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Objectives: To develop and validate a predictive model for discriminating clinically

significant prostate cancer (csPCa) from clinically insignificant prostate cancer (ciPCa).

Methods: This retrospective study was performed with 159 consecutively enrolled

pathologically confirmed PCa patients from two medical centers. The dataset was

allocated to a training group (n = 54) and an internal validation group (n = 22) from

one center along with an external independent validation group (n = 83) from another

center. A total of 1,188 radiomic features were extracted from T2WI, diffusion-weighted

imaging (DWI), and apparent diffusion coefficient (ADC) images derived fromDWI for each

patient. Multivariable logistic regression analysis was performed to develop the model,

incorporating the radiomic signature, ADC value, and independent clinical risk factors.

This was presented using a radiomic nomogram. The receiver operating characteristic

(ROC) curve was utilized to assess the predictive efficacy of the radiomic nomogram in

both the training and validation groups. The decision curve analysis was used to evaluate

which model achieved the most net benefit.

Results: The radiomic signature, which was made up of 10 selected features, was

significantly associated with csPCa (P < 0.001 for both training and internal validation

groups). The area under the curve (AUC) values of discriminating csPCa for the radiomics

signature were 0.95 (training group), 0.86 (internal validation group), and 0.81 (external

validation group). Multivariate logistic analysis identified the radiomic signature and

ADC value as independent parameters of predicting csPCa. Then, the combination

nomogram incorporating the radiomic signature and ADC value demonstrated a

favorable classification capability with the AUC of 0.95 (training group), 0.93 (internal
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validation group), and 0.84 (external validation group). Appreciable clinical utility of this

model was illustrated using the decision curve analysis for the nomogram.

Conclusions: The nomogram, incorporating radiomic signature and ADC value,

provided an individualized, potential approach for discriminating csPCa from ciPCa.

Keywords: prostate cancer, magnetic resonance imaging, radiomic, nomogram, prediction

INTRODUCTION

Prostate cancer (PCa) is the second most frequently diagnosed
cancer in men worldwide (1). The serum prostate-specific
antigen (PSA) and digital rectal examination are the most widely
used in the PCa screenings in clinical practice (2). If a patient
presents with an elevated PSA, transrectal ultrasound (TRUS)-
guided biopsy is the conventional diagnostic approach. However,
about over 30% of men undergo side effects with TRUS-guided
biopsy, including pain, bleeding infection, and hematuria, and
∼1% need to be hospitalized for observation (3). Furthermore,
some patients experience unnecessary biopsies as clinically
insignificant PCa (ciPCa), defined as a Gleason score (GS) <3+4
or amaximum cancer core length of<6mm,may be detected (4).
The clinically significant PCa (csPCa) is defined as a GS≥ 3+4 in
at least one biopsy core pathology (4–6). The principal treatment
of ciPCa is active surveillance rather than radical prostatectomy,
which is routine treatment for localized csPCa. In addition, the
detection of ciPCa by transrectal ultrasound-guided biopsy may
cause overtreatment in a few patients.

Multi-parametric MRI (mp-MRI) containing anatomical
sequences (T1- and T2-weighted imaging; T1WI and T2WI)
and functional sequences [diffusion-weighted imaging (DWI)
and dynamic contrast-enhanced (DCE)] has been regarded as
an advanced imaging pattern in the identification of PCa (7, 8).
Mp-MRI plays an important role in decreasing the overdiagnosis
and overtreatment for ciPCa, arranging target biopsy, tumor
stage, or treatment for csPCa patients. However, its diagnostic
performance and evaluation capacity varies based on each
individual radiologist. The overall inter-reader consistency of
multiple reports ranges from poor (0.5) to moderate (0.71),
mainly depending on the experience and learning level of
radiologists (9, 10).

