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This paper deals with the mathematical modeling and numerical simulations related to the coronavirus dynamics. A description is
developed based on the framework of the susceptible-exposed-infectious-removed model. Initially, a model verification is carried
out calibrating system parameters with data from China, Italy, Iran, and Brazil. Results show the model capability to predict
infectious evolution. Afterward, numerical simulations are performed in order to analyze different scenarios of COVID-19 in
Brazil. Results show the importance of the governmental and individual actions to control the number and the period of the
critical situations related to the pandemic.

1. Introduction

Coronavirus disease 2019 (COVID-19) is an illness that var-
ies from a common cold to more severe diseases related to
respiratory syndromes. It was discovered in 2019, being the
first time the disease was identified in humans. It is related
to the novel coronavirus (2019-nCoV), a zoonotic virus
transmitted among animals and humans. On January 21,
2019, The World Health Organization (WHO) published
the first Situation Report about the novel coronavirus that
announces to the world the origin of the COVID-19, report-
ing cases of pneumonia of unknown etiology detected in
Wuhan City, Hubei Province, China. Afterward, the situa-
tion evolves into a huge global crisis with severe effects in
Italy, Iran, Spain, South Korea, and all over the world. On
11 March 2020, WHO declared COVID-19 as a pandemic.

This dramatic situation points out that all tools can be
useful to plan the best strategies for the public health system.
In this regard, mathematical modeling is an interesting
approach that allows the evaluation of different scenarios,
furnishing proper support for health system decisions. In
general, the nonlinear dynamics of biological and biomedical
systems is the objective of several research efforts that can be
based on mathematical modeling or time series analysis [1].

In particular, coronavirus propagation can be described by
a mathematical model that allows the nonlinear dynamics
analysis, representing different populations related to the
phenomenon.

The literature presents some examples related to the
dynamics of infectious diseases. Different kinds of models
can be employed, essentially considering nonlinear govern-
ing equations. Zhang et al. [2] investigated the cure effect
on the virus model considering either cell-to-cell or cell-to-
virus transmissions. Stability analysis is employed in order
to evaluate the epidemiologic dynamical characteristics.
Rihan et al. [3] described the dynamics of coronavirus infec-
tion in humans, establishing interaction among human cells
and the virus.

Chen et al. [4] developed a mathematical model for calcu-
lating the transmissibility of the virus considering a simpli-
fied version of the bats-hosts-reservoir-people transmission
model, defined as a reservoir-people model. Results follow
the general trend of the initial propagation. Li et al. [5] esti-
mated characteristics of the epidemiologic time distribution,
exploiting some pattern trends of transmission propagation.
Riou and Althaus [6] exploited the pattern of human-to-
human transmission of a novel coronavirus in Wuhan,
China. Two key parameters were considered: the basic
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reproduction number that defines the infectious propagation
and the individual variation in the number of secondary
cases. Uncertainty quantification tools were employed to
define the transmission patterns.

Zou et al. [7] proposed a statistical model comparing the
COVID-19 dynamics in several Asian countries, evaluating
some of the essential populations related to the coronavirus
disease. Another interesting approach for the COVID-19
modeling is presented by Car et al. [8] where a time series
is employed to build a dataset for training a multilayer per-
ceptron artificial neural network. This work concluded that
the modeling of a disease using artificial intelligence could
have a good agreement with real data.

Susceptible-exposed-infectious-removed (SEIR) models,
and their variations, are an interesting approach to deal with
the mathematical modeling of infectious diseases, being
largely applied to describe HIV, Ebola, influenza, and Zika,
among others. Pipatsart et al. [9] discussed infectious disease
transmission on adaptive networks based on the susceptible-
infectious-removed (SIR) model. Wu et al. [10] investigated
coronavirus disease in the Wuhan-China case, evaluating
nowcasting and forecasting domestic and international
spread outbreak. Zeb et al. [11] investigated the SEIR model
containing an isolated population that allows the description
of isolation class. Lin et al. [12] proposed a model considering
individual reaction, governmental action, and emigration.
The model is based on the original work of He et al. [13] that
proposed a model to describe the 1918 influenza. This model
showed to be capable to capture the general propagation
aspects of the novel coronavirus.

