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Abstract
Around 450 million people are affected by pneumonia every year, which results
in 2.5 million deaths. Coronavirus disease 2019 (Covid‐19) has also affected 181
million people, which led to 3.92 million casualties. The chances of death in
both of these diseases can be significantly reduced if they are diagnosed early.
However, the current methods of diagnosing pneumonia (complaints + chest
X‐ray) and Covid‐19 (real‐time polymerase chain reaction) require the presence
of expert radiologists and time, respectively. With the help of deep learning
models, pneumonia and Covid‐19 can be detected instantly from chest X‐rays or
computerized tomography (CT) scans. The process of diagnosing pneumonia/
Covid‐19 can become faster and more widespread. In this paper, we aimed to
elicit, explain, and evaluate qualitatively and quantitatively all advancements in
deep learning methods aimed at detecting community‐acquired pneumonia,
viral pneumonia, and Covid‐19 from images of chest X‐rays and CT scans. Being
a systematic review, the focus of this paper lies in explaining various deep
learning model architectures, which have either been modified or created from
scratch for the task at hand. For each model, this paper answers the question of
why the model is designed the way it is, the challenges that a particular model
overcomes, and the tradeoffs that come with modifying a model to the required
specifications. A grouped quantitative analysis of all models described in the
paper is also provided to quantify the effectiveness of different models with a
similar goal. Some tradeoffs cannot be quantified and, hence, they are men-
tioned explicitly in the qualitative analysis, which is done throughout the paper.
By compiling and analyzing a large quantum of research details in one place
with all the data sets, model architectures, and results, we aimed to provide a
one‐stop solution to beginners and current researchers interested in this field.
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1 | INTRODUCTION

Pneumonia is a respiratory disease responsible for sig-
nificant morbidity all over the world. It causes a lower
respiratory tract infection, leading to inflammation in

the lungs' air sacs known as the alveoli. The infected
alveoli are filled with fluid, which makes breathing dif-
ficult. Pneumonia, a contagious disease, is classified into
two main types (hospital‐acquired pneumonia and
community‐acquired pneumonia [CAP]) based on
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where it is acquired. The majority of pneumonia cases
fall under the category of CAP (all cases of pneumonia
that are not acquired from the hospital). If CAP is di-
agnosed early, the chances of 100% recovery are high,
with little chances of reinfection. For a complete diag-
nosis of pneumonia, a combination of clinical aware-
ness, specific microbiological tests, and radiographical
studies are necessary. However, plain chest radiography
alone can rapidly demonstrate the presence of pul-
monary abnormalities in most cases.1 Unfortunately,
pneumonia is only one of many pulmonary abnormal-
ities and, hence, radiographical findings often fail to
lead to a definitive diagnosis of pneumonia. Conse-
quently, the distinction of pneumonia from other pul-
monary diseases cannot be made with certainty on
radiological grounds with the current technology.

One of the significant problems of radiographical
findings is that the distinction of pneumonia from other
pulmonary diseases cannot be made with certainty on
radiological grounds alone. Moreover, this is not the
only problem with the current procedure of pneumonia
diagnosis. A considerable number of medical images are
produced in hospitals and medical centers daily. Con-
sequently, radiologists are inundated with a large
number of images that they have to analyze manually.
In these cases, tried and tested deep learning algorithms
might be helpful in assisting doctors by marking the part
of the lungs where pneumonia/coronavirus disease 2019
(Covid‐19) is present.

Many automated technologies related to medical
imaging have shown promising results over the past
few years, but deep learning has quickly gained pro-
minence among them. Researchers have extensively
exploited deep learning methods for detecting diseases
in various body parts such as the eye, brain,2,3 and
skin.4,5 In some medical imaging cases, it was shown
that the classification performance of a deep learning
model was better than that of medical specialists.6

Since the proposal of AlexNet7 in 2012, deep learning
models have improved significantly in image classifi-
cation tasks. Recent architectures such as ResNet and
variations of ResNet have also provided a solid base for
accurate object detection and localization. Although
single‐shot detectors such as Yolo8 and RetinaNet9

provide speedy detections useful in real time, gen-
erative adversarial networks (GANs)10 have played an
essential role in unsupervised learning and domain
adaption whenever training images have been scarce.
Hence, automated deep learning solutions can solve
both problems mentioned above. Deep learning mod-
els for pneumonia classification and detection can
automatically learn complex features from radiographs
that may not be visible to the naked eye. This was
proved in 2017 when Rajpurkar et al.6 proposed
CheXNet, a deep learning model, which achieved bet-
ter results than radiologists on pneumonia detection
and other pulmonary disease detection tasks.

The fact that deep learning models succeeded not
only in the task of pneumonia detection but also in
other pulmonary abnormality detection tasks was le-
veraged by many other researchers to detect other
anomalies from the same models or training data. This
case could prove useful, especially in recent situations
(in 2021) such as the outbreak of Covid‐19 because of
the following reasons. Even though real‐time poly-
merase chain reaction (RT‐PCR) is the accepted as
standard in the diagnosis of Covid‐19, its sensitivity and
specificity are not optimal.11 Other than that, many
countries or regions cannot conduct sufficient RT‐PCR
testing for thousands of subjects in a small span of time
because of the lack of people who can perform these
tests. In these cases, deep learning algorithms might
help if the country has enough imaging machines but
fewer people who can perform the test. RT‐PCR testing
may also be delayed in cases of newly evolved cor-
onavirus, because detection of a newly evolved virus
requires the extraction of the new DNA sequence.11 In
contrast, deep learning models with anomaly detection
capabilities can detect the clustering effect of viral
pneumonia occurrences such as Middle East respiratory
syndrome (MERS),12 severe acute respiratory syndrome
(SARS),13 and Covid‐19 as proved by Zhang et al.11 Thus,
deep learning models provide a vital technique that
might help in diagnosing pneumonia better and faster.

In this paper, we aimed to elicit, explain, and eval-
uate qualitatively and quantitatively all advancements in
deep learning methods aimed at detecting bacterial or
viral pneumonia from radiographical images. Since
chest X‐rays and computerized tomography (CT) scans
are the most common radiographical tools doctors use
today, we have covered deep learning methods that use
chest X‐rays, CT scans, or both as input images. As the
quantitative results of these models depend on the data
sets used, we group these models according to data
sets, to perform a fair and uniform quantitative analysis.
Although standard data sets are available for bacterial/
viral pneumonia detection tasks, the same is not ap-
plicable for Covid‐19 data sets due to the disease's no-
velty (in 2021). However, the models that leverage these
data sets have been grouped by the amount and quality
of images used for training and testing. This being said,
it is not uncommon to find deep learning models that
fail to perform well in the real world after being trained
on data sets with specific sources. The poor perfor-
mance in the real world is mainly because of the data set
shift between training images and the images used in
other hospitals. A significant amount of variability in
individual hospital images also accounts for the poor
performance of these models. To address this problem,
we also evaluate and compare the features learned by
various models to predict how well they would perform
in the real world. The reason for comprehensively
compiling all significant research in deep learning for
pneumonia detection is to compare different models
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used in each scenario and identify the best deep
learning architectures for each of those scenarios. Al-
though similar work was performed by Li et al.,14 we
provide a significantly more comprehensive overview of
models by including research with CT scans, localiza-
tion tasks, and Covid‐19 classification.

2 | METHODOLOGY

This review is based upon the qualitative and quantitative
analysis of studies in the field of pneumonia/Covid‐19
detection via chest X‐rays and CT scans. The method for
collecting relevant papers for this study was as follows.
Platforms such as Elsevier, Google Scholar, IEEE Xplore,
and Springer were searched with the keywords: “pneu-
monia detection with deep learning,” “Covid‐19 detection
with deep learning,” “pneumonia localization with deep
learning,” “Covid‐19 localization with deep learning,”
“pneumonia detection with Chest X‐rays,” “pneumonia
localization with chest X‐rays,” “Covid‐19 detection with
chest X‐rays,” and “Covid‐19 localization with chest
X‐rays.” Papers were excluded from the study as fol-
lows: all papers not related to deep learning, pneumonia,
or Covid‐19 were excluded. After the first exclusion pro-
cess, all remaining papers were included in the final re-
view according to the following criteria. As the main focus
of this review is on the generalizability of models, all
studies that made an explicit effort to make their model
generalizable were included. Different studies used var-
ious metrics for accuracy, so there was no hard limit of
accuracy (performance in general) for a paper to be in-
cluded in this study. After that, studies were included
with the goal of covering as much breadth in deep
learning methods as possible. This was done because
different deep learning methods often solve different
problems (improper images, training data shortage, and
insufficient training data variety). Furthermore, if a si-
milar method was followed by more than one paper, then
the most generalizable and the paper with the best per-
formance was chosen.

On the medical front, pneumonia is mainly divided
into two types: bacterial pneumonia and viral pneu-
monia. Although bacterial pneumonia does not have
any subcategories worth discussing here, viral pneu-
monia is often subcategorized according to the virus
responsible for causing viral pneumonia. The most
recent example of viral pneumonia and of concern to
us is Covid‐19. Owing to these types and subtypes,
researchers broadly classify input images into the
following: (1) pneumonia/no‐pneumonia, (2) bacter-
ial pneumonia/viral pneumonia/no‐pneumonia, and
(3) Covid‐19/all other pneumonia/no‐pneumonia.
Although most research papers fall into one of these
three categories, some models do not consider no‐
pneumonia.

Radiologists use either chest X‐rays or CT scans for
diagnosing a patient. Both of these modes have their pros
and cons. Although X‐ray machines are portable and en-
able faster diagnosis, CT scans provide finer detail of the
lungs that may be more difficult to see in a plain X‐ray.
Similarly, some deep learning models use X‐rays as input
images, whereas others use CT scans. This paper gives
equal weightage to both models mentioned above but
discusses them separately in Sections 3 and 4, respectively.

Other than classification, a significant task taken up
by some deep learning models is that of detecting and
localizing the region where pneumonia is present in the
lungs. It is worth noting that some classification models
also perform grad‐cam analysis to analyze which fea-
tures are being used to perform classification. These
models, even after localizing features, are not con-
sidered localization/segmentation models. Localization/
segmentation models provide bounding boxes/semantic
segmentation in input images around the part of the
chest affected by pneumonia. We will include these
models in our discussion too. However, their compar-
ison shall only be made with other localization models.

Data sets play one of the most prominent roles in the
success or failure of deep learning models. The details of
the three most frequently used data sets are shown in
Table 1. The National Institutes of Health (NIH) data set
consists of 15 classes, out of which one is pneumonia,
one is no pulmonary disease, and the remaining 13 are
other pulmonary diseases. It is worth noting that “other
pulmonary diseases” may have any number of classes
ranging from 0 to 13. This way, if it has 0 classes,
the classification task simplifies to pneumonia/
no‐pneumonia (one sigmoid neuron or two softmax
neurons in the output layer). On the other hand, if it has
13 classes, the model will classify a chest X‐ray into
pneumonia, no‐pneumonia, or any one of the 13 pul-
monary diseases (15 softmax neurons in the output
layer). The classes of the Radiological Society of North
America (RSNA) data set are normal, lung opacity, and
no lung opacity‐not normal, which can be explained as
no pneumonia, pneumonia with visible lung opacity,
and some pulmonary disease without visible damage to
the lungs. Lastly, the classes of the Kaggle data set are
divided as normal, bacterial‐pneumonia, and viral‐
pneumonia, which need no further explanation.