Radiomic methods are regarded as a noninvasive, efficient,
and reliable method for adopting advanced image-processing
techniques to extract a variety of quantitative features from
imaging data (11). Radiomics has been mainly used in
oncology, for instance, lung cancer, brain astrocytoma, and
breast carcinoma, wherein radiomics is utilized to identify tumor
stage, curative effect, prognosis assessment, and genetic analysis
(12–14). Radiomics has also been extended to PCa, mainly
focusing on PCa diagnosis and differentiation (15–18). Min et al.
investigated an mp-MRI-based radiomic signature for predicting
patients with csPCa (18). The results showed that the radiomic
signature had a potential to discriminate csPCa from ciPCa,
wherein the area under the curve (AUC) was 0.823 in the
validation cohort. However, the diagnostic efficacy of an mp-
MRI-based radiomic nomogram in the identification of csPCa

has not been completely determined. The use of nomograms
has been widely accepted as a reliable method for determining
quantitative risk factors for clinical events (19). In this study,
we hypothesized that a radiomic nomogram incorporating an
mp-MRI-based radiomic signature and independent clinical risk
factors can non-invasively discriminate csPCa from ciPCa in
patients with suspected PCa. Therefore, we sought to develop and
validate a radiomic nomogram that would incorporate a radiomic
signature and clinical risk factors for the pre-biopsy prediction
of csPCa.

MATERIALS AND METHODS

Patient Cohort
This retrospective study was approved by the Institutional
Ethical Committee of the Guangxing Hospital Affiliated to
Zhejiang Chinese Medical University and the First Affiliated
Hospital of Zhejiang Chinese Medical University, which waived
the requirement for written informed consent. The study
consecutively enrolled 159 patients with biopsy pathology-
proven PCa who received mp-MRI examination from January
2016 to February 2020. All patients were scanned on the
same model scanner and did not receive TRUS-guided biopsy
prior to MRI examination. Exclusion criteria were (1) prior
therapy history for PCa patients including antihormonal
therapy, radiation, cryotherapy, or prostatectomy; (2) incomplete
information or severe imaging artifacts of the MRI images; (3)
lesion diameter <5mm on mp-MRI images; and (4) lack of
serum PSA level (Figure 1). The enrolled patients were randomly
assigned to a training group (n = 54) and an internal validation
group (n = 22) from the Guangxing Hospital Affiliated to
Zhejiang Chinese Medical University along with an external
independent validation group (n = 83) from the First Affiliated
Hospital of Zhejiang Chinese Medical University another center.

Baseline clinical features were derived from medical records,
including age and PSA level with the cutoff value of 10 ng/ml.
The interval time between MRI and PSA testing was less than
1 month.

MRI Examination
All recruited patients were scanned using the same model 3.0 T
MRI (Discovery 750W 3.0T, GE Healthcare, Milwaukee, USA)
with a 32-channel pelvic coil. The protocol included transverse
T1WI; transverse, sagittal, and coronal T2WI; transverse DWI;
apparent diffusion coefficient (ADC) imaging derived fromDWI;
and dynamic contrast-enhanced. DWI was applied with a b
value of 0 s/mm2, 1000 s/mm2. The details of the imaging
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FIGURE 1 | Diagram for inclusion of patients into the study. csPCa, clinically significant prostate cancer; ciPCa, clinically insignificant prostate cancer; mp-MRI,

multi-parametric MRI; PSA, prostate-specific antigen.

sequence parameters of two medical centers are summarized in
Supplementary Table 1.

Lesion Segmentation on MR Images
Only T2WI, DWI, and ADC images were incorporated in
this study because of the availability and emphasis in Prostate
Imaging and Reporting and Data System version 2(PI-RADS
v2) (7). The software package ITK-SNAP (version 3.4.0; www.
itksnap.org) was used for manual segmentation of PCa lesion.
The region of interest (ROI) was delineated along the boundaries
of the lesion layer by layer in reference to the biopsy’s pathological
results. Given the importance of heterogeneity analysis, ROI was
designed to contain regions of calcification, necrosis, bleeding,

and cystic tissue, not including structures such as the urethra,
seminal vesicle, and other normal anatomical structures. For
differing pathological GSs, the highest biopsy GS regions were
uniquely selected for delineation. If all lesions demonstrated the
same GS onmulti-focal PCa, the ROIs were depicted at each level
manually until all lesions were incorporated.

A radiologist (W.C. with 3 years of experience of abdominal
MRI) who was blind to the GS of each PCa lesion measured
ADC value. The ROIs were placed to comprise as much of
the inner aspect of the lesion as possible without encompassing
surrounding normal structure on the ADC map. There was
between one and three ROIs of each patient with a mean area
of 40 mm2 (range, 10–80 mm2). Another abdomen radiologist
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(F.C. with 21 years of experience of abdominal MRI) who was
blind to the PCa lesion evaluated the MR-T stage for each patient
in reference to NCCN guidelines (20).