This paper proposes some adjustments in the original
model due to Lin et al. [12] to describe COVID-19 dynamics.
A different connection between infected and removed popu-
lations allows one to obtain a better match with real data. The
proposed model is verified considering the infected popula-
tion evolution of China, Italy, Iran, and Brazil. Afterward,
Brazilian COVID-19 evolution is investigated, simulating
different scenarios based on the governmental and individual
reactions. The developed analysis considers average behav-
iors, neglecting spatial patterns. Results show that the model
is able to capture the general behavior of the COVID-19
dynamics, being an important tool to guide decision-making.

2. Mathematical Model

A frame-by-frame description of the reality can be repre-
sented by a set of differential equations. By assuming only
time evolution of state variables, x ∈Rn, where spatial
aspects are not of concern, it is possible to establish a govern-
ing equation of the form _x = f ðxÞ, x ∈Rn. The description of
COVID-19 dynamics defines its propagation considering
animal and human transmission. Different kinds of popula-
tions need to be defined in order to have a proper scenario
of disease propagation.

Lin et al. [12] propose a susceptible-exposed-infectious-
removed (SEIR) framework model to describe the COVID-
19. This model was inspired by the original model of He
et al. [13] for influenza. Essentially, the description considers
a total population of size N that contains two classes: D is a

public perception of risk regarding severe cases and deaths;
and C represents the cumulative infected cases. In addition,
the following populations are employed to describe the
COVID-19 dynamics: S is the susceptible population, E is
the exposed population, I is the infectious population, and
R is the removed population that includes both recovered
and deaths. A simplified version of the model considers only
person-to-person transmission, and therefore, the zoonotic
effect is neglected. This scenario assumes the second stage
of the Wuhan-China case, after the close of the Huanan Sea-
food Wholesale Market. The emigration effect is also
neglected in order to simplify the original model. Therefore,
the governing equations consider the interaction among all
these populations, being expressed by the following set of dif-
ferential equations:

_S = −β
SI
N
,

_E = β
SI
N

− σE,

_I = σE − γI,
_R = γRI,
_D = dγI − λD,
_C = σE,

ð1Þ

where the following parameters are defined: γ is the mean
infectious period; γR is the adjusted removed period, defining
the relation between the removed population and the
infected one; σ is the mean latent period; d is the proportion
of severe cases; and λ is the mean duration of public reaction.
It should be pointed out that the parameter γ − γR defines the
evolution of the nonreported removed population, which
means that if γ = γR, populations are restricted to the classical
SEIR case.

The function β = βðtÞ represents the transmission rate
that considers governmental action, represented by ð1 − αÞ,
and the individual action, represented by the function
ð1 − ðD/NÞÞκ. Therefore, the transmission rate is modeled
as follows:

β = β tð Þ = bβ0 1 − bαð Þδ, ð2Þ

where bβ0 = βðiÞ
0 Hðt − TðiÞ

β0
Þ represents the nominal transmis-

sion rate and Hðt − TðiÞ
β0
Þ is a step function with the form

illustrated in Figure 1. Its use is convenient in order to con-
template variations of the transmission rate through time,
being defined as follows.

H t − T ið Þ
β0

� �
=

β
1ð Þ
0 , if t ≤ T 1ð Þ

β0
,

β
2ð Þ
0 , if t ≤ T 2ð Þ

β0
,

β
3ð Þ
0 , if t ≤ T 3ð Þ

β0
,

⋮

8>>>>>>><
>>>>>>>:

ð3Þ
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This general function can represent constant values or
different step functions. Using the same strategy, the govern-
mental action is described as follows:

bα = αi H t − T ið Þ
Gov

� �
, ð4Þ

where different steps are considered defined by time instants

TðiÞ
Gov .
Individual action is represented by the following

equation:

δ = 1 − D
N

� �κ

, ð5Þ

where the intensity of responses is defined by parameter
κ. These parameters need to be adjusted for each place,
being essential for the COVID-19 description.