TABLE 1 Data set for pneumonia detection

Data set Images Classes Bounding boxes

NIH chest X‐rays 1,12,120 14 985

RSNA chest X‐rays 26,684 3 9555

Kaggle chest X‐rays 5856 3 0

CheXpert 2,24,316 14 0

MIMIC‐CXR 3,71,920 14 0
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2.1 | Detection of pneumonia and its
classification among other pulmonary
diseases

Rajpurkar et al.6 developed a deep learning model that
could achieve radiologist‐level accuracy on pneumonia
detection from chest X‐rays. They used the NIH data set,
which consists of 112,120 chest X‐ray images from
30,805 patients. This data set was first presented and
used by Wang et al.15 for the same task. However, the
model was the first one that attained radiologist‐level
accuracy and it also served as a base for many future
models. First, the entire data set is split into training and
test sets such that no patients are repeated in the re-
spective sets. The images are converted to size 224 × 224
and normalized by the ImageNet16 training data set
metrics. For training, these images are fed into the
CheXNet model that uses a 121 layered dense con-
volution neural network (CNN) known as DenseNet.17

DenseNet improves information flow and back-
propagation through the network, which makes the
optimization process easier. Hence, the entire model
was used as it is, except for the output/classification
layer. This layer was replaced by a single sigmoid neu-
ron because the classification task was pneumonia/no‐
pneumonia. As the NIH data set consists of 15 classes,
the classes pneumonia and no‐pneumonia (14 classes
including other pulmonary diseases) were highly im-
balanced. To get rid of this problem, a weighted loss
function is used while training the model. Finally, the
model achieved an F1 score of 0.435 and an area under
the receiver operating characteristic (AUROC) of 0.76
when tested with 420 images. The data set was randomly
split into training (28,744 patients and 98,637 images),
validation (1672 patients and 6351 images), and test (389
patients and 420 images). There was no patient overlap
between the sets.

Zech et al.18 demonstrated that deep learning
pneumonia classifiers trained on two different hospital
systems predicted results by learning the origin of those
hospitals instead of learning relevant features that cause
pneumonia. To address this problem, Janizek et al.19

developed an adversarial training‐based approach. They
found that the occurrence of pneumonia in
posterior–anterior (PA) chest X‐rays was twice as much
as that of pneumonia in anterior–posterior (AP) ima-
ges (PA images are the ones in which X‐rays enter from
the back of the body, whereas AP is vice versa). They
also found out that pneumonia detection classifiers as in
Rajpurkar et al.6 learned to distinguish between the two
views (AP and PA) and leveraged that information to
classify pneumonia. Their approach was different from
standard adversarial approaches, where the classifier
learns domain‐invariant features. In their case, the
classifier could not learn domain‐invariant features,
because they had no images from the target domain. In
their adversarial approach, Janizek et al.19 tried to train a

classifier in which the final output score of the classifier
would be invariant of the view (AP or PA). Although the
training and architecture for their classifier were the
same as that of Rajpurkar et al.,6 they also added and
trained an adversary network. This adversary network
took the output score of the classifier as input and
outputted a prediction of the view. The adversary net-
work is a standard 3 layered feedforward network of 32
neurons, each with rectified linear unit (ReLU) activa-
tions. The classifiers' objective was to predict output
scores such that the adversary could not predict the
view of the input image from the output score. In con-
trast, the adversarial network's objective was to predict
the output score's view (AP or PA). Both the classifier
and the adversary network were trained alternatively for
optimizing their respective objectives. To test their ap-
proach, Janizek et al.19 tested their model on the
CheXpert data set (source domain) and Massachusetts
Institute of Technology MIMIC‐CXR data set (target
domain). Although the standard model (without the
adversary network) achieved an AUROC of 0.79 on the
source domain, it could only achieve an AUROC of 0.703
on the target domain. Alternatively, the adversarially
trained model achieved almost similar AUROC's of 0.747
and 0.739 on the source and target domains.

In April 2020, Lu et al.20 presented the MUXConv, a
CNN layer specially designed to increase the flow of
information by multiplexing channels and spatial input
through the network. They also presented a multi-
objective algorithm to automatically optimize hy-
perparameters while training. Although the MUXConv
was not specially designed for pneumonia classification,
it could achieve an AUROC of 84.1% on the same data
set used by Rajpurkar et al.6 while using 3× fewer
parameters, being 14× more efficient than DenseNet‐121
and without any manual hyperparameter optimizations.
This result shows the scope of improvement in the ac-
curacy of pneumonia detection through better deep
learning architectures alone, i.e., without considering
any medical knowledge. In September 2020, the same
team presented the NSGANetV1, another multiobjective
evolutionary algorithm. NSGANetV1 learns the designs
of various architectures through the recombination and
generation of multiple architectural components.
NSGANetV1 makes its efficiency better by exploiting
various patterns used in successful architectures by es-
timating their distributions with the help of a Bayesian
model. Although made for general‐purpose image clas-
sification, this model achieved an AUROC of 84.6% on
the NIH data set without modifications or hyperpara-
meter tuning. Moreover, the class activation mean
average map) of NSGANetV1 showed that the model
learns relevant features, which can also be used to
pinpoint the region where pneumonia is present.

Using architectures such as DenseNet‐121 in the
pneumonia detection task is possible because of large
data sets such as NIH or CheXpert. If such architectures
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are used with smaller data sets such as that of Kaggle,
there is a considerable chance of overfitting. Li et al.21

presented the PNet, an efficient yet effective architecture
for pneumonia detection using a significantly smaller
number of images. They collected their own data set
from Shenzhen No.2 People's Hospital, consisting of
6339 X‐rays labeled pneumonia and 4445 X‐rays labeled
normal. The architecture of PNet is straightforward,
consisting of only five convolution blocks, each followed
by a max‐pooling layer. This small architecture allows
PNet to be 25 times as efficient as AlexNet and about
50 times as efficient as visual geometric group (VGG)
detection task with an accuracy of 92.79% and an F1
score of 0.93. Even though PNet has a smaller number of
parameters, it outperforms both the AlexNet and VGG
16 in the pneumonia are many customized architectures
such as PNet, which also get equivalent accuracy.
However, only PNet was included in our research be-
cause of its excellent results on feature analysis. While
analyzing the features of all models, it was found that
VGG 16 focuses on the entire lung region instead of
focusing on the pneumonia‐affected region and AlexNet
wanders off to the wrong regions. On the other hand,
PNet focuses on only those features that correspond to
the pneumonia‐affected region in most cases. Hence,
PNet is not only good at detecting pneumonia but it can
also help doctors by highlighting the pneumonia‐
affected area. The detailed results were true positive/
false positive/true negative/false negative: 617/86/360/
19 with a sensitivity of 0.9701 and specificity of 0.8072.

Dong et al.22 presented a network architecture that
achieved high classification accuracy in pneumonia
detection. They used an improved quantum neural
network and trained this model on the Kaggle chest
X‐ray data set containing 5232 training images. This
model was tested using 624 separate images in the test
set and achieved an accuracy of 96.07%. They also
trained AlexNet, ResNet, and InceptionV3 on the same
data, giving 85.30%, 86.38%, and 95.53% accuracy, re-
spectively. Although the authors do not conduct a fea-
ture analysis in their paper, chances are few that a
quantum neural network would give such high accuracy
while learning wrong or irrelevant features. The data set
that these authors used was published by the University
of California, San Diego. The sensitivity and specificity
were 0.9756 and 0.9460, respectively.

Diving deeper into pneumonia detection with small
data sets, most intuitively, we come across a solution
based on GAN. Khalifa et al.23 used a GAN with various
deep learning models to generate more images and use
those images to train the deep learning models. They
took only 10% images from the Kaggle chest X‐ray data
set and generated the remaining 90% with the GAN for
training purposes. These images were then used for
training by AlexNet, SqueezeNet, GoogleNet, and Re-
sNet with 8, 18, 12, and 18 layers, respectively. ResNet
performed best with a testing accuracy of 99.0% and a

recall of 0.9897. The catch, however, is that they used
624 images to train the GAN, which is the same number
of images provided in the testing data set. Although the
authors have mentioned that three separate trials were
conducted with a different 10% of the data set, using test
images in even one of the four trials would drastically
change the average accuracy. Nonetheless, the idea of
using GAN's to generate new data can certainly be ap-
plied when there is a dearth of training images.

Dey et al.24 developed a model with an Ensemble
Feature Scheme (EFS) for pneumonia detection. Their
EFS combines handcrafted features and automatically
extracted features from a deep learning model to classify
an image into pneumonia or normal. Extraction of
hand‐crafted features is again completed by combining
continuous wavelet transform, discrete wavelet trans-
form, and gray level co‐occurrence matrix (GLCM). The
deep learning features are extracted using the standard
VGG‐19 architecture. The combined handcrafted fea-
tures are then concatenated with features extracted
using VGG‐19 through PCA and serial feature con-
catenation. After concatenation, these features are given
as an input to a random forest classifier for final clas-
sification. This model was trained using 5500 images
from the NIH data set and achieved 97% accuracy when
tested against 1650 separate images from the NIH data
set. Similar to other models mentioned in this paper, the
feature activations of this model also point to relevant
regions in the lung where pneumonia is present. The
detailed metrics were true positive rate/false positive
rate/true negative rate/false negative rate: 0.9756/
0.0244/0.9808/0.0192 with a sensitivity of 0.9807 and
specificity of 0.9757 (Table 2).

