map
construction, and power analyses
We imputed SNPs from the 250K Arabidopsis dataset (Horton et al.
2012; Atwell et al. 2010) into our robust linkage maps of each RIL

population, resulting in an imputed NAM dataset of 181,579 SNPs
across all five chromosomes for the 2028 RILs (NAM imputed SNPs
available at Dryad: Brock et al. 2020). Following imputation only 5.6%
of the NAM SNPs were missing and given our imputation approach
most missing data are found at the chromosome ends where an-
choring GBS markers were found in progressively fewer populations.
In addition to GWA analyses that test for phenotype associations
across a large imputed SNP dataset (e.g., GEMMA; Zhou and Stephens
2014), other approaches use a joint-linkage map to identify QTL
residing in marker-defined intervals. Using SNP markers where at
least 11 of the 14 alternate parents differed from the marker state of the
recurrent Col-0 parent, we built a joint-linkage map, which had an
average interval size of 0.1cM with a maximum interval size of 2.9cM
(Fig. S2; NAM joint-linkage map available at Dryad: Brock et al. 2020).

Within individual RIL populations there was, not surprisingly,
extensive intra-chromosomal LD, falling to an r2 value of 0.1 between
distances of�5.8 -�8.6Mb in a sample of 7 of the 14 RIL populations
(Figure 2A); however, merging multiple RIL populations resulted in
intra-chromosomal LD decaying over much shorter distances, falling
to an r2 value of 0.1 at�3.5Mb and�2.1Mb when combining 7 or all
14 RIL populations, respectively. Inter-chromosomal LD across the
imputed SNPs of all 14 RIL populations were commonly significant
due to the large number of RILs; however, the strength of the associ-
ations was weak (mean r2 = 0.0098; 95% CI = 0.00983 – 0.00985;
Figure 2B).

Weaker LD observed in the combined NAMpopulation relative to
individual RIL populations largely arises from the action of historical
recombination events and evolutionary forces differentially shaping
the genomes of parental lineages, which reduces SNP-SNP correla-
tions as increasing numbers of RIL populations are added. The more
rapid decay in intra-chromosomal LD should improve mapping
resolution in ArabidopsisNAM analyses (Yu et al. 2008). LD patterns
in this NAM panel are similar to those observed in the Arabidopsis
Multiparent Advanced Generation Inter-Cross (MAGIC) lines
(Scarcelli et al. 2007; Kover et al. 2009); a RIL population generated
by intercrossing 19 Arabidopsis parental founders and resulting
offspring for four generations followed by six additional generations
of inbreeding. In the MAGIC population, r2 falls to 0.1 around 4.5Mb
suggesting that the NAM population may have slightly finer mapping
resolution; however, given the additional generations of intercrossing
in theMAGIC population, these apparent differences in LDmay stem

Figure 1 A) Linkage map for the
Cvi-0 x Col-0 Arabidopsis thali-
ana RIL population (8RV: http://
publiclines.versailles.inra.fr/rils/
index) using 1615 total SNPs
(both original INRA and new
GBS identified SNPs) following
conservative imputation. B) Link-
age disequilibrium plot of intra-
and inter-chromosomal LD in
Cvi-0 x Col-0 as measured by
SNP-SNP Pearson product mo-
ment correlation coefficients
(r2; top right of diagonal) with
associated significance tests
(p-value; lower left of diagonal).
See Fig. S1 for linkage maps
and LD plots of remaining 13
Arabidopsis RIL populations
referenced in Table 1.
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from ascertainment bias of SNPs describing LD in Kover et al. (2009)
relative to the 10K randomly selected SNPs following imputation
used here.

We used 181,579 SNP dataset to explore the ability of different
subsets of the NAM population to resolve simulated QTL of variable
effect sizes (5–80% PVE; Figure 3). We selected two extreme cases

n■ Table 3 Results of simulating small and large effect QTL in each of 14 Arabidopsis thaliana recombinant inbred populations illustrating
increased power of detection and enhanced interval resolution of linkage maps with GBS SNPs in comparison to original INRA maps

Small Effect QTL

INRA
population

Alternate
parent Mean QTL PVE Mean 1.5 LOD Interval (cM)

Perc. Reduction of
QTL Interval

Perc. QTL detected
by INRA

GBS INRA GBS INRA

2RV bla1 10 9.7 25.2 29.1 213.4 74.2
3RV tsu0 10.1 9.6 23.3 28.1 217.1 75.7
4RV nok1 10.5 9.9 21.3 28.5 225.3 75.9
6RV ri0 10.3 9.5 24.5 34.1 228.2 79.1
8RV cvi0 10.6 9.8 24.2 36.9 234.4 78
13RV sha 9.8 9.3 21 27.1 222.5 80.3
17RV ge0 9.9 9.2 21.9 28.4 222.9 78.2
19RV can0 10.1 9.5 22.6 30.6 226.1 75.7
20RV bur0 10.1 9.5 23.8 32.8 227.4 75.5
21RV blh1 10.7 10 24.7 31.6 221.8 68.7
23RV yo0 10.2 9.4 21.1 29.9 229.4 74.4
27RV oy0 10 9.4 24.5 29.2 216.1 74.9
28RV jea 10.1 9.4 22.3 28.6 222 78.6
29RV ita0 10.7 10 22 27.5 220 76.9