In general, parameter definitions depend on several
issues, being a difficult task to be adjusted. In this regard, it
should be pointed out that real data has spatial aspects that
are not treated by this set of governing equations. Hence, this
analysis is a kind of average behavior that needs a proper
adjustment to match real data. Besides, Li et al. [14] evaluated
the Wuhan situation concluding that undocumented novel
coronavirus infections are critical for understanding the
overall prevalence and pandemic potential of this disease.
The authors estimated that 86% of all infections were undoc-
umented and that the transmission rate per person of undoc-
umented infections was 55% of documented infections. This
aspect makes the description even more complex.

The use of step functions to define some parameters
introduces a time-dependent description, allowing a proper
representation of different scenarios. This is especially
important for the representation of the transmission rate. It
is also important to observe that either governmental or indi-
vidual actions have a delayed effect on system dynamics that
can be adjusted by this time-dependent behavior. Virus
mutations are another relevant aspect related to the descrip-
tion of COVID-19 dynamics that can dramatically alter the
system response but are not treated here.

Numerical simulations are carried out considering the
fourth-order Runge-Kutta method. The next sections treat

the COVID-19 dynamics considering two different objec-
tives. Initially, the next section performed a model verifica-
tion using information from China, Italy, Iran, and Brazil.
Afterward, the subsequent section evaluates different scenar-
ios for the Brazilian case, using the parameters adjusted on
the verification cases.

3. Model Verification

As an initial step of the COVID-19 dynamical analysis,
a model verification is carried out using information
available on Worldometer (https://www.worldometers.info/
coronavirus/), considering information from China, Italy,
Iran, and Brazil (last updates: China, March 26; Italy, March
21; Iran, March 26; and Brazil, March 24). The fundamental
hypothesis of the analysis is that the average population of
the country is of concern. Therefore, it is assumed that each
country has a homogeneous distribution, without spatial
patterns.

Different country information is useful to calibrate the
model parameters, evaluating its correspondence with real
data. Table 1 presents the parameters employed for all simu-
lations. They are based on the information of Lin et al. [12]
that, in turn, is based on other references such as He et al.
[15] and Breto et al. [16]. For more details, see other citations
referenced therein.

Susceptible population initial condition is assumed to be
S0 = 0:9N − E0 − I0 − R0. In addition, it is adopted that, ini-
tially, there is no removed population, i.e., R0 = 0: Another
information needed for the model is the number of exposed
persons for each infected person. It is assumed that each
infected person has the potential to expose 20 persons,
E0 = 20I0.

The transmission rate considers specific parameters for
each case. Nevertheless, the reference values are presented
in Table 2.

Other parameters are adjusted depending on the
treated case. In the sequence, the dynamics of four differ-
ent countries is analyzed in order to promote a model
verification.

Table 1: Model parameters.

Parameter Description Value

σ−1 Mean latent period 3 days

γ−1 Mean infectious period 5 days

γ−1R Adjusted removed period 22 days

d Proportion of severe cases 0.2

λ−1 Mean duration of public reaction 11.2 days

Table 2: Reference parameters for the transmission rate.

Parameter Value

αi [0, 0.4239, 0.8478]

κ 1117.3
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Figure 1: Step function employed to consider parameter variations
through time.
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3.1. Verification Simulations. The first scenario for the model
verification is based on China results. It should be pointed
out that this analysis considers all cases in China, not
restricted to Wuhan. Due to chronological issues, the Chi-
nese case is the one with a large number of real data, which
makes it useful to describe the whole process. Parameters
presented in Table 3 are employed for simulations with a
population of N = 1:43 × 109 and an initial state with 554
infected persons (I0 = 554). It should be highlighted again
that these parameters are average ones, representing a whole
country average, adjusted in a phenomenological way. Of
course, reaction time is different from the distinct parts of
the country, which makes it necessary to estimate parameters
based on the real data in an average way. Figure 2 presents
the infected population evolution showing a good agreement
between the simulation and real data. A comparison of the

model prediction error compared with real data is interesting
to verify the model capability to describe the COVID-19
dynamics. Figure 3 presents daily errors from China,
highlighting the average and maximum errors. Note that
the maximum error is less than 28%, with an average error
of 13.58%.