2.2 | Detection of Covid‐19 and
classification of viral pneumonia from
bacterial pneumonia

Capturing a chest X‐ray is one of the primary methods of
screening the occurrence of Covid‐19. However, there is
a general dearth of doctors even at places where
equipment to capture such X‐rays is available. To tackle
this problem, a lot of research has been done to detect
Covid‐19 from chest X‐rays automatically. Cases of
Covid‐19 emerged in the entire world in 2019, but a lot
of research in pneumonia detection from chest X‐rays
had already been done before. Hence, much research
on the detection of Covid‐19 from chest X‐rays is built
upon the base provided by previous research into
pneumonia detection. Due to the novelty of Covid‐19 (in
2020–2021), no standardized databases are available and
almost every research work uses a different database.
Hence, the details of all databases and comments on
their quality are given while explaining the research
work rather than giving an overview of all databases
beforehand.
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Haghanifar et al.25 made a hierarchical deep learning
model for detecting Covid‐19. In the first level, images of
chest X‐rays are classified into normal and pneumonia.
In the second level, images classified as pneumonia are
further classified into covid positive (CP) or CAP. The
data set used by the authors contains 780 Covid‐19‐
positive X‐rays, 4600 X‐rays having CAP, and 5000 nor-
mal X‐rays. The approach taken by Haghanifar et al.25

was very similar to that of Rajpurkar et al.6 The key
difference was that Haghanifar et al.25 first segmented
the lungs from chest X‐ray and then they only used the
part surrounding those lungs for classification. This
approach, to a significant extent, solved the issue of
“learning the wrong features to reach the right an-
swer,” because then, the model was forced to learn only
from the lung region rather than learning from the en-
tire X‐ray, which usually contains a lot of regions other
than the lungs. U‐Net was used for segmentation of the
lung region and then they performed dilation on the
segmented lungs to cover some lung areas that the
U‐Net did not segment. After segmentation, they crop-
ped the chest X‐ray image such that only the segmented
area was covered. This cropped image was then fed into
the DenseNet‐121 model given by Rajpurkar et al.6 This
model achieved an accuracy of 81.04% and f‐scores of
0.85 and 0.76 for CP and CAP classes, respectively. Al-
though the accuracy of this model is 0.4% less than that
of CheXNet,6 it is more robust than CheXNet on unseen
data because of the cropped images. The precision and
recall for (normal/pneumonia/Covid‐19) were P:
(0.8251/0.9340/0.9420) and R: (0.9516/0.7797/0.9420),
respectively.

While on the topic of lung segmentation, we cover
another research work,26 which uses lung segmentation
to classify a chest X‐ray into bacterial pneumonia or
viral pneumonia. The data set used by them consists of
241 X‐ray images where lungs have been separated
manually. The rest of the data set consists of 4513 pe-
diatric chest X‐ray images, out of which 2665 are bac-
terial pneumonia and 1848 are viral pneumonia. The

entire model is divided into three parts. The first part is
where the lung region is segmented from the chest X‐ray
by an eight‐layer fully convolution network (FCN).27 The
FCN model was trained using the 241 segmented images
from the Japanese Society of Radiological Technol-
ogy data set and used pretrained weights from the
Pascal visual object class28 segmentation data set. The
second part consists of feature extraction, where fea-
tures are extracted using three different methods. The
first method uses a deep CNN (DCNN), the second
method uses a mixture of GLCM‐based (Gray‐Level Co‐
occurrence Matrix) texture features and histogram of
oriented gradients‐based shape features, whereas the
third method uses HAAR wavelet texture features. The
third part of the model uses a simple support vector
machine (SVM) classifier to classify a given image into
bacterial pneumonia or viral pneumonia. This particular
approach achieved an accuracy of 76.92% with an area
under curve (AUC) of 82.34%. At this point, it is im-
perative to reiterate that metrics like accuracy, F‐scores,
and AUC should not be the only parameters to judge the
performance of a deep learning (DL) Model. In fact, in
most cases, perfect or close to perfect metrics suggest
the opposite of sound, because in most cases, the un-
derlying model is overfitted, not because of the com-
plexity of the model or the lack of data, but because of
learning irrelevant features that are specific to the
source of train data. The model achieved a sensitivity of
0.5567 and specificity of 0.9267.

Covid‐19 is a type of viral pneumonia, but it is not
the only type of viral pneumonia. Several different re-
spiratory diseases such as MERS and SARS fall into the
category of viral pneumonia. Moreover, the occurrence
of clusters of viral pneumonia cases over a short period
can be a signal of an upcoming outbreak or a pandemic.
Keeping this in mind, Zhang et al.11 developed a Con-
fidence Aware Anomaly Detection (CAAD) model to
detect the occurrence of viral pneumonia from chest
X‐rays. To train their model, they used two in‐house data
sets named X‐Viral and X‐Covid. The X‐Viral data set

TABLE 2 A comprehensive study on pneumonia detection and classification

Author Model Data set AUROC Accuracy

Rajpurkar et al.6 CheXNet (DenseNet‐121) NIH 0.760 NA

Janizek et al.19 CheXNet (DenseNet + Adversarial) NIH +MIMIC 0.747 NA

Lu et al.20 MUXConv (multiplexed convolutions) NIH 0.841 NA

Lu et al.20 NSGANetV1 NIH 0.846 NA

Li et al.21 P‐Net (customized CNN) Custom (10,784) NA 92.79%

Dong et al.22 Quantum neural network Kaggle NA 96.07%

Khalifa et al.23 GAN (semi‐supervised) Kaggle (624) NA 99.00%

Dey et al.24 EFS (CWT +DWT + GLCM) NIH (5550) NA 97.00%

Abbreviations: AUROC, area under the receiver operating characteristic; CNN, convolution neural network; CWT, continuous wavelet transform; DWT, discrete wavelet
transform; GAN, generative adversarial network; GLCM, gray level co‐occurrence matrix; NIH, National Institutes of Health.
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contains 5977 viral pneumonia images, 18,619 nonviral
pneumonia images, and 18,774 normal images. The
X‐Covid data set contains 106 CP images and 107 normal
images. They also used the Open‐Covid data set con-
taining 493 CP images. The CAAD model has three main
parts. A feature extractor, an anomaly detector, and a
confidence predictor. Before we go any further, it is es-
sential to clarify that the “anomaly” we are trying to
predict is viral pneumonia and all other classes (pneu-
monia and normal) are considered normal. Moving back
to the model, after passing an image to the feature ex-
tractor, the features are passed simultaneously into the
anomaly detector and the confidence predictor. If the
anomaly detector predicts the image as an anomaly or
the confidence predictor predicts our model's con-
fidence below a particular threshold, the image is con-
sidered an anomaly, i.e., viral pneumonia. The feature
extractor is made up of EfficientNet B0.29 The authors
designed the anomaly predictor and the confidence
detector, and they are not as common as other ones
mentioned in this review, so they deserve an explana-
tion. However, the explanation is too involved and out of
the scope of this review, so readers are requested to read
the original paper for an explanation of those modules.
Coming to the results of this approach, it achieved
80.33% accuracy on the X‐viral data set with training and
78.57% accuracy on the X‐Covid and Open‐Covid data
sets combined without any training. This shows us that
the model could categorize Covid‐19 cases as viral
pneumonia without any specific training on Covid‐19
images, which shows that this model can be useful in
predicting upcoming cases and different mutations of
viral pneumonia. The sensitivity and specificity on var-
ious data sets for viral and normal classes were: (X‐Viral:
85.88/79.44), (X‐Covid: 71.70/73.83), (Open‐Covid: 100/
100), (X‐Covid + Open‐Covid: (77.13/78.97)).

Another instance of a region‐based discriminator for
Covid‐19 was given by Wang et al.30 in August 2021.
They used the Covid‐CXR data set consisting of 204 CP
X‐rays and the RSNA pneumonia detection data set for
2004 CAP and 1314 normal chest X‐rays to train their
model. The authors proposed a Discrimination‐DL and
a Localization‐DL, but their approach was completely
different. They divided all chest X‐ray images into su-
perpixels first and then they ran a proposal of lung
(POL) regressor over those superpixels. This approach is
very similar to that of YOLO,8 with a critical difference
that only the outer boundaries of all superpixels inside
the POL‐proposed rectangles are used to extract two
lungs. After both lung regions are extracted, they are
passed into the Discrimination‐DL, which comprises a
ResNet and a feature pyramid network over the ResNet
to rebuild the image after feature extraction. Focal loss is
then measured against the rebuilt image and the origi-
nal lung region is passed into the Discrimination‐DL.
This method helps the Discriminator‐DL in learning
optimal features. If the Discriminator‐DL classifies the

image into CP, both the softmax score and original
image are passed into the Localization‐DL. The
Localization‐DL only gives one out of three results, that
is, it classifies the Covid‐19 as either present in the left
lung or the right lung or both lungs. The name
Localization‐DL might thus seem to be misleading, be-
cause it is more of a classifier. Nevertheless, the
Localization‐DL uses a residual attention mechanism to
determine the occurrence of Covid‐19 in both lungs. The
residual attention mechanism looks at the features ex-
tracted by the feature extractor to determine where the
attention of the classifier lies. For a deeper analysis of
the residual attention mechanism, the reader is referred
to the original paper.31 Coming to the accuracy of this
model, it achieves 99%, 90%, and 93% accuracy on CP,
CAP, and normal classes, respectively.

Arias‐Londono et al.32 presented a thoughtful eva-
luation approach for DL networks that detect Covid‐19.
Not only that, but they also compiled the most extensive
known data set of 8573 unique Covid‐19 chest X‐rays.
The entire data set consisted of 49,000 normal, 2400
CAP, and 8573 Covid‐19‐positive images. They used the
same deep learning model used in Covid‐Net33 and ran
three different experiments on this data set and model.
The first experiment used raw images as an input, with
the only preprocessing being histogram equalization.
In the second experiment, they used U‐Net to segment
the lung region and cropped the image so that only the
region encompassing the two lung regions remained. In
the third experiment, the same segmentation approach
was used, but this time they only kept the segmented
lung part while the remaining region was filled with a
black mask. Upon Grad‐Cam analysis, it was found that
only experiment three learned relevant features even if
the accuracy was lower than that of the other two ex-
periments. They also showed that the accuracies of the
AP X‐ray projection were significantly higher than that
of the PA projection. The showings of this study take us
to an important point worth noticing. As shown below,
metrics such as accuracy and F‐scores can be bolstered
if the deep learning model is not extracting the right
features. However, models made in such a manner may
be poor at generalizing to new data from a new source.
Hence, Grad‐Cam analysis is crucial to determine
whether a given model will be able to perform well in
the real world, and one should not judge a model solely
based on its metrics, especially if the train/test data is
less or if the train/test data belong to the same source.

Before we continue with our quest for the best deep
learning models for Covid‐19 detection and classifica-
tion of viral pneumonia from bacteria pneumonia, we
should make a note. The constructions of all models
discussed above show an explicit effort to make the
model perform well in the real world. These efforts are
shown in the form of Grad‐Cam evaluations or seg-
menting the lungs so that the models learn only relevant
features. The models described below this point,
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however, do not showcase any effort of such kind.
Hence, even though the accuracies and other metrics of
the models below this point might seem significantly
higher than those mentioned above, the reader should
keep in mind that they are not proven to generalize well
in the real world.

To overcome the problem of a significantly smaller
number of Covid‐19 images as compared with normal
and CAP images, Sakib et al.34 used a custom GAN to
generate more Covid‐19 images for training. The data
set used by them consisted of 27,228 normal, 5794 CAP,
and 209 Covid‐19 images. On analysis, they found that
generating precisely 100%, that is, 209 new Covid‐19
images by GAN, led to the highest classification accu-
racy. On top of GAN, they used a customized CNN with
exponential linear unit activation and Adagrad optimi-
zer. The idea of using a customized and lean CNN works
well in cases where data used for training is less. In such
cases, even if the metrics are not necessarily excellent,
we can be assured that the model will not overfit our
small data set, ensuring good generalizability. Talking
about the results, this model achieved 93.94%, 88.52%,
and 95.91% accuracy on CP, CAP, and normal cases,
respectively.