Large Effect QTL

INRA
population

Alternate
parent Mean QTL PVE Mean 1.5 LOD Interval (cM)

Perc. Reduction of
QTL Interval

Perc. Of QTL detected
by INRA

GBS INRA GBS INRA

2RV bla1 28.9 26.6 9.7 16.3 240.4 98
3RV tsu0 29.2 26.3 7.2 15.9 255.1 99.3
4RV nok1 28.4 25.5 7.1 16.1 255.5 98.4
6RV ri0 29 25.9 6.7 16.8 260.3 98.5
8RV cvi0 28.7 25 7.1 19.5 263.3 97.8
13RV sha 28.5 25.9 7.6 15.7 251.7 98.8
17RV ge0 28.9 25.6 6.9 17.1 259.8 98.9
19RV can0 28.9 25.8 6.7 17.6 262.2 98.5
20RV bur0 28.7 26 6.8 15.1 254.8 98.2
21RV blh1 29.1 25.9 7.8 18.3 257.6 98.6
23RV yo0 29.1 25.8 6.8 17.6 261.3 99.2
27RV oy0 29.1 26 7 16.5 257.7 97.7
28RV jea 28.9 25.7 6.6 16.6 260 98.9
29RV ita0 28.2 25.3 8 16.8 252.4 98

Figure 2 A) Linkage disequilib-
rium (LD; r2) as a function of dis-
tance across all five Arabidopsis
thaliana chromosomes of com-
bined and separate RIL popula-
tions. Black lines illustrate LD in
all 14 RIL populations of the
NAM panel described herein;
gray lines illustrate LD in a subset
of just 7 RIL populations, and
colored best fit lines illustrate
the range of LD in each of the
7 populations. B) LD plots illus-
trating inter-chromosomal associ-
ations that are typically weak (r2;
top right of diagonal) but com-
monly significant (p-values; lower
left of diagonal).
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with which to explore NAM power: causal SNPs that are segregating
in all RIL populations or just a single population. Our linear mixed
model results suggest that power to resolve small to moderate effect
QTL increases substantially when comparing single RIL populations
to NAM panels consisting of three or more RIL populations (Figure
3A). Strikingly, for causal effect loci that are shared among alternate
parents, gains in power diminish beyond NAM panels of four RIL
populations; however, given the lack of a priori knowledge regarding
trait genetic architecture and the fact that inclusion of multiple
parents increases the likelihood of capturing a greater allelic diversity
of causal loci, NAM panels of seven populations should provide a
more robust characterization of trait genetic architecture while
limiting costs of space and phenotyping time required for raising
all 2028 RILs (Figure 3B).

INRA’s formation and curation of RIL populations that include
the recurrent Col-0 parental line coupled with our new GBS SNP data
and linkage maps adds to a growing number of segregating progeny.
Given available multi-parental Arabidopsis populations, researchers
may gravitate toward either using the MAGIC lines (Kover et al.
2009) or the NAM panel described here; both are powerful popu-
lations for exploring the genetic architecture of complex traits and
have obvious advantages over more traditional F2 and single RIL
populations. The MAGIC lines (at 527 MLs as described in Kover
et al. 2009) should offer a larger sampling of genetic variation given
the intercrossing of 19 founding parental lines—an advantage when
dissecting trait genetic architecture of moderate to large effect-size
QTL. Yet, as minor allele frequency (MAF) declines in the MAGIC
(to the theoretical minimum of�1/19) the number of MLs that could
carry a rare allele also declines (toward �28 of 527 MLs). This low
replication may impede detection of allelic effects for low to moderate
effect-size QTL. The minimumMAF in any subset of the NAM panel
yields at least �75 RILs with which to estimate allelic effects, and, as
such, researchers interested in discovery of low to moderate effect
alleles may be better served with the NAM panel.

QTL detection ultimately depends on the presence of genetic
variation from founders of a segregating population as well as the
underlying trait genetic architecture. Screening parental lines (of
NAM and MAGIC populations) can further QTL discovery by
ensuring maximal phenotypic variation in traits of interest segregat-
ing in a specific mapping population. Researchers utilizing a subset of
the full NAM panel could also benefit from selecting RIL sets derived
from the most negatively and positively deviating parental lines for a
trait of interest. Together with other advanced segregating progeny
(Balasubramanian et al. 2009; Kover et al. 2009), this NAM panel
should help advance a research community interested in identifica-
tion of highly-resolved QTL regulating complex traits as well as the
characterization of trait genetic architecture across environments.
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