For the following three cases, Italy, Iran, and Brazil, it is
assumed that the second stage of governmental action has
not been reached yet. Therefore, it is represented by a step

function αi = ½0, 0:4239�, which means that Tð2Þ
Gov is neglected

and α3 does not exist.
The Italian case is now in focus considering parameters

presented in Table 4 with a population of N = 60:48 × 106
and an initial state with 20 infected persons (I0 = 20). A step

Table 4: Model parameters for the transmission rate of Italy.

Parameter Value

β
ið Þ
0 [0.594, 1.1]

T 1ð Þ
β0

22 days

T 1ð Þ
Gov 22 days
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Figure 4: Italy: infected population through time.
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Figure 5: Italy: prediction errors between the simulated and real
data of the infected population.
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Figure 3: China: prediction errors between the simulated and real
data of the infected population.
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Figure 2: China: infected population through time.

Table 3: Model parameters for the transmission rate of China.

Parameter Value

β0 0.514

T ið Þ
Gov [13, 29] days
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function is considered to define the nominal transmission
rate, β0, due to extreme governmental actions that have not
been effective until the present days. Figure 4 presents the
infected population simulation compared with real data,
showing a good agreement. Figure 5 presents daily errors
from Italy, highlighting the average and maximum errors.
In this case, the maximum error is less than 19%, with an
average error of 10.60%.

The Iran case is evaluated assuming parameters pre-
sented in Table 5 with a population of N = 81:16 × 106
and an initial state with 20 infected persons (I0 = 20).
Results are presented in Figure 6 showing a good agree-
ment with real data. Figure 7 presents daily errors,
highlighting the average and maximum errors. Although
the average error is 15.46%, the maximum error is around

42%, which is a large value. Nevertheless, it should be
observed that the big values are related to the beginning
of the predictions, probably due to the characteristics of
the reported real data.

The Brazilian case is now of concern considering
parameters presented in Table 6 with a population of
N = 209:3 × 106 and an initial state with 10 infected per-
son (I0 = 10). Figure 8 presents the infected population
evolution showing that the same trend of the other cases
is followed, being enough to have a general scenario. It
should be highlighted that the Brazilian outbreak is in
the beginning, with information that is not enough for
better calibration.
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Figure 7: Iran: prediction errors between the simulated and real
data of the infected population.

Table 6: Model parameters for the transmission rate of Brazil.

Parameter Value

β
1ð Þ
0 0.675

T 1ð Þ
Gov 17 days
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Figure 8: Brazil: infected population through time.
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Figure 9: Transmission evolution considering two different
scenarios for different transmission rates: without intervention
(α = κ = 0), naive scenario, and with governmental intervention
and individual action with the values adjusted in the previous
section.
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Table 5: Model parameters for the transmission rate of Iran.

Parameter Value

β
1ð Þ
0 0.594

T 1ð Þ
Gov 24 days
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4. Brazilian Scenarios

This section has the objective to investigate different scenarios
related to COVID-19 dynamics in Brazil. Parameters adjusted
in the previous section are employed to evaluate different sce-
narios varying the governmental and individual reactions. It
should be pointed out that this adjustment does not have
enough information, but it is possible to perform at least a
qualitative analysis of the COVID-19 dynamics in Brazil.