Ali et al.35 proposed a dual attention module to
classify viral pneumonia and bacterial pneumonia. For
training, they used the popular data set available on
Kaggle, which consists of 5856 chest X‐rays. The dual
attention module consists of a spatial attention module
and a channel attention module. For readers that do not
know what “attention” is, attention was primarily used
fornatural language processing (NLP) in recurrent
neural networks to allow the network to remember the
relevant parts of a sentence. Later on, it was adopted
into computer vision to determine the relevance of each
feature with respect to the output. After that, each fea-
ture is multiplied by its weight to give importance to
those features that contribute more to the output. The

channel attention modules measure the importance of
each channel with regard to other channels, whereas the
spatial attention module measures the importance of
each feature in a channel with regard to other features
in the same channel. This model achieved an accuracy
of 97.82%.

Ohata et al.36 used MobileNet to classify chest X‐rays
with Covid‐19 and normal chest X‐rays. The data set
used consisted of 194 Covid‐19 images and the normal
images were collected from Kaggle and NIH data sets.
They used MobileNet for feature extraction and tried six
different classifiers for classification purposes. In the
end, they decided to use linear SVM for classification
purposes, which gave an accuracy of 98.62%. Lastly,
Chowdhary et al.37 tried using various models such as
SqueezeNet, MobileNet, InceptionV3, ResNet18,
ResNet101, CheXNet, DenseNet201, and VGG19 on 423
Covid‐19 images, 1579 normal images, and 1485 CAP
images. They concluded that DenseNet and CheXNet
perform best (99.70% accuracy) in two‐class classifica-
tion, that is, Covid‐19 and other, whereas DenseNet
performs best (97.94% accuracy) in three‐class classifi-
cation problems, that is, Covid‐19, CAP, and normal.
The sensitivity and specificity were 0.979 and 0.988,
respectively (Table 3).

2.3 | Localization of pneumonia in chest
X‐rays

Although we have already covered some research that
localized the entire lung region with the help of seg-
mentation models such as U‐Net or a‐YoLo‐like‐lung‐
regressor, it is worth noting that the research covered
previously only localized the entire lung regions and not
pneumonia‐affected regions. Localization of pneumonia‐
affected regions in a chest X‐ray can be beneficial in two
ways. Mainly, it can assist radiologists in giving a quicker

TABLE 3 A systematic study on detection of Covid‐19 and classification of viral pneumonia from bacterial pneumonia

Author Model Task Data set Accuracy

Haghanifar et al.25 U‐Net + DenseNet‐121 CP/N/CAP 780/4600/5000 81.06%

Gu et al.26 FCN + (DCNN) Bacterial/viral 2655/1848 76.92%

Zhang et al.11 ResNet + AD + CoP CP/N/CAP 5977/18619/18774 80.33%

Wang et al.30 POL + ResNet CP/N/CAP 204/2004/1314 99%/90%/93%

Arias‐Londoño et al.32 U‐Net + Covid‐Net CP/N/CAP 8573/400/49000 91.53%

Sakib et al.34 GAN + Custom CNN CP/N/CAP 209/5794/27228 94%/88.5%/96%

Ali et al.35 ResNet + Attention Bacterial/Viral Kaggle 97.82%

Ohata et al.36 MobileNet CP/CN 194/NIH‐RSNA 97.00%

Chowdhury et al.37 Multiple CP/N/CAP 423/1485/1579 97.94%

Abbreviations: CAP, community‐acquired pneumonia; CN, covid negative; CNN, convolution neural network; Covid‐19, coronavirus disease 2019; CP, covid positive;
DCNN, deep convolution neural network; FCN, fully convolution network; GAN, generative adversarial network; N, normal; NIH, National Institutes of Health; RSNA,
Radiological Society of North America.
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and more accurate diagnosis. Not only that, but locali-
zation also solves a significant problem of generalizability
that we have encountered so far. If the primary goal of
our deep learning model is to localize pneumonia‐
affected regions, we can be assured that the model is not
looking at the wrong features to arrive at the right deci-
sion. As far as data sets are concerned, only one data set
(RSNA) has enough images with bounding boxes to train
a DL that localizes well. Thus, it will be easy to compare
all research work in this section based on metrics alone.

We start by explaining the approach38 because they
won the RSNA Pneumonia Detection Challenge hosted
by Kaggle. The authors used an ensemble of five models
to localize pneumonia in chest X‐rays. These five models
were divided into two groups. The output regions from
the first group (three models) were ensembled into one
region. Similarly, the output regions from the second
group (two models) were separately ensembled into a
single region. Finally, the output regions from the two
groups are ensembled into one output region using ap-
propriate thresholds. The first group is made up of one
Deformable Object Relation Network and two Deform-
able region‐based FCNs (R‐FCNs). Here, the prefix De-
formable simply suggests the use of deformable
convolutions in the respective architectures. Deformable
convolutions are different from regular convolutions in
that every pixel/feature is offset by a certain amount in a
certain direction. In this way, the shape of the receptive
field of the convolution becomes free and is not limited to
a rectangle. The offsets are learnable and thus play an
essential role in correctly locating the entire object.

The object relation network is not used very commonly
and thus deserves some explanation. The object relation
module is an adapted version of a basic attention module
used in NLP. Although the primitive elements of an NLP
attention module are words, the primitive elements of an
object relation module are objects. As objects have a two‐
dimensional spatial arrangement and vary in terms of
scale/shape, their locations and geometrical features are
much more complex than the positions of words in a
single sentence. Hence, the object relation module has an
added geometric weight other than the original weight
commonly found in NLP attention modules. The geo-
metric weight considers the relative geometry of objects
and models spatial relationships between them.

The second type of module used in the first group is
deformable R‐FCN, which is just R‐FCN with deform-
able convolutions. R‐FCN is explained during the dis-
cussion of GeminiNet in this section itself.

Moving on, the second group is made up of two Re-
tinaNets. The difference between these two RetinaNets is
not in their architectures but in the type of input images
used for training. The first RetinaNet, also called the
ConcatRetinaNet, uses concatenated images for training.
Each concatenated image is made by concatenating a
pneumonia‐negative image with a pneumonia‐positive
one. This way, the RetinaNet improves its distinguishing

capacity, while distinguishing between lung opacity with
pneumonia and lung opacity without pneumonia. Images
of 10 different sizes are given as input to all five models.
Hierarchical ensembles are then formed from the two
main groups and, finally, the bounding boxes from both
models are ensembled according to different thresholds.

Li et al.39 used 30,000 images to train their mod-
el and the rest of the images from the RSNA data set
were used for testing. Before using the raw images for
input, they segmented the lung region from the original
image using U‐Net, much similar to Haghanifar et al.25

After segmenting the lung region, they combined the
segmented and raw images to make a final data set for
training their model. They used the SE‐ResNet34 for
localizing regions containing pneumonia.40 SE‐ResNet is
short for squeeze‐and‐excitation ResNet, which is basi-
cally an encoder–decoder model that serves multiple
purposes. The SE‐ResNet acts as a feature extractor and
its side branch can automatically learn weights to assign
importance to each channel. Moreover, the model can
learn smoothly even over significantly deep layers
without risk of degradation because of the residual
blocks. Hence, the model works as a channel attention
module over a ResNet34. For the final output, each pixel
in the output channel represents the probability of that
pixel belonging to the pneumonia class. The regions can
then be extracted by applying thresholds to those
probabilities. Coming to the results of this model, it was
able to achieve an mean average precision (mAP) score
of 0.262. The mAP was calculated under intersection
over union (IoU) thresholds of 0.3, 0.4, 0.5, 0.6, and 0.7.

Dimitrov's team placed second in the RSNA pneu-
monia detection challenge hosted by Kaggle. The paper
(including Poplavskiy) describes their model and ap-
proach in detail.41 For their model, they used RetinaNet,
which is a single‐shot detector. For the base of RetinaNet,
they decided to use the encoder part of SE‐ResNext‐101.
This particular design was chosen to accommodate both
the speed of a single shot detector and the accuracy of a
deep model such as ResNext‐101. Using this approach,
they were able to achieve an mAP score of 0.26097. The
official score on the leaderboard was 0.24781, but they
optimized the model with heavy augmentations and zero
rotation after the competition was over. A lot more trial
and error went into making this model, mainly because it
was made as a part of a competition. Almost all hy-
perparameters in this model are optimized and with good
reasons, which are provided in their paper.

Up until now, we have talked about research that uses
single‐shot detectors for the localization of pneumonia‐
affected regions. However, two‐stage detectors have a
significant advantage over single‐shot detectors in terms
of accuracy. There is, of course, a time tradeoff involved
while using two‐stage detectors, but the question to ask
is: how much does the detection time matter? At testing
time, the difference between single‐shot and two‐stage
detectors is not big enough to make any significant
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difference, because real‐time detection is not required for
any use case of pneumonia localization.

Keeping this in mind, Yao et al.42 presented the Ge-
miniNet in March 2020. Before we begin with the ex-
planation of this study, there is a note worth taking. Some
terminology in the following four or five sentences might
sound new to beginners, but all of it is elaborated upon in
considerable detail in the two successive paragraphs.
Continuing with GeminiNet, it is a two‐stage detector that
builds upon the concept of R‐FCN.43 The difference be-
tween R‐FCN and GeminiNet is that the latter uses RFB44

blocks instead of simple convolution blocks for multiscale
context information. Moreover, they changed the base
model used for feature extraction. Instead of using
ResNet‐50 they used DetNet59, because it yielded better
performance metrics. This model (DetNet59 +GeminiNet)
presented by the authors achieved anmAP score of 0.3259
at IOU thresholds 0.4, 0.5, 0.6, and 0.7.

Now onto the elaboration, the RFB block is much like
an InceptionV1 block, except it has an extra shortcut such
as residual blocks in a ResNet. RFB blocks are especially
useful in object detection scenarios, because they have
variable receptive fields (e.g., inception) and they can
handle deep models smoothly (e.g., ResNet). Moreover,
instead of simple convolutions, the authors used dilated
convolutions in the RFB block.45 Dilated convolutions
convolve upon a larger size (say 5 × 5 instead of 3 × 3) but
select only a few features (3 × 3 = 9) from the big block
(5 × 5), thereby keeping the number of parameters small
but increasing the receptive field (Figure 1).

Although RFB blocks are important in GeminiNet, its
heart is the R‐FCN. R‐FCN is used as a substitute for
Fast‐residual convolutional neural network) and Faster
R‐CNN. Fast R‐CNN improves upon the speed of R‐CNN
by calculating the feature map of the entire image at
once and uses that feature map to derive region of in-
terest (ROIs) directly. Feature maps do not have to be
calculated for different ROI's separately. R‐FCN works
by simultaneously generating ROIs and region‐based
feature maps, thus saving a lot of time. After that step,
for all regions generated in the ROI step, region‐based
feature maps are checked to vote for the probability of a
particular ROI containing a particular part of the entire
object. The final vote array (consisting of probabilities
from all ROIs) is averaged to determine which object is
present in the image. This process of calculating prob-
abilities for all ROIs and storing them in a vote array is
called position‐sensitive ROI (PS‐ROI) pooling. Gemi-
niNet does not use R‐FCN as it is. The changes are as
shown in Figure 2.

