
entropy

Article

An Information Criterion for Auxiliary Variable
Selection in Incomplete Data Analysis

Shinpei Imori 1,3,* and Hidetoshi Shimodaira 2,3

1 Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
2 Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan; shimo@i.kyoto-u.ac.jp
3 RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
* Correspondence: imori@hiroshima-u.ac.jp

Received: 21 February 2019; Accepted: 12 March 2019; Published: 14 March 2019
����������
�������

Abstract: Statistical inference is considered for variables of interest, called primary variables, when
auxiliary variables are observed along with the primary variables. We consider the setting of
incomplete data analysis, where some primary variables are not observed. Utilizing a parametric
model of joint distribution of primary and auxiliary variables, it is possible to improve the estimation
of parametric model for the primary variables when the auxiliary variables are closely related to
the primary variables. However, the estimation accuracy reduces when the auxiliary variables
are irrelevant to the primary variables. For selecting useful auxiliary variables, we formulate the
problem as model selection, and propose an information criterion for predicting primary variables
by leveraging auxiliary variables. The proposed information criterion is an asymptotically unbiased
estimator of the Kullback–Leibler divergence for complete data of primary variables under some
reasonable conditions. We also clarify an asymptotic equivalence between the proposed information
criterion and a variant of leave-one-out cross validation. Performance of our method is demonstrated
via a simulation study and a real data example.

Keywords: Akaike information criterion; auxiliary variables; Fisher information matrix; incomplete
data; Kullback–Leibler divergence; misspecification; Takeuchi information criterion

1. Introduction

Auxiliary variables are often observed along with primary variables. Here, the primary variables
are random variables of interest, and our purpose is to estimate their predictive distribution, i.e.,
a probability distribution of the primary variables in future test data, while the auxiliary variables
are random variables that are observed in training data but not included in the primary variables.
We assume that the auxiliary variables are not observed in the test data, or we do not use them even if
they are observed in the test data. When the auxiliary variables have a close relation with the primary
variables, we expect to improve the accuracy of predictive distribution of the primary variables by
considering a joint modeling of the primary and auxiliary variables.

The notion of auxiliary variables has been considered in statistics and machine learning literature.
For example, the “curds and whey” method [1] and the “coaching variables” method [2] are based
on a similar idea for improving prediction accuracy of primary variables by using auxiliary variables.
In multitask learning, Caruana [3] improved generalization accuracy of a main task by exploiting
extra tasks. Auxiliary variables are also considered in incomplete data analysis, i.e., a part of primary
variables are not observed; Mercatanti et al. [4] showed some theoretical results to make parameter
estimation better by utilizing auxiliary variables in Gaussian mixture model (GMM).

Although auxiliary variables are expected to be useful for modeling primary variables, they can
actually be harmful. As mentioned in Mercatanti et al. [4], using auxiliary variables may affect modeling
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results adversely because the number of parameters to be estimated increases and a candidate model
of the auxiliary variables can be misspecified. Hence, it is important to select useful auxiliary variables.
This is formulated as model selection by considering parametric models with auxiliary variables. In this
paper, usefulness of auxiliary variables for estimating predictive distribution of primary variables is
measured by a risk function based on the Kullback–Leibler (KL) divergence [5] that is often used for
model selection. Because the KL risk function includes unknown parameters, we have to estimate it
in actual use. Akaike Information Criterion (AIC) proposed by Akaike [6] is one of the most famous
criteria, which is known as an asymptotically unbiased estimator of the KL risk function. AIC is a
good criterion from the perspective of prediction due to the asymptotic efficiency; see Shibata [7,8].
Takeuchi [9] proposed a modified version of AIC, called Takeuchi Information Criterion (TIC), which
relaxes an assumption for deriving AIC, that is, correct specification of candidate model. However,
AIC and TIC are derived for primary variables without considering auxiliary variables in the setting
of complete data analysis, and therefore, they are not suitable for auxiliary variable selection nor
incomplete data analysis.

Incomplete data analysis is widely used in a broad range of statistical problems by regarding a
part of primary variables as latent variables that are not observed. This setting also includes complete
data analysis as a special case, where all the primary variables are observed. Information criteria
for incomplete data analysis have been proposed in previous studies. Shimodaira [10] developed
an information criterion based on the KL divergence for complete data when the data are only
partially observed. Cavanaugh and Shumway [11] modified the first term of the information criterion
of Shimodaira [10] by the objective function of the EM algorithm [12]. Recently, Shimodaira and
Maeda [13] proposed an information criterion, which is derived by mitigating a condition assumed in
Shimodaira [10] and Cavanaugh and Shumway [11].

However, any of these previously proposed criteria are not derived by taking auxiliary variables
into account. Thus, we propose a new information criterion by considering not only primary variable
but also auxiliary variables in the setting of incomplete data analysis. The proposed criterion is
a generalization of AIC, TIC, and the criterion of Shimodaira and Maeda [13]. To the best of our
knowledge, this is the first attempt to derive an information criterion by considering auxiliary variables.
Moreover, we show an asymptotic equivalence between the proposed criterion and a variant of
leave-one-out cross validation (LOOCV); this result is a generalization of the relationship between TIC
and LOOCV [14].