Initially, two different transmission rates are defined:
without intervention (α = κ = 0), naive scenario, and with

the governmental and individual actions (α ≠ 0 ; κ ≠ 0).
Figure 9 presents numerical simulations together with the
real data that is presented just for the first days. The same
parameters presented in Table 6 are employed assuming

Tð2Þ
Gov = 37 days. A logarithm scale is adopted since the naive

scenario has a dramatic increase in infected cases. Besides
the big difference between both cases, it is clear the huge
impact of variations on the transmission rate function that
represents the governmental and individual actions. It is
noticeable that effective actions tend to reduce the infected
population, reducing the final crisis period as well.
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A more detailed analysis of the COVID-19 dynamics is
treated considering the other populations for the case with
intervention treated in Figure 9 (parameters of Table 6 with

Tð2Þ
Gov = 37 days). Figure 10 presents all system state variables,

showing the susceptible, S, exposed, E, infected, I, removed,
R, public perception, D, and cumulative cases, C. The inter-
action among all the populations defines a kind of equilib-
rium established by the governing equations.

Nowadays, one of the most relevant issues to be discussed
in terms of propagation is the governmental and individual
actions. A parametric analysis is of concern considering dis-
tinct scenarios related to intervention. Scenarios defined by
the variation of the intervention moments are initially
treated. The moment of the governmental action start, repre-

sented by the parameter Tð1Þ
Gov (day), is analyzed in Figure 11,

considering the following values: 17, 22, 27, and 32, and Tð2Þ
Gov

is assumed to be 20 days after Tð1Þ
Gov. Note that the delay to the

start of the governmental action dramatically alters the
response, increasing the number of infected populations
and its duration. The same conclusion can be established
considering the second governmental action, represented

by Tð2Þ
Gov (day), presented in Figure 12 that shows the same

trend considering a different set of start instants: 37, 42,
47, and 52.

A scenario with a governmental action that starts, fin-
ishes, and then restarts again is now evaluated, considering

the following parameters: TðiÞ
Gov = ½17, 37, 52� and αi = ½0,

0:4239, 0, 0:8478�. This scenario is compared with the
usual one where the intervention starts at a level and then

evolves to a more severe situation, considering TðiÞ
Gov = ½17, 52�

and αi = ½0, 0:4239, 0:8478�. Figure 13 shows both situa-
tions represented by the transmission function and the
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evolution of infected populations. It is clear that the inter-
ruption of the governmental action causes a dramatic
worst scenario.

5. Conclusions

A mathematical model based on the susceptible-exposed-
infectious-removed framework is employed to describe the
COVID-19 dynamics. A verification procedure is performed
based on the available data from China, Italy, Iran, and
Brazil. Afterward, different scenarios from Brazil are ana-
lyzed. Results clearly show that the governmental and
individual actions are essential to reduce the infected popula-
tions and also the total period of the crisis. In this regard, it is
observed that the infected peak reduction is usually associ-
ated with a smaller period of the critical infected population.
In addition, another important conclusion is that the precip-
itate finish of social isolation can have a dramatic influence
on virus propagation, increasing significantly the infected
population. The mathematical model can be improved in
order to include more phenomenological information that
can increase its capability to describe different scenarios.
Nevertheless, it should be pointed out that mathematical
modeling and numerical simulations are important tools that
can be essentially useful for public health planning.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to acknowledge the support of the
Brazilian Research Agencies CNPq, CAPES, and FAPERJ.
Since this work was developed during a quarantine period,
the authors would like to express their gratitude to familiar
support that, besides the patience, helps to collect available
information. Therefore, it is important to acknowledge
Raquel Savi, Rodrigo Savi, Antonio Savi, and Bianca Zattar.

References

[1] M. A. Savi, “Chaos and order in biomedical rhythms,” Journal
of the Brazilian Society of Mechanical Sciences and Engineer-
ing, vol. 27, no. 2, pp. 157–169, 2005.

[2] T. Zhang, X. Meng, and T. Zhang, “Global dynamics of a virus
dynamical model with cell-to-cell transmission and cure rate,”
Computational and Mathematical Methods in Medicine,
vol. 2015, Article ID 758362, 8 pages, 2015.

[3] F. A. Rihan, N. S. Al-Salti, and M.-N. Y. Anwar, “Dynamics of
coronavirus infection in human,” in AIP Conference Proceed-
ings, vol. 1982, Cambridge, UK, 2018, 020009.