While on the topic of R‐FCN, the approach of the
DeepRadiology Team46 is worth mentioning. They used a
modified version of R‐FCN called CoupleNet.47 Couple-
Net adds a second branch to R‐FCN for processing global
features. This way, the resulting architecture learns fea-
tures from a larger area through the global branch by
adding extra ROI features and local features learn from
the local branch by using PS‐ROI features. The DeepRa-
diology Team used an ensemble of four models having
the same architecture. All four of these models gave
unique outputs, which were used for generating the final
regions. First, all bounding boxes that had a confidence
score < 0.5 were eliminated. After that, bounding boxes
from all four groups, which had an IOU > 0.25 were
grouped together. Lastly, the coordinates of all bounding
boxes in one group were used to derive a final bounding
box. This model was able to achieve an mAP of 0.23089
and placed seventh in the competition.

Next, we move on to models that use a combination
of single‐shot detector and two‐stage detectors.
Sirazitdinov et al.48 presented a model that used a
combination of RetinaNet (single‐shot detector) and
Mask R‐CNN (two‐stage detector). RetinaNet worked as
the main unit, whereas Mask R‐CNN was used as an

F IGURE 1 Classifications of pneumonia and its detection
techniques. Covid‐19, coronavirus disease 2019; CT, computerized
tomography

F IGURE 2 Architecture of GeminiNet. FCN, fully convolution network; PS ROI, position‐sensitive ROI
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auxiliary unit to adjust the regions of RetinaNet. The
working of the entire model is straightforward. Both the
RetinaNet and the Mask R‐CNN models work separately
and predict bounding boxes with corresponding classes.
After applying non‐max suppression in both models, a
weighted average of predictions from both models is
calculated where the weight of RetinaNet: Mask R‐CNN
predictions is 3:1. This ratio was calculated by an
iterative grid search over many such ratios ranging from
1:1 to 4:1.

Another research work explored the combination
of RetinaNet and Mask R‐CNN for pneumonia detec-
tion.49 They tried various ensembles of RetinaNet and
Mask R‐CNN with different sizes and different weights.
Finally, a model with RetinaNet 178, RetinaNet 184,
RetinaNet 201, Mask R‐CNN 150, and Mask R‐CNN 162
in the ratio 2:2:3:2:3 was used for detection. This
model achieved an mAP of 0.21746, which could be
placed at the 21st place in the competition approxi-
mately (Table 4).

2.4 | Classification of Covid‐19 and CAP
via CT scans

Harmon et al.50 made a deep learning model detect
Covid‐19 from CT scans using multinational data sets.
Their data set consisted of CP scans from China (369),
Japan (100), and Italy (57). In total, 1059 scans were
used for training and 1397 separate scans were used for
testing. Their deep learning model consists of a lung
segmentation module and a classifier module. The lung
segmentation module segments the lung region from
the entire CT scan. After the lung region is segmented,
the segmented region is given as an input to the clas-
sifier, which classifies the input into CP or covid nega-
tive. For the lung segmentation module, the AH‐net51
architecture is used. AH‐Net is an encoder–decoder‐
based segmentation module used for three‐dimensional
(3D) segmentation and it mostly works similar to U‐Net.
The segmented regions used while training had a mean
dice score of 0.95. Dice scores are similar to IOU scores

and are used widely as a metric in segmentation tasks.
Moving on, the classification module is made up of the
DenseNet‐121 architecture just like CheXNet and takes a
fixed input of size 192 × 192 × 64. Finally, this model
achieved an accuracy of 89.6% with an AUC score of
0.941 on independent testing sets. Although the archi-
tecture of the classifier in this model is the same as
CheXNet, the number of training images is significantly
fewer. Nevertheless, Grad‐CAM evaluations of this
model show that the model can learn correct features to
arrive at the right decision. Hence, the segmentation
module that precedes the classification module plays a
vital role in the generalizability of this model. The sen-
sitivity and specificity of this model were 0.840 and
0.930, respectively.

Ouyang et al.52 presented a deep learning model
with dual sampling and an online, trainable class acti-
vation mapping (CAM) module to ensure that the model
learned important features. The training data set used
for this model contains 2186 images, of which 1092 are
CP and 1094 are CAP. The data set used for testing is
also quite large, with 2796 images, of which 2295 are
CP and 501 are CAP. The authors also use a standard
lung segmentation module called the VB‐Net toolkit53

for lung segmentation. Feature extraction is then done
using a ResNet34. After segmentation, the entire data set
is sampled in two ways. The first one is uniform sam-
pling, where each minibatch contains images in the
same ratio as the entire data set. The second method is
size‐balanced sampling. Size‐balanced sampling is re-
quired, because the data set has only a small number of
Covid‐19 images with a small infection area. Similarly,
only a few images with a large area of infections are
available in the CAP category. Hence, size‐balanced
sampling is applied such that the ratio of: CAP images
with large infection; CAP images with small infection;
covid images with large infection; and covid images with
small infection remain approximately the same in each
minibatch. This ratio is maintained by oversampling.
However, oversampling poses another challenge of
overfitting. This challenge is resolved by using the first of
its kind, online CAM module. The online CAM module

TABLE 4 A comprehensive review on localization of pneumonia in chest X‐rays

Author Model Type IOU thresholds mAP

Li et al.40 U‐Net (SE‐ResNet34) SSD 0.3–0.7 (0.1) 0.262

Gabruseva et al.41 RetinaNet (SE‐ResNext101) SSD 0.4–0.75 (0.05) 0.260

Yao et al.42 GeminiNet (modified R‐FCN) TSD 0.4–0.7 (0.1) 0.326

The DeepRadiology Team46 CoupleNet (modified R‐FCN) TSD 0.4–0.75 (0.05) 0.231

Sirazitdinov et al.48 RetinaNet +Mask R‐CNN (3:1) SSD + TSD 0.4–0.75 (0.05) 0.204

Ko et al.49 RetinaNet +Mask R‐CNN (7:5) SSD + TSD 0.4–0.75 (0.05) 0.217

Pan et al.38 R‐FCN + RelNet + RetinaNet SSD + TSD 0.4–0.75 (0.05) 0.255

Abbreviations: mAP, R‐FCN, region‐based fully convolution network; SSD, single shot detector; TSD, two stage detector.
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is generated by applying a 1 × 1 × 1 convolution to the
weights of the fully connected layer and then convolving
that layer over the feature map. A ReLU operation is
applied at last to get the final activation map. This
model achieved 95.4% accuracy with an AUC of 0.988.
The sensitivity and specificity of this model were 0.872
and 0.907, respectively.

The work of Wang et al.54 is yet another example of a
deep learning model that consists of a lung segmenta-
tion module followed by a classifier with attention. Their
data set consists of 4657 scans where 936 are Normal,
2406 are CAP, and 1315 are CP. For segmentation, the
authors used the 3D‐UNet55 models. After lung lobe
segmentation, the images are cropped into a size of
96 × 96 × 96 and passed into the classifier. The classifier
consists of two parts, the pneumonia detector and the
pneumonia classifier. If an image is detected to have
pneumonia by the pneumonia detector, it is passed to
the pneumonia classifier, which classifies the image into
interstitial lung disease (ILD) or Covid‐19. The fact that
the pneumonia classifier only comes into action after
the pneumonia detector has performed its job was le-
veraged into using a prior attention residual block. As
shown in Figure 3, the prior attention residual block has
one additional input other than the regular residual
block, which is borrowed from the weights of the final
layer of the pneumonia detection module. The prior
attention residual block can get the attention weights
before backpropagation takes place and they can be
used to train the pneumonia classifier simultaneously.
This method ensures that the classifier is trained on the
right features. This model achieved an accuracy of 93.3%
on the Covid‐19 class, 89.4% on the ILD class, and 91.5%
on the normal class. The sensitivity and specificity for
normal/viral/covid‐19 classes were (91.5/89.4/93.3) and
(93.5/90.6/95.5), respectively.

Lai et al.56 proposed the novel coronavirus‐infected
pneumonia (NCIP)‐Net for the detection of Covid‐19

from CT scans. The authors of NCIP‐Net used a multi-
task DCNN for determining the presence of Covid‐19
based on the entire image, Segmentation of Covid‐19
lesions from the entire CT scan and determining the
probability of Covid‐19 from the segmented lesions. The
data set used for training this model consists of 323
Covid‐19‐positive CT scans and 501 normal scans. Be-
fore providing the images to the model as an input, all
images went through a lung lobe segmentation process
where the lung region was separated from the entire
image. The model is constructed like a normal
encoder–decoder, but the encoder is connected to three
branches. Out of those three branches, one is the de-
coder, which is used for lesion segmentation. The sec-
ond branch from the encoder is used for the prediction
of Covid‐19 directly from the image. The third branch is
used for determining the probability of Covid‐19 based
on the ROI with lesions. The training is divided into two
stages. In the first stage, the second branch from the
encoder is connected to three convolution layers with a
residual block concatenated with a softmax function to
determine the probability of Covid‐19 from the image
directly. Still, in the first training stage, the features
encoded by the encoder are passed on to the decoder
for lesion segmentation based on dice loss. In the sec-
ond stage of training, CT volume patches are used as an
input and the third branch extended from the encoder
(C‐Net) is used to identify a maximum of 10 proposals
with the likelihood of lesions to predict the presence of
Covid‐19. The encoder can predict the proposals with
the likelihood of lesions, because it was previously
trained to segment lesions from the CT scan. This model
achieved an accuracy of 74.4% in Covid‐19/normal and
82.9% in Covid‐19/other lung diseases.

Looking at all this study work, some patterns clearly
stand out. The first and the most important one is to
segment the lung region from the entire CT scan. This
way, a lot of computation time is saved, and the model is

F IGURE 3 Comparison of different attention mechanisms
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forced to learn features from the right region. However,
the model can still learn the wrong features from the
lung region. To overcome this problem, some kind of
attention mechanism, online or offline, is used in all
models that are proven to generalize well. Next, we
move on to some research work that distinguishes
pneumonia from normal cases and does not include
Covid‐19 cases. A separate section was not created to
include the detection of pneumonia via CT scans, be-
cause not enough research has been carried on that
topic. This is because detection of pneumonia is usually
done with X‐rays rather than with CT scans.