Note that “auxiliary variables” may also be used in other contexts in literature. For example,
Ibrahim et al. [15] considered to use auxiliary variables in missing data analysis, which is similar to our
usage in the sense that auxiliary variables are highly correlated with missing data. However, they use
the auxiliary variables in order to avoid specifying a missing data mechanism; this goal is different
from ours, because no missing data mechanism is considered in our study.

The reminder of this paper is organized as follows. Notations as well as the setting of this paper
are introduced in Section 2. Illustrative examples of useful and useless auxiliary variables are given in
Section 3. The information criterion for selecting useful auxiliary variables in incomplete data analysis
is derived in Section 4, and the asymptotic equivalence between the proposed criterion and a variant
of LOOCV is shown in Section 5. Performance of our method is examined via a simulation study
and a real data analysis in Sections 6 and 7, respectively. Finally, we conclude this paper in Section 8.
All proofs are shown in Appendix A.

2. Preliminaries

2.1. Incomplete Data Analysis for Primary Variables

First we explain a setting of incomplete data analysis for primary variables in accordance with
Shimodaira and Maeda [13]. Let X denote a vector of primary variables, which consists of two parts as
X = (Y, Z), where Y denotes the observed part and Z denotes the unobserved latent part. This setting
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reduces to complete data analysis of X = Y when Z is empty. We write the true density function of
X as qx(x) = qx(y, z) and a candidate parametric model of the true density as px(x; θ) = px(y, z; θ),
where θ ∈ Θ ⊂ Rd is an unknown parameter vector and Θ is its parameter space. We assume that
x = (y, z) ∈ Y × Z for all density functions, where Y and Z are domains of Y and Z, respectively.
Thus the marginal densities of the observed part Y are obtained by qy(y) =

∫
qx(y, z)dz and py(y; θ) =∫

px(y, z; θ)dz. For denoting densities, we will omit random variables such as qy and py(θ). We assume
that θ is identifiable with respect to py(θ).

In this paper, we consider only a simple setting of i.i.d. random variables of sample size n.
Let xi = (yi, zi), i = 1, . . . , n, be independent realizations of X, where we only observe y1, . . . , yn

and we cannot see the values of z1, . . . , zn. We estimate θ from the observed training data y1, . . . , yn.
Then the maximum likelihood estimate (MLE) of θ is given by

θ̂y = arg max
θ∈Θ

`y(θ) ≡ arg max
θ∈Θ

1
n

n

∑
i=1

log py(yi; θ), (1)

where `y(θ) denotes the log-likelihood function (divided by n) of θ with respect to y1, . . . , yn.
If we were only interested in Y, we would consider the plug-in predictive distribution py(θ̂y)

by substituting θ̂y into py(θ). However, we are interested in the whole primary variable X = (Y, Z)
and its density qx. We thus consider px(θ̂y) by substituting θ̂y into px(θ), and evaluate the MLE by
comparing px(θ̂y) with qx. For this purpose, Shimodaira and Maeda [13] derived an information
criterion as an asymptotically unbiased estimator of the KL risk function which measures how well
px(θ̂y) approximates qx.

2.2. Statistical Analysis with Auxiliary Variables

Next, we extend the setting to incomplete data analysis with auxiliary variables. Let A denote
a vector of auxiliary variables. In addition to Y, we observe A in the training data, but we are not
interested in A. For convenience, we introduce a vector of observable variables B = (Y, A) and a
vector of all variables C = (Y, Z, A) as summarized in Table 1. Now ci = (yi, zi, ai), i = 1, . . . , n,
are independent realizations of C, and we estimate θ from the observed training data bi = (yi, ai),
i = 1, . . . , n. Let θ̂b be the MLE of θ by using A in addition to Y. Since we are only interested in the
primary variables, we consider the plug-in predictive distribution px(θ̂b) by substituting θ̂b into px(θ),
and evaluate the MLE by comparing px(θ̂b) with qx.

Table 1. Random variables in incomplete data analysis with auxiliary variables. B = (Y, A) is used for
estimation of unknown parameters, and X = (Y, Z) is used for evaluation of candidate models.

Observed Latent Complete

Primary Y Z X
Auxiliary A – –

All B – C

In order to define the MLE θ̂b, let us clarify a candidate parametric model with auxiliary variables.
We write the true density function of C as qc(c) = qc(y, z, a) and a candidate parametric model of the
true density as pc(c; β) = pc(y, z, a; β), where β = (θ>, ϕ>)> ∈ B ⊂ Rd+ f is an unknown parameter
vector with nuisance parameter ϕ ∈ R f and B is its parameter space. We assume that c = (y, z, a) ∈
Y ×Z ×A for all density functions, where A is the domain of A. We also assume that β is identifiable
with respect to pb(y, a; β) =

∫
pc(y, z, a; β)dz. Let us redefine px(θ) as px(y, z; θ) =

∫
pc(y, z, a; β)da

and the parameter space of θ as
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Θ =

{
θ

∣∣∣∣∣
(

θ

ϕ

)
∈ B

}
.