Intra- and Inter-observer Agreement
The intra- and inter-observer agreements for feature extraction
were assessed by the intra-class correlation coefficient (ICC).
Initially, integrated imaging data of 20 patients were randomly
selected from the study group. All ROIs on T2WI, DWI, and
ADC images were rigorously outlined with the same criteria by
two experienced radiologists independently. Intra-observer ICC
was analyzed by comparing two extractions of reader 1 (Y.Z.
with 10 years’ experience of abdominal MRI). Inter-observer
ICC was evaluated by comparing the extraction of a second
reader (F.C. with 21 years’ experience of abdominal MRI) and
the extraction of reader 1. An ICC that was >0.8 was regarded
as a good agreement and the remaining image segmentation was
implemented by reader 1 (21).

Radiomic Feature Extraction and Model
Building
AK software (Artificial Intelligence Kit V3.0.0.R, GE Healthcare)
was performed to extract a total of 396 radiomic features per
ROI of each MRI scan, including the histogram, second-order
statistic, Gray-Level Co-occurrence Matrix (GLCM), Run length
matrix (RLM), and form factor parameters (15). The histogram,
also called first-order statistic, represents the distribution of
values of each voxel without concern for spatial relationships.
The second-order statistic was routinely named as the texture

features, which described the statistical relationships between
voxels with similar (or dissimilar) contrast values. The overall
number of the radiomic features in this study was 1,188. Before
feature selection, the values of individual feature for the whole
patients was normalized with Z-scores ((x–µ)/σ), wherein x is the
value of the feature, µ represents the mean values of this feature
for all patients in the set, and σ describes the corresponding
standard deviation so as to get rid of the unit limits of each
feature prior to being performed for a machine learning model
for classification (22).

As the imbalance between csPCa and ciPCa patients may
impact the classification capability, the synthetic minority
over-sampling technique (SMOTE) was implemented in
the training and validation group. Then, the two-feature
selection method, minimum-redundancy maximum-relevance
(mRMR), and least absolute shrinkage and selection operator
(LASSO) were used to select the feature. At first, mRMR was
performed to eliminate the redundant and irrelevant features;
20 features were retained. Then, LASSO was conducted
to choose the optimized subset of features to construct
the final model. Tenfold cross-validations were used to
determine the optimal values of λ. Finally, only 10 of the
most predictive features were chosen and the corresponding
coefficients were evaluated. Predictive models were constructed
by multivariable logistic regression with the selected 10
features. A Radiomic signature (Rad-score) was then
calculated for each patient via a linear combination of
selected features weighted by their respective coefficients in
the predictive models. The radiomic workflow is demonstrated

FIGURE 2 | The framework for the radiomic workflow.
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TABLE 1 | Characteristics of patients in the training and validation groups.

Characteristics Training group P Internal validation group P External validation group P

csPCa (n = 41) ciPCa (n = 13) csPCa (n = 17) ciPCa (n = 5) csPCa (n = 62) ciPCa (n = 21)

Age (years) 73.830 ± 9.423 72.080 ± 7.794 0.700 78.180 ± 9.488 71.200 ± 3.421 0.054 73.230 ± 9.074 70.570 ± 9.042 0.250

PSA (ng/ml) 78.870 ± 180.596 14.498 ± 17.249 0.009 135.778 ± 262.629 13.555 ± 11.726 0.046 51.768 ± 132.283 13.217 ± 7.969 0.026

ADC value 707.710 ± 78.221 844.020 ± 183.432 0.001 702.405 ± 89.633 835.680 ± 44.353 0.003 803.974 ± 106.950 885.545 ± 134.103 0.006

MRI T-stage 0.049 0.074 0.001

T2 26 13 8 5 26 19

T3 9 NA 7 NA 26 2

T4 6 NA 2 NA 10 NA

Position 0.376 0.218 0.234

Peripheral zone 20 10 9 4 36 12

Transitional zone 9 3 3 1 20 9

Peripheral and

Transitional zone

12 NA 5 NA 6 NA

Gleason score 0.001 0.001 0.000

6 NA 13 NA 5 NA 21

7 22 NA 9 NA 25 NA

8 13 NA 6 NA 18 NA

9 5 NA 2 NA 16 NA

10 1 NA NA NA 3 NA

ADC, apparent diffusion coefficient; csPCa, clinically significant prostate cancer; ciPCa, clinically insignificant prostate cancer; NA, not available; PSA, prostate-specific antigen.

in Figure 2. The radiomics procedure is described in detail in
Supplementary Material 2.