Wang et al.57 proposed a multichannel multimodal
deep regression framework for the screening of pneu-
monia from CT scans. For their model, they used 450
pneumonia‐positive CT scans and 450 normal CT scans.
Not only that, but they also used the complaints of those
patients and their demographic information to improve
the performance of their model. The entire model is
divided into three parts that process demographic
information, complaint information, and CT scans, re-
spectively. Intuitively, the demographic information and
the complaint information are processed with the help
of an LSTM (long short term memory). The CT scans,
however, are processed differently. First, three slices
from the CT, namely the lung window, high attenuation,
and low attenuation (LA), are extracted and con-
catenated into a three‐channel image. This three‐
channel image is then passed onto an R‐CNN with a
base of ResNet‐50. The R‐CNN is an object detection
module, so it detects the region of the CT scan where
pneumonia is present. The features extracted from the
region detected by the R‐CNN are then passed on to an
LSTM network. The features extracted by the R‐CNN
were passed on to the LSTM for two reasons. First, the
authors wanted to use the three channels as a sequence
of video frames that were dependent on each other. The
second reason is that an LSTM was the only feasible way
to concatenate the demographic and complaint in-
formation with the spatial information of CT scans. Fi-
nally, all three LSTMs are concatenated and used for
pneumonia detection. This model achieved an accuracy
of 94.6% in the pneumonia detection task. The

sensitivity and specificity of this model were 0.933 and
0.922, respectively (Table 5).

2.5 | Localization of Covid‐19 in CT scans

Wang et al.58 presented the COPLE‐Net, a noise‐robust
model for segmentation of Covid‐19 lesions from CT
images. To train their model, they used 558 CP CT
images. The architecture of COPLE‐Net was based on
U‐Net with some modifications. First, instead of using
only max‐pooling or average pooling for downsampling,
the authors concatenated both methods, and it gave
better results. Second, they modified the skip connec-
tions of U‐Net by adding another layer of convolution
between the encoder and the decoder. This additional
layer contains half as many channels as the encoder.
This layer was added to alleviate the semantic gap be-
tween the decoder's high‐level features and the en-
coder's low‐level features by forcing the encoder
features to a lower dimension (half channels). Third, the
authors added an atrous spatial pyramid pooling
(ASPP)44 layer at the end of the encoder. An ASPP layer
contains four parallel layers of dilated convolutions with
different dilation rates. This way, multiscale features can
be extracted for small and large lesion segmentation.

COPLE‐Net was trained using an adaptive self‐
ensembling technique with a noise‐robust dice loss. The
noise robustness in dice loss was achieved by using an
mean absolute error analogous dice loss instead of the
usual mean squared error analogous dice loss. To un-
derstand the self‐ensembling, we must first understand
which models were ensembled. The authors trained two
COPLE‐Nets via a teacher‐student mechanism. The
teacher model was an exponential moving average of
the student model and was thus more stable than the
student model. However, the weights of the moving
average were not fixed from the beginning. If the loss of
the student model was more than a defined threshold,
the student model was not used to update the teacher
model at all. Otherwise, the weight of the student model
considered to update the teacher model was defined as
a function of the loss constant (difference between the

TABLE 5 A detailed study on classification of Covid‐19 and CAP via CT scans

Author Model Task Data set Accuracy

Harmon et al.50 AH‐Net + CheXNet CP/N/CAP 1059 89.6%

Ouyang et al.52 VB‐Net + ResNet34 CP/CAP 1092/1094 95.4%

Wang et al.54 3D U‐Net + ResNet CP/N/CAP 1315/936/2406 93.3%/91.5%/89.4%

Lai et al.56 NCIP‐Net CP/N 323/501 74.4%

Wang et al.57 ResNet + LSTM N/CAP 450/450 94.6%

Abbreviations: CAP, community‐acquired pneumonia; CN, covid negative; Covid‐19, coronavirus disease 2019; CP, covid positive; CT, computerized tomography; N,
normal; 3D, three‐dimensional.
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losses) of the said models. This model was able to
achieve a dice score of 0.8072% or 80.72%.

Gao et al.59 presented a dual‐branch combination
network (DCN) for performing lesion segmentation and
classification at once. Their data set consisted of 1918 CT
scans from 1202 subjects across two hospitals. Before
feeding the CT image slices into the DCN, the images
underwent lung segmentation through a U‐Net. These
segmented lungs with a dice score coefficient of 0.99 were
then used as an input to the DCN model. The model
comprises two main parts, one for classification and
another one for segmentation. The segmentation model
is an encoder‐decoder model analogous to a U‐Net
model. The classification model uses ResNet‐50 as a
backbone with lesion attention modules, as shown by
brown color in Figure 4. The LA module is a combination
of (the original CT slice)/(ResNet‐50 downsampled slice)
and the feature extracted slice of the corresponding size
from the decoder of the segmentation module. A slice
from the decoder module is chosen, because the decoder
has more relevant features which correspond to Covid‐19
lesions. Hence, the ResNet‐50 classification module is
forced to pay attention to features that contain Covid‐19
lesions. This model was able to achieve a dice score of
0.8351% or 83.51%. The classification accuracy for inter-
nal validation (CT images from the same hospital that the
model was trained on) was 96.74%, with an AUC of
0.9864, whereas the accuracy on external validation (CT
images from a different hospital) was 92.87% with an
AUC of 0.9771.

Zhou et al.60 presented a three‐way segmentation
technique for segmentation of Covid‐19 infected regions
from a CT scan. The data set used by them consisted of
CT scans of 120 patients. The total number of unique CT
scans used is not disclosed in their paper. The authors,
however, used a unique data augmentation technique to

generate 200 CT scans from each unique patient. The
detailed augmentation technique has not been disclosed
in the paper, but the principles upon which the aug-
mentation was based were delineated. Hence, the data set
consists of about 24,000 CT scans. The authors used three‐
way segmentation in that they extracted x–y, y–z, and x–z
slices from the CT scan and trained three different seg-
mentation models to segment Covid‐19 lesions from these
models. This technique is analogous to how radiologists
diagnose Covid‐19 lesions. If a particular voxel cannot be
clearly predicted as lesion or normal, radiologists often
look at voxels surrounding that voxel. Similarly, if we have
two‐dimensional segmentations from all three axes (x–y,
y–z, and x–z), our model can classify a voxel into lesion or
normal by looking at surrounding voxels without being
limited to that particular plane. This model was able to
achieve a dice score of 0.783.

Fan et al.61 presented the Inf‐Net, a semisupervised
deep learning model for the segmentation of Covid‐19
lesions from CT scans. Their data set consisted of 50 CT
scans, which aptly justifies the semisupervised learning.
The architecture of Inf‐Net begins with two convolution
layers into which a CT scan slice is fed. The first two
convolution layers extract the low‐level features. In
general, low‐level features are known to detect edges in
computer vision, so these features are passed through a
simple convolution layer and compared against the
ground truth segmented region to determine the edge
loss. As shown in Figure 5, this edge loss is back-
propagated to f2 so that f2 can learn correct edge fea-
tures. Next, the features of convolution layers 3, 4, and 5
are passed on to a partial decoder, which yields a coarse
global map of the region to be segmented. Only high‐
level features are used as an input to the partial decoder
because Wu et al.62 pointed out that low‐level features
are computationally intensive as compared to high‐level

F IGURE 4 Architecture of dual‐branch combination network
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features and contribute little to the process of segmen-
tation. The global map provided by the partial decoder
is labeled as coarse in that it contains an extra seg-
mentation region that needs to be removed. Hence, a
reverse attention module is used to erase the extra re-
gion from the coarse global map. The removal of this
extra region is done with the help of edge features from
the second convolution layer so that only the region
inside the edge is preserved. Therefore, the reverse at-
tention module takes input from both f2 and the global
coarse map. Three such reverse attention modules, R3,
R4, and R5, are stacked in a cascade manner such that
the output of R5 is used as an input for the reverse
attention module of R4 and so on. Finally, the output of
R3 is followed by a sigmoid function to give the com-
pletely segmented infected region. The semisupervised
learning approach of Inf‐net is progressively enlarging
the data set. This process is performed by predicting
some labels from the limited training data and then
using the predicted labels as the training data and the
original training data. This process is repeated for a
while until enough training data is gathered. The Inf‐Net
achieved a dice score of 0.739 on their data set and a
dice score of 0.597 on a different data set.

Yang et al.63 presented a unique approach for the
localization of Covid‐19 lesions in CT slices. The idea
was to train a Generator Network, which would output
normal (without Covid‐19) slices even if the corre-
sponding input slice had Covid‐19 lesions. Afterward,
the output slices could be subtracted from the input
slices to localize the regions where Covid‐19 lesions

were present. The generator model was trained against a
discriminator model, which tried to distinguish between
real and generated normal pneumonia images. More-
over, a ResNet‐18 was also trained on Covid‐19‐positive
images so that the ResNet could grasp the low‐level
features and concatenate those features with the en-
coder of the generator network. This was done because
the generator network itself was not powerful enough to
grasp the low‐level features of a CT slice. Finally, both
normal and Covid‐19‐positive CT slices are provided to
the generator model, but the loss is only calculated
against normal images. In this way, the generator is
forced to generate normal CT slices even from the
Covid‐19 lesion containing CT slices. This is analogous
to a denoising autoencoder where noisy images are
passed into the auto‐encoder, but the loss is calculated
against noise‐less images. A major benefit of using this
model is that it is weakly supervised. Hence, while
training the generator, labeled image pairs are not ne-
cessarily required. This model achieved a dice score of
0.575, which is very competitive for weakly supervised
models. However, fully supervised models have a much
higher dice score (Table 6).

3 | CHALLENGES AND FUTURE
SCOPE

The end goal of all research into automatic pneumonia/
Covid‐19 detection and localization is to have a model
that can be used in (hospitals)/(chest X‐ray centers)/(CT

F IGURE 5 A detailed architecture of Inf‐Net
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scan centers) on an everyday basis. For a single model
to be used in different centers worldwide, the model
should be able to generalize well to different CT scan/
X‐ray machines and different demographics.

This poses the problem of collecting a data set that
contains such a wide variety of data. Although the
problem of overfitting to a particular data set has been
mitigated by attention mechanisms, Grad‐CAM analy-
sis, adversarial training, and segmentation‐before‐
classification, this kind of work needs to be applied to a
more distributed data set so that it can learn correct
features from any chest X‐ray/CT scan around the
world without the need of tedious preprocessing.
Hence, the first future scope would be to collect a data
set with a wide variety of chest X‐rays/CT scans,
especially for Covid‐19 classification.

Preprocessing an image of a chest‐X‐ray/CT‐scan
before using it as an input for a deep learning model
poses another challenge. As most image preprocessing
is dependent on the type of image. For example, chest
X‐rays taken on machine A would require a different
kind of image preprocessing mechanism than a chest
X‐ray taken on machine B. Hence, another future scope
would be creating deep learning models, which require
little to no data‐dependent preprocessing.

In this study, a lot of different research that tackles
different problems has been illustrated. Although no
single work tackles all challenges, a smart combination
of some practices used in the mentioned research might
yield a truly generalizable model. Furthermore, several
small, custom data sets were compiled by different au-
thors for their research. Combining those data sets or
even using semisupervised domain adversarial training
with different data sets would generalize the corre-
sponding deep learning model better.