Then, θ̂b is obtained from the MLE of β given by

β̂b =

(
θ̂b
ϕ̂b

)
= arg max

β∈B
`b(β) ≡ arg max

β∈B

1
n

n

∑
i=1

log pb(bi; β), (2)

where `b(β) denotes the log-likelihood function (divided by n) of β with respect to b1, . . . , bn.
Finally, we introduce a general notation for density functions. For a random variable, say R,

we write the true density function as qr(r) and a candidate parametric model of qr as pr(r; θ) or pr(r; β).
For random variables R and S, we write the true conditional density function of R given S = s as
qr|s(r|s) and its corresponding model as pr|s(r|s; θ) or pr|s(r|s; β). For example, a candidate model of C
can be decomposed as

pc(y, z, a; β) = px(y, z; θ)pa|x(a|y, z; β).

2.3. Comparing the Two Estimators

We have thus far obtained the two MLEs of θ, namely θ̂y and θ̂b, and their corresponding predictive
distributions px(θ̂y) and px(θ̂b), respectively. We would like to determine which of the two predictive
distributions approximates qx better than the other. The approximation error of px(θ) is measured by
the KL divergence from qx to px(θ) defined as

Dx(qx; px(θ)) = −
∫

qx(x) log px(x; θ)dx +
∫

qx(x) log qx(x)dx.

Since the last term on the right hand side does not depend on px(θ), we ignore it for computing the
loss function of px(θ) defined by

Lx(θ) = −
∫

qx(x) log px(x; θ)dx.

Let θ̂ be an estimator of θ. The risk (or expected loss) function of px(θ̂) is defined by

Rx(θ̂) = E[Lx(θ̂)], (3)

where we take the expectation by considering θ̂ as a random variable. Note that θ̂ in the notation of
Rx(θ̂) indicates the procedure for computing θ̂ instead of a particular value of θ̂. Rx(θ̂) measures how
well px(θ̂) approximates qx on average in the long run.

For comparing the two MLEs, we define Rx(θ̂y) and Rx(θ̂b) by considering that θ̂y and θ̂b are
functions of independent random variables Y1, . . . , Yn and B1, . . . , Bn, respectively, where Bi = (Yi, Ai)

has the same distribution as B for all i = 1, . . . , n. θ̂b is better than θ̂y when Rx(θ̂b) < Rx(θ̂y),
that is, the auxiliary variable A helps the statistical inference on qx. On the other hand, A is harmful
when Rx(θ̂b) > Rx(θ̂y). Although we focus only on comparison between Y and B = (Y, A) in this
paper, if there are more than two auxiliary variables (and their combinations) A1, A2, . . ., then we
may compare Rx(θ̂(y,a1)

),Rx(θ̂(y,a2)
), . . ., to determine good auxiliary variables. Of course, the risk

functions cannot be calculated in reality because they depend on the unknown true distribution. Thus,
we derive a new information criterion as an estimator of the risk function in our setting. Since an
asymptotically unbiased estimator ofRx(θ̂y) has been already derived in Shimodaira and Maeda [13],
we will only derive an asymptotically unbiased estimator ofRx(θ̂b).
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3. An Illustrative Example with Auxiliary Variables

3.1. Model Setting

In this section, we demonstrate parameter estimation by using auxiliary variables in Gaussian
mixture model (GMM), which can be formulated in incomplete data analysis. Let us consider a
two-component GMM; observed values are generated from one of two Gaussian distributions, where
the assigned labels are missing. The observed data and missing labels are realizations of Y and Z,
respectively. We estimate a predictive distribution of X = (Y, Z) from the observation of Y, and we
attempt improving it by utilizing A in addition to Y. The true density function of primary variables
X = (Y, Z) ∈ R× {0, 1} is given as

qy|z(y|z) = zN(y;−1.2, 0.7) + (1− z)N(y; 1.2, 0.7),

qz(z) = 0.6z + 0.4(1− z),

where N(·; µ, σ2) denotes the density function of N(µ, σ2), i.e., the normal distribution with mean µ

and variance σ2. We consider the following two cases for the true conditional distribution of auxiliary
variable A given X = x:

Case 1: qa|x(a|y, z) = qa|z(a|z) = zN(a; 1.8, 0.49) + (1− z)N(a;−1.8, 0.49).
Case 2: qa|x(a|y, z) = qa(a) = 0.6N(a; 1.8, 0.49) + 0.4N(a;−1.8, 0.49).

The random variables X and A are not independent in Case 1 whereas they are independent in
Case 2. Hence, A will contribute to estimating θ in Case 1. On the other hand, in Case 2, A must not be
useful, and A becomes just noise if we estimate θ from Y and A.

In both cases, we use the following two-component GMM as a candidate model of qc:

pb|z(y, a|z; β) = zN2((y, a)>; µ1, Σ) + (1− z)N2((y, a)>; µ2, Σ),

pz(z; θ) = π1z + (1− π1)(1− z),
(4)

where N2(·; µi, Σ) denotes the density function of bivariate normal distribution N2(µi, Σ), i = 1, 2,
and the parameters are