Statistical Analysis
Categorical variables demonstrate the frequency, whereas
continuous variables demonstrate the mean and standard
deviation (SD). The Fisher’s exact test or Chi-squared test was
adopted to assess the categorical variables, when appropriate. The
Mann–Whitney U test was implemented to analyze the non-
normally distributed continuous variables. R software (v. 3.5.1,
Vienna, Austria) and SPSS 22.0 (IBM, Armonk, NY) were used
to perform statistical analysis. The LASSO logistic regression
was utilized with the “glmnet” package. The receiver operating
characteristic (ROC) plots were constructed by the “pROC”
package. Delong test was used to compare statistical difference
in AUC of patient discrimination among groups. The nomogram
construction and calibration plotting were used by the “rms”
package. The decision curve analysis curve plots were performed
using the “rmda” package. The diagnostic efficacy of the predictor
was evaluated using the values of accuracy, sensitivity, and
specificity. A P < 0.05 in two-tailed analyses was used to define
statistical significance.

RESULTS

Clinical Characteristics of Patients
Table 1 highlights the patient’s clinical characteristics. It showed
no significant statistical difference in age (p = 0.054–0.700)
and lesion location (p = 0.218–0.376), while the remaining
parameters had statistical difference (P < 0.05). Univariate
logistic analysis demonstrated the probability of csPCa having

TABLE 2 | Logistic regression analyses for discriminating between clinically

significant and clinically insignificant prostate cancer.

Variable Univariate logistic analysis Multivariate logistic analysis

OR (95% CI) P OR (95% CI) P

MR-T stage 6.081 (2.1, 10) 0.991 NA* NA*

Age 1.043 (0.980, 1.110) 0.183 NA* NA*

ADC 0.983 (0.973, 0.992) <0.001 0.985 (0.975, 0.995) 0.029

PSA 1.048 (1.007, 1.091) 0.022 1.024 (0.986, 1.064) 0.340

ADC, apparent diffusion coefficient; CI, confidence interval; NA, not available; OR, odds

ratio; PSA, prostate-specific antigen.

*These variables were eliminated in the multivariate logistic regression model. Therefore,

the OR and P values were not available.

significant associations with the ADC value and PSA level, while
other clinical factors were excluded (Table 2).

The ADC value and PSA level were entered into multivariate
logistic analysis. However, PSA was excluded due to a lack of
significant differences (p = 0.340). The ADC value was lower in
csPCa than in ciPCa and was the only remaining independent
clinical risk factor (p= 0.022).

Inter-observer and Intra-observer
Agreement
The intra-observer ICC computed based on two extractions
of reader 1 ranged from 0.827 to 0.934. The inter-observer
agreement between two readers varied from 0.783 to 0.905.
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FIGURE 3 | Texture feature selection. (A) Tuning parameter (λ) selection in the LASSO model used tenfold cross-validation via minimum criteria. The partial likelihood

deviance was plotted versus log (λ). The dotted vertical lines were drawn at the optimal values using the minimum criteria and the 1-SE criteria. (B) The most

predictive subset of feature was chosen and the corresponding coefficients were evaluated.

TABLE 3 | Predictive performance of the radiomic signature and radiomic nomogram.

Model Radiomic signature Accuracy (95% CI) ADC value Accuracy (95% CI) Radiomic nomogram Accuracy (95% CI)

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Training group 0.846 0.976 0.944 (0.846–0.988) 0.935 0.478 0.741 (0.603–0.850) 0.952 0.916 0.944 (0.846–0.988)

Internal validation

group

1.000 0.706 0.773 (0.546–0.921) 0.941 0.800 0.909 (0.708–0.989) 1.000 0.625 0.864 (0.651–0.971)

External

validation group

0.800 0.727 0.786 (0.656–0.884) 0.756 0.636 0.732 (0.597–0.842) 0.771 1.000 0.798 (0.696–0.870)

ADC, apparent diffusion coefficient; CI, confidence interval.

The results manifested high intra- and inter-observer feature
extraction agreement.