Practical application of research in such deep
learning models might be restricted to assisting doctors
in making a better diagnosis instead of working in
complete autonomy. Keeping such applications in
mind, deep learning models can be modified to output a
prediction highlighting the most important features
based on which the prediction was made. This way,
doctors might get help if they miss some features in the
image which are not apparent to the naked eye.

4 | CONCLUSION

The process for automating the detection of pneumonia
from chest X‐rays and CT scans has evolved a lot over
the past few years, especially with the advent of deep
learning methods. Looking back at the past 4 years, base
deep learning model architectures have evolved a lot.
However, base model architectures are not the most
effective solutions for the specific task of pneumonia
detection. The pioneering models that achieved good
metrics on pneumonia detection tasks tweaked the ar-
chitectures of base models so that the tweaked models
were a better fit for the task of pneumonia detection.
The models that followed these pioneering models were
focused on generalizing the model architecture. This
generalization was achieved through techniques such as
adversarial training, Grad‐CAM analysis, attention me-
chanisms, and many more.

The task of classifying Covid‐19 from chest X‐rays
and CT scans is not very different from the pneumonia
detection task. However, research into Covid‐19 de-
tection through deep learning models is relatively
new, because Covid‐19 is a relatively new disease (as
of 2021). Because of the time gap, the models made
for detecting Covid‐19 from pneumonia use better
base model architectures than those initially used in
pneumonia detection. However, the techniques used
to make the base models more effective toward the
specific task of Covid‐19 detection are similar to the
techniques used for the pneumonia detection task,
both for higher metrics and better generalization. This
observation leads us to an important inference. The
inference would be that those techniques, which make
base model architectures more effective or more
generalizable for a specific task (pneumonia detec-
tion) are at least as important if not more important
than the base models.

Even as base model architectures keep improving, the
techniques discussed in this paper can always be applied
to the improved base models to further improve the base
models' generalizability and effectiveness. With that
thought, many different techniques and architecture
tweaks, along with their merits, demerits, and tradeoffs,
have been explained in this paper. A quantitative analysis

TABLE 6 A study on localization of Covid‐19 in CT scans

Author Model Type Data set DSC

Wang et al.58 COPLE‐Net (Modified U‐Net + ASE) Fully supervised 558 Scans 0.8072

Gao et al.59 DCN (Modified U‐Net + LA + ResNet) Fully supervised 1918 Scans 0.8351

Zhou et al.60 U‐Net (X–Y, Y–Z, X–Z axes segmentation) Semisupervised 120 Patients 0.783

Fan et al.61 Inf‐Net (Custom CNN + RA + PD) Semisupervised 50 Scans 0.594

Yang et al.63 GAN + ResNet Semisupervised 1252 Scans 0.575

Abbreviations: ASE, adaptive self‐ensembling; Covid‐19, coronavirus disease 2019; CT, computerized tomography; DSC, dice score coefficient; LA, lesion attention; PD,
partial decoder; RA, reverse attention.
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table that corresponds to each section of the paper is also
provided so that the readers can corelate between the
qualitative and quantitative results of different models
and techniques. With both qualitative and quantitative
analysis, this paper can be a one‐stop solution for as-
piring researchers who want to study the field of
pneumonia/Covid‐19 detection in depth. Lastly, this pa-
per serves as a means of initiating and propagating new
research in the field of automatic pneumonia/Covid‐19
detection and localization by providing a wide breadth of
techniques along with enough depth in every technique
so as to guide aspiring researchers in the right direction
for their specific purpose.

CONFLICT OF INTERESTS
The authors declare no conflict of interest.

REFERENCES
1. Franquet T. Imaging of pneumonia: trends and algorithms. Eur

Respir J. 2001;18:196‐208. doi:10.1183/09031936.01.00213501
2. Kaymak S, Serener A. Automated age‐related macular degen-

eration and diabetic macular edema detection on OCT images
using deep learning: IEEE 14th International Conference on In-
telligent Computer Communication and Processing (ICCP). IEEE.
2018:265‐269.

3. Shi J, Zheng X, Li Y, Zhang Q, Ying S. Multimodal neuroimaging
feature learning with multi‐modal stacked deep polynomial
networks for diagnosis of Alzheimer's disease. IEEE J Biomed
Heal Informatics. 2018;22:173‐183.

4. Kaymak S, Esmaili P, Serener A. Deep learning for two‐step
classification of malignant pigmented skin lesions: 14th Sympo-
sium on Neural Networks and Applications (NEURAL). IEEE.
2018:1‐6.

5. Serte S, Serener A. A generalized deep learning model for glau-
coma detection: 3rd International Symposium on Multidis‐
Ciplinary Studies and Innovative Technologies (ISMSIT). IEEE.
2019:1‐5.

6. Rajpurkar P, Irvin J, Zhu K, et al. CheXNet: radiologist‐level
pneumonia detection on chest X‐rays with deep learning. 2017.
http://arxiv.org/abs/1711.05225

7. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification
with deep convolutional neural networks. Commun ACM. 2017;
60:84‐90. doi:10.1145/3065386

8. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once:
unified, real‐time object detection: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE;
2016. doi:10.1109/CVPR.2016.91

9. Lin T‐Y, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense
object detection: 2017 IEEE International Conference on Com-
puter Vision (ICCV). IEEE; 2017. doi:10.1109/ICCV.2017.324

10. Goodfellow I, Pouget‐Abadie J, Mirza M, et al. Generative ad-
versarial networks. Commun ACM. 2020;63(11). doi:10.1145/
3422622

11. Zhang J, Xie Y, Pang G, et al. Viral pneumonia screening on chest
X‐ray images using confidence‐aware anomaly detection. 2020.
http://arxiv.org/abs/2003.12338

12. Drosten C, Kellam P, Memish ZA. Evidence for camel‐to‐human
transmission of MERS coronavirus. N Engl J Med. 2014;371:
1359‐1360. doi:10.1056/NEJMc1409847

13. Li W, Moore MJ, Vasilieva N, et al. Angiotensin‐converting en-
zyme 2 is a functional receptor for the SARS coronavirus. Nature.
2003;426:450‐454.

14. Li Y, Zhang Z, Dai C, Dong Q, Badrigilan S. Accuracy of deep
learning for automated detection of pneumonia using chest X‐ray

images: a systematic review and meta‐analysis. Comput Biol Med.
2020;123:103898. doi:10.1016/j.compbiomed.2020.103898

15. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chest
X‐Ray8: hospital‐scale chest X‐ray database and benchmarks on
weakly‐supervised classification and localization of common
thorax diseases: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE; 2017. doi:10.1109/CVPR.2017.369

16. Deng J, Dong W, Socher R, Li LJ, Kai L, Li FF. ImageNet: a large‐
scale hierarchical image database: IEEE Conference on Computer
Vision and Pattern Recognition. IEEE; 2009. doi:10.1109/CVPR.
2009.5206848

17. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely
connected convolutional networks: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE; 2017. doi:10.
1109/CVPR.2017.243

18. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK.
Variable generalization performance of a deep learning model to
detect pneumonia in chest radiographs: a cross‐sectional study.
PLoS Med. 2018;15:e1002683. doi:10.1371/journal.pmed.1002683

19. Janizek JD, Erion G, DeGrave AJ, Lee S‐I. An adversarial approach
for the robust classification of pneumonia from chest radiographs.
ACM CHIL 2020 ‐ Proc 2020 ACM Conf Heal Inference, Learn.
2020:69‐79. doi:10.1145/3368555.3384458

20. Liang C, Li Y, Luo J. Multiobjective evolutionary design of deep
convolutional neural networks for image classification. IEEE
Trans Evol Comput. 2021;25:277‐291. doi:10.1109/TEVC.2020.
3024708

21. Li Z, Yu J, Li X, et al. PNet: an efficient network for pneumonia
detection: 12th International Congress on Image and Signal
Processing, BioMedical Engineering and Informatics (CISP‐
BMEI). IEEE; 2019. doi:10.1109/CISP-BMEI48845.2019.8965660

22. Dong Y, Wu M, Zhang J. Recognition of pneumonia image based
on improved quantum neural network. IEEE Access. 2020;8:
224500‐224512. doi:10.1109/ACCESS.2020.3044697

23. Khalifa NEM, Taha MHN, Hassanien AE, Elghamrawy S.
Detection of coronavirus (COVID‐19) associated pneumonia based
on generative adversarial networks and a fine‐tuned deep transfer
learning model using chest X‐ray dataset. 2020:1‐15. http://arxiv.
org/abs/2004.01184

24. Dey N, Zhang YD, Rajinikanth V, Pugalenthi R, Raja NSM. Cus-
tomized VGG19 architecture for pneumonia detection in chest
X‐rays. Pattern Recognit Lett. 2021;143:67‐74. doi:10.1016/j.patrec.
2020.12.010

25. Haghanifar A, Majdabadi MM, Choi Y, Deivalakshmi S, Ko S.
COVID‐CXNet: detecting COVID‐19 in frontal chest X‐ray
images using deep learning. 2020. http://arxiv.org/abs/2006.
13807

26. Gu X, Pan L, Liang H, Yang R. Classification of bacterial and viral
childhood pneumonia using deep learning in chest radiography.
ACM Int Conf Proc Ser. 2018:88‐93. doi:10.1145/3195588.3195597

27. Long J, Shelhamer E, Darrell T Fully convolutional networks for
semantic segmentation: 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). IEEE; 2015. doi:10.1109/
CVPR.2015.7298965

28. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A.
The Pascal visual object classes (VOC) challenge. Int J Comput
Vis. 2010;88:303‐338. doi:10.1007/s11263-009-0275-4

29. Tan M, Le QV. EfficientNet: Rethinking model scaling for con-
volutional neural networks. 36th Int Conf Mach Learn ICML.
2019:10691‐10700.