[4] T.-M. Chen, J. Rui, W.-P. Wang, Z.-Y. Zhao, J.-A. Cui, and
L. Yin, “A mathematical model for simulating the phase-

based transmissibility of a novel coronavirus,” Infectious Dis-
eases of Poverty, vol. 9, no. 1, p. 24, 2020.

[5] Q. Li, X. Guan, P. Wu et al., “Early transmission dynamics in
Wuhan, China, of novel coronavirus-infected pneumonia,”
The New England Journal of Medicine, vol. 382, no. 13,
pp. 1199–1207, 2020.

[6] J. Riou and C. L. Althaus, “Pattern of early human-to-human
transmission of Wuhan 2019 novel coronavirus (2019-nCoV),
December 2019 to January 2020,” Eurosurveillance, vol. 25,
no. 4, article 2000058, 2020.

[7] M. Zuo, S. K. Khosa, Z. Ahmad, and Z. Almaspoor, “Compar-
ison of COVID-19 pandemic dynamics in Asian countries
with statistical modeling,” Computational and Mathematical
Methods in Medicine, vol. 2020, Article ID 4296806, 16 pages,
2020.

[8] Z. Car, S. Baressi Šegota, N. Anđelić, I. Lorencin, and
V. Mrzljak, “Modeling the spread of COVID-19 infection
using a multilayer perceptron,” Computational and Mathe-
matical Methods in Medicine, vol. 2020, Article ID 571471,
10 pages, 2020.

[9] N. Pipatsart, W. Triampo, and C. Modchang, “Stochastic
models of emerging infectious disease transmission on adap-
tive random networks,” Computational and Mathematical
Methods in Medicine, vol. 2017, Article ID 2403851, 11 pages,
2017.

[10] J. T. Wu, K. Leung, and G. M. Leung, “Nowcasting and fore-
casting the potential domestic and international spread of the
2019-nCoV outbreak originating in Wuhan, China: a model-
ling study,” The Lancet, vol. 395, no. 10225, pp. 689–697, 2020.

[11] A. Zeb, E. Alzahrani, V. S. Erturk, and G. Zaman, “Mathemat-
ical model for coronavirus disease 2019 (COVID-19) contain-
ing isolation class,” BioMed Research International, vol. 2020,
Article ID 3452402, 7 pages, 2020.

[12] Q. Lin, S. Zhao, D. Gao et al., “A conceptual model for the
coronavirus disease 2019 (COVID-19) outbreak in Wuhan,
China with individual reaction and governmental action,”
International Journal of Infectious Diseases, vol. 93, pp. 211–
216, 2020.

[13] D. He, J. Dushoff, T. Day, J. Ma, and D. J. D. Earn, “Inferring
the causes of the three waves of the 1918 influenza pandemic
in England andWales,” Proceedings of the Royal Society B: Bio-
logical Sciences, vol. 280, no. 1766, article 20131345, 2013.

[14] R. Li, S. Pei, B. Chen et al., “Substantial undocumented infec-
tion facilitates the rapid dissemination of novel coronavirus
(SARS-CoV-2),” Science, vol. 368, no. 6490, pp. 489–493, 2020.

[15] D. He, E. L. Ionides, and A. A. King, “Plug-and-play inference
for disease dynamics: measles in large and small populations as
a case study,” Journal of The Royal Society Interface, vol. 7,
no. 43, pp. 271–283, 2010.

[16] C. Breto, D. He, E. L. Ionides, and A. A. King, “Time series
analysis via mechanistic models,” The Annals of Applied Statis-
tics, vol. 3, no. 1, pp. 319–348, 2009.

8 Computational and Mathematical Methods in Medicine


	A Mathematical Description of the Dynamics of Coronavirus Disease 2019 (COVID-19): A Case Study of Brazil
	1. Introduction
	2. Mathematical Model
	3. Model Verification
	3.1. Verification Simulations

	4. Brazilian Scenarios
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