Radiomic Signature Development and
Accuracy
A total of 1,188 radiomic features were extracted from T2WI,
DWI, and ADC imaging. During mRMR and LASSO processing,
10 radiomic features (5 from DW imaging, 4 from ADC imaging,
and 1 feature from T2W imaging) were selected and were
performed to build the radiomic signature (Figure 3). The values
of the 10 selected features in each patient were input to the
formula, and the rad-score was then acquired to reflect the
probability of csPCa. The rad-score revealed a great predictive
efficacy, with an AUC of 0.95 [95% confidence interval (CI), 0.87
to 1.0] in the training group and 0.86 (95% CI, 0.70 to 1.0) in
the internal validation group. Furthermore, the AUC in external
validation group achieved 0.81 (95% CI, 0.68 to 0.94).

Development and Performance of the
Radiomic Nomogram
The rad-score and ADC value were identified as independent
predictors for discriminating between csPCa and ciPCa and
then a radiomic nomogram was developed. Each independent
predictor was allocated a weighted number of points. The overall
number of points for each patient was computed using the
nomogram and was associated with the likelihood of csPCa. The

sensitivity, specificity, and accuracy of the radiomic signature and
radiomic nomogram are demonstrated on Table 3.

To compare the discrimination performance, the ROC
curves were plotted for radiomic nomogram, rad-score, and
ADC value in the training group. The radiomic nomogram
demonstrated a favorable classification capability with the AUC
of 0.95 (training group), 0.93 (internal validation group), and
0.84 (external validation group) (Figures 4A–C). Therefore, the
nomogram was superior to the rad-score and ADC value alone
in discriminating csPCa from ciPCa, especially in the internal and
external validation group. Details of the performance of radiomic
nomogram are shown in Figure 5. Delong test was performed to
verify the statistical difference in AUC of patient discrimination
between nomogram, rad-score, and ADC score. This result was
presented in Supplementary Table 2.

Finally, a decision curve analysis was performed to evaluate
whether this nomogram would assist in differentiating between
csPCa from ciPCa (Figure 6). When the threshold probability
ranged from 0 to 1 according to the decision curve analysis, the
nomogram obtained the greatest benefit compared with a “treat
all” strategy, a “treat none” strategy.

DISCUSSION

This study developed and validated a radiomic nomogram
for discriminating between csPCa and ciPCa in the present
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FIGURE 4 | The receiver operating curves (ROC) of a combination nomogram, radiomic signatures, and clinical risk factor for discriminating clinically significant and

clinically insignificant prostate cancer were presented in the training group (A), internal validation group (B), and external validation group (C). The combination

nomogram obtained the highest area under the curve (AUC).

FIGURE 5 | Radiomic nomogram to discriminate clinically significant and clinically insignificant prostate cancer. The radiomic nomogram was built on the training

group, with the rad-score and ADC value. For example, a 74-year-old prostate cancer patient with an ADC value of 800 × 10−6 s/mm2, its radiomic signature score

was 2, the total number of points of this tumor was 100 (30 + 70), and the risk rate of clinically significant prostate cancer was determined to be 90%. ADC, apparent

diffusion coefficient.
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study. The nomogram was constructed by containing the rad-
score from the radiomic method and ADC value. Rad-score
was described as the probability of csPCa computed from
the radiomic signature, which was built based on 10 selective
radiomic features. Both the radiomic signature and nomogram
demonstrated the same capability to discriminate between csPCa
and ciPCa in the training group (AUC= 0.95 vs. 0.95). However,
the nomogram exceeded the radiomic model in the internal
(AUC = 0.93 vs. 0.86) and external (AUC = 0.84 vs. 0.81)
validation group. Thus, the results shown herein indicate that the
radiomic model may serve as a potential non-invasive method to
differentiate between csPCa and ciPCa in clinical practice.

Recently, radiomics has been successfully applied in oncology
and extended to PCa identification and evaluation (15, 23–
25). Chen et al. compared a radiomic-based model with PI-
RADS v2 scores in differentiating and grading PCa (15). This
result suggested that radiomic models offered a high diagnostic
accuracy and outperformed the corresponding PI-RADS v2
scores. Min et al. investigated an mp-MRI-based radiomic
signature for identifying csPCa with an AUC of 0.823 in the
validation group (18). The AUC of the radiomic signature for
predicting csPCa was 0.86 (internal validation group) and 0.84
(external validation group) in our study, which differed from the
result provided by Min et al. The difference may be illustrated by
differences in research populations and patient selection criteria.
In addition, our study incorporated the ADC value, PSA level,
MR-T stage, and age. These parameters were included as they are
of great importance in differentiating csPCa in clinical settings.
The nomogram constructed from the aforementioned features
may provide an individualized evaluation of csPCa. Our results
suggested that the radiomic nomogram had a great efficacy for
prediction csPCa in both training group and internal and external
validation groups (AUC= 0.95, 0.93, and 0.84, respectively).