30. Wang Z, Xiao Y, Li Y, et al. Automatically discriminating and
localizing COVID‐19 from community‐acquired pneumonia on
chest X‐rays. Pattern Recognit. 2021;110:107613. doi:10.1016/j.
patcog.2020.107613

31. Wang F, Jiang M, Qian C, et al. Residual attention network for
image classification: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE; 2017. doi:10.1109/CVPR.
2017.683

170 | SHAH AND SHAH

https://doi.org/10.1183/09031936.01.00213501
http://arxiv.org/abs/1711.05225
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
http://arxiv.org/abs/2003.12338
https://doi.org/10.1056/NEJMc1409847
https://doi.org/10.1016/j.compbiomed.2020.103898
https://doi.org/10.1109/CVPR.2017.369
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1145/3368555.3384458
https://doi.org/10.1109/TEVC.2020.3024708
https://doi.org/10.1109/TEVC.2020.3024708
https://doi.org/10.1109/CISP-BMEI48845.2019.8965660
https://doi.org/10.1109/ACCESS.2020.3044697
http://arxiv.org/abs/2004.01184
http://arxiv.org/abs/2004.01184
https://doi.org/10.1016/j.patrec.2020.12.010
https://doi.org/10.1016/j.patrec.2020.12.010
http://arxiv.org/abs/2006.13807
http://arxiv.org/abs/2006.13807
https://doi.org/10.1145/3195588.3195597
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1016/j.patcog.2020.107613
https://doi.org/10.1016/j.patcog.2020.107613
https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.1109/CVPR.2017.683


32. Arias‐Londono JD, Gomez‐Garcia JA, Moro‐Velazquez L, Godino‐
Llorente JI. Artificial intelligence applied to chest X‐ray images
for the automatic detection of COVID‐19. A thoughtful evaluation
approach. IEEE Access. 2020;8:226811‐226827. doi:10.1109/
ACCESS.2020.3044858

33. Wang L, Lin ZQ, Wong A. COVID‐Net: a tailored deep convolu-
tional neural network design for detection of COVID‐19 cases
from chest X‐ray images. Sci Rep. 2020;10:19549. doi:10.1038/
s41598-020-76550-z

34. Sakib S, Tazrin T, Fouda MM, Fadlullah ZM, Guizani M. DL‐CRC:
deep learning‐based chest radiograph classification for Covid‐19
detection: a novel approach. IEEE Access. 2020;8:171575‐171589.
doi:10.1109/ACCESS.2020.3025010

35. Ali G, Shahin A, Elhadidi M, Elattar M. Convolutional neural
network with attention modules for pneumonia detection. 2020
Int Conf Innov Intell Informatics, Comput Technol 3ICT 2020.
2020;13:0‐5. doi:10.1109/3ICT51146.2020.9311985

36. Ohata EF, Bezerra GM, Souza das Chagas JV, et al. Automatic
detection of COVID‐19 infection using chest X‐ray images
through transfer learning. IEEE/CAA J Autom Sin. 2021;8:239‐248.
doi:10.1109/JAS.2020.1003393

37. Chowdhury M, Rahman T, Khandakar A, et al. Can AI help in
screening viral and COVID‐19 pneumonia? IEEE Access. 2020;8:
132665‐132676. doi:10.1109/ACCESS.2020.3010287

38. Pan I, Cadrin‐chênevert A, Cheng PM. Tackling the radiological
society of North America pneumonia detection challenge. AJR
Am J Roentgenol. 2019;213:568‐574.

39. Li B, Kang G, Cheng K, Zhang N. Attention‐guided convolutional
neural network for detecting pneumonia on chest X‐rays. Proc
Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2019;2019:
4851‐4854. doi:10.1109/EMBC.2019.8857277

40. Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze‐and‐excitation
networks. IEEE Trans Pattern Anal Mach Intell. 2020;42:
2011‐2023. doi:10.1109/TPAMI.2019.2913372

41. Gabruseva T, Poplavskiy D, Kalinin A. Deep learning for auto-
matic pneumonia detection. IEEE Comput Soc Conf Comput Vis
Pattern Recognit Work. 2020;2020:1436‐1443. doi:10.1109/
CVPRW50498.2020.00183

42. Yao S, Chen Y, Tian X, Jiang R. GeminiNet: combine fully con-
volution network with structure of receptive fields for object
detection. IEEE Access. 2020;8:60305‐60313. doi:10.1109/ACCESS.
2020.2982939

43. Dai J, Li Y, He K, Sun J. R‐FCN: Object detection via region‐based
fully convolutional networks. Adv Neural Inf Process Syst. 2016:
379‐387.

44. Liu S, Huang D, Wang Y. Receptive field block net for accurate
and fast object detection. Lect Notes Comput Sci. 2018;45(11215):
404‐419. doi:10.1007/978-3-030-01252-6_24

45. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL.
DeepLab: semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected CRFs. IEEE Trans
Pattern Anal Mach Intell. 2018;40:834‐848. doi:10.1109/TPAMI.
2017.2699184

46. The DeepRadiology Team. 2018. Pneumonia detection in chest
radiographs. http://arxiv.org/abs/1811.08939

47. Zhu Y, Zhao C, Wang J, Zhao X, Wu Y, Lu H. CoupleNet: coupling
global structure with local parts for object detection: IEEE In-
ternational Conference on Computer Vision (ICCV). IEEE; 2017.
doi:10.1109/ICCV.2017.444

48. Sirazitdinov I, Kholiavchenko M, Mustafaev T, Yixuan Y, Kuleev R,
Ibragimov B. Deep neural network ensemble for pneumonia loca-
lization from a large‐scale chest X‐ray database. Comput Electr Eng.
2019;78:388‐399. doi:10.1016/j.compeleceng.2019.08.004

49. Ko H, Ha H, Cho H, Seo K, Lee J. Pneumonia detection with
weighted voting ensemble of CNN models 2019: 2nd Int Conf
Artif Intell Big Data, ICAIBD 2019. 2019;306‐310. doi:10.1109/
ICAIBD.2019.8837042

50. Harmon SA, Sanford TH, Xu S, et al. Artificial intelligence for the
detection of COVID‐19 pneumonia on chest CT using multi-
national datasets. Nat Commun. 2020;11:1‐7. doi:10.1038/s41467-
020-17971-2

51. Liu S, Xu D, Zhou SK, et al. 3D anisotropic hybrid network:
transferring convolutional features from 2D images to 3D ani-
sotropic volumes. Lect Notes Comput Sci. 2018;11071:851‐858.
doi:10.1007/978-3-030-00934-2_94

52. Ouyang X, Huo J, Xia L, et al. Dual‐sampling attention network
for diagnosis of COVID‐19 from community‐acquired pneumo-
nia. IEEE Trans Med Imaging. 2020;39:2595‐2605. doi:10.1109/
TMI.2020.2995508

53. Shan F, Gao Y, Wang J, et al. Abnormal lung quantification in
chest CT images of COVID‐19 patients with deep learning and its
application to severity prediction. Med Phys. 2021;48:1633‐1645.
doi:10.1002/mp.14609

54. Wang J, Bao Y, Wen Y, et al. Prior‐attention residual learning for
more discriminative COVID‐19 screening in CT images. IEEE Trans
Med Imaging. 2020;39:2572‐2583. doi:10.1109/TMI.2020.2994908

55. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D
U‐Net: learning dense volumetric segmentation from sparse an-
notation. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G,
Wells W, eds. Medical Image Computing and Computer‐Assisted
Intervention–MICCAI 2016, 2016:424‐432. doi:10.1007/978-3-319-
46723-8_49

56. Lai Y, Li G, Wu D, et al. 2019 novel coronavirus‐infected pneu-
monia on CT: a feasibility study of few‐shot learning for com-
puterized diagnosis of emergency diseases. IEEE Access. 8, 2020:
194158‐194165. doi:10.1109/ACCESS.2020.3033069

57. Wang Q, Yang D, Li Z, Zhang X, Liu C. Deep regression via multi‐
channel multi‐modal learning for pneumonia screening. IEEE
Access. 2020;8:78530‐78541. doi:10.1109/ACCESS.2020.2990423

58. Wang G, Liu X, Li C, et al. A Noise‐Robust framework for auto-
matic segmentation of COVID‐19 pneumonia lesions from CT
images. IEEE Trans Med Imaging. 2020;39:2653‐2663. doi:10.
1109/TMI.2020.3000314

59. Gao K, Su J, Jiang Z, et al. Dual‐branch combination network
(DCN): towards accurate diagnosis and lesion segmentation of
COVID‐19 using CT images. Med Image Anal. 2021;67:101836.
doi:10.1016/j.media.2020.101836

60. Zhou L, Li Z, Zhou J, et al. A rapid, accurate and machine‐
agnostic segmentation and quantification method for CT‐based
COVID‐19 diagnosis. IEEE Trans Med Imaging. 2020;39:
2638‐2652. doi:10.1109/TMI.2020.3001810

61. Fan DP, Zhou T, Ji GP, et al. Inf‐Net: automatic COVID‐19 lung
infection segmentation from CT images. IEEE Trans Med
Imaging. 2020;39:2626‐2637. doi:10.1109/TMI.2020.2996645

62. Wu Z, Su L, Huang Q. Cascaded partial decoder for fast and
accurate salient object detection. Proc IEEE Comput Soc Conf
Comput Vis Pattern Recognit. 2019;2019:3902‐3911. doi:10.1109/
CVPR.2019.00403

63. Yang Z, Zhao L, Wu S, Chen CYC. Lung lesion localization of
COVID‐19 from chest CT image: a novel weakly supervised
learning method. IEEE J Biomed Heal Informatics. 2021;25:
1864‐1872. doi:10.1109/JBHI.2021.3067465

How to cite this article: Shah A, Shah M.
Advancement of deep learning in pneumonia/
Covid‐19 classification and localization: a
systematic review with qualitative and
quantitative analysis. Chronic Dis Transl Med.
2022;8:154‐171. doi:10.1002/cdt3.17

ADVANCEMENT OF DEEP LEARNING IN PNEUMONIA/COVID‐19 | 171

https://doi.org/10.1109/ACCESS.2020.3044858
https://doi.org/10.1109/ACCESS.2020.3044858
https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1109/ACCESS.2020.3025010
https://doi.org/10.1109/3ICT51146.2020.9311985
https://doi.org/10.1109/JAS.2020.1003393
https://doi.org/10.1109/ACCESS.2020.3010287
https://doi.org/10.1109/EMBC.2019.8857277
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/CVPRW50498.2020.00183
https://doi.org/10.1109/CVPRW50498.2020.00183
https://doi.org/10.1109/ACCESS.2020.2982939
https://doi.org/10.1109/ACCESS.2020.2982939
https://doi.org/10.1007/978-3-030-01252-6_24
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
http://arxiv.org/abs/1811.08939
https://doi.org/10.1109/ICCV.2017.444
https://doi.org/10.1016/j.compeleceng.2019.08.004
https://doi.org/10.1109/ICAIBD.2019.8837042
https://doi.org/10.1109/ICAIBD.2019.8837042
https://doi.org/10.1038/s41467-020-17971-2
https://doi.org/10.1038/s41467-020-17971-2
https://doi.org/10.1007/978-3-030-00934-2_94
https://doi.org/10.1109/TMI.2020.2995508
https://doi.org/10.1109/TMI.2020.2995508
https://doi.org/10.1002/mp.14609
https://doi.org/10.1109/TMI.2020.2994908
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1109/ACCESS.2020.3033069
https://doi.org/10.1109/ACCESS.2020.2990423
https://doi.org/10.1109/TMI.2020.3000314
https://doi.org/10.1109/TMI.2020.3000314
https://doi.org/10.1016/j.media.2020.101836
https://doi.org/10.1109/TMI.2020.3001810
https://doi.org/10.1109/TMI.2020.2996645
https://doi.org/10.1109/CVPR.2019.00403
https://doi.org/10.1109/CVPR.2019.00403
https://doi.org/10.1109/JBHI.2021.3067465
https://doi.org/10.1002/cdt3.17