In our present study, the overall 1,188 radiomic features
were extracted from T2WI, DWI, and ADC imaging. In
total, 10 radiomic features were selected. Of these, nine
radiomic features were derived from DWI and ADC imaging,
including six texture features, two form factor features, and
one histogram feature. The mostly radiomic features selected in
this study were texture features about the statistical correlation
between local nearby voxels with similar (or dissimilar) contrast
values (26). This indicated that radiomic signature could
support a prebiopsy potential in differentiating between csPCa
and ciPCa.

ADC value was the only risk factor found in all clinical risk
factors. The performance of both the radiomic signature and
ADC value were high and comparable in the validation group in
our study. This is consistent with a recent report with radiomic
machine learning, which showed similar results (27). It may be
the result of the principal nature of DWI and ADC that could
dramatically reflect PCa pathological status in the peripheral
zone. Indeed, most of PCa lesions lay in the peripheral zone in
our study. DWI and more specifically ADC have been regarded
as the most powerful sequence of prostate MR, especially in the
peripheral zone (28). ADC values have been suggested to be
reproducible quantitative markers to evaluate PCa aggressiveness
(29, 30).

FIGURE 6 | Decision curve analysis of clinical use assessment of the radiomic

nomogram in the validation group. The Y-axis represented the net benefit. The

method was the best for feature selection if it had the highest net benefit. The

radiomic nomogram (red line) achieved the highest net benefit compared with

the radiomic signature (green line), clinical characteristics (blue line), treat-all

strategy (gray line), and the treat-none strategy (horizontal black line).

It is worth noting that the PSA level widely used in the PCa
detection was not a significant factor regarding the differentiation
of csPCa, which makes the elimination of this variable for model
development. It is likely explained that the PSA level is specific to
prostate tissue but not to PCa lesion. Another explanation may
be related with the nuances in the data group or confounding by
other risk factors. MR-T stage demonstrating the highest odds
ratio value was also excluded to build the predictive model in
our study. This finding probably associates with the extension
degree of csPCa lesions. When csPCa lesions did not present
with invasion of extra prostate capsular tissues, such as the
neurovascular bundle, seminal vesicles, and distal sphincter, the
MR-T was ascribed to the T2 stage. Obviously, the MR-T stage of
all ciPCa patients was ascribed to the T2 stage.

The ratio of the csPCa and ciPCa patients was different (120
vs. 39) in the present study. This inter-group imbalance may give
rise to bias for the build radiomic signatures in the training group,
which would impact the prediction capability of the radiomic
signature in the validation group. To reduce the effect of the
imbalance, the SMOTE algorithm was applied to construct the
radiomic model. However, the performance of the training and
validation group was still in agreement with our original data and
sample size. The quality assurance of the MRI scanner should
also be illustrated. The present material spanned up to 3 years,
so the imaging quality of the MRI scanner was essential to
maintaining rigor to the long duration of this study. Therefore,
the quality assurance maintenance records of the MRI scanner
were reviewed and approved.

Several limitations to the current study should be noted. First,
the current study has a small sample size and is a retrospective
study from two centers. Therefore, large sample sizes from
multiple centers are necessary to validate our primary findings.
Second, systematic biopsy was applied for the pathological
standard instead of the whole-mount pathological specimen. The
experienced radiologists exerted all efforts to match the MRI
lesion and the pathological site. It is obviously unreasonable that
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all of our subjects would have the whole-mount pathological
specimen, especially for ciPCa patients. Moreover, patients
with a lesion diameter of less than 5mm on mp-MRI images
were eliminated because we could not outline the PCa region
during MRI segmentation. This may cause patient selection bias.
Although our methodical strategies have a few limitations, we
hold the view that they supply ample verification for the principal
findings of our primary study.

In conclusion, this study presents a radiomic nomogram
that incorporates both the radiomic signature and clinical
risk factors for discriminating csPCa from ciPCa. The
nomogram, incorporating radiomic signature and ADC
value, provided an individualized, potential approach for
discriminating csPCa from ciPCa. Further studies with
large sample sizes from multiple centers are necessary to
validate our primary results. With further investigation, it is
possible that this radiomic nomogram may aid clinicians in
determining prebiopsy and pre-treatment risk stratification
for PCa.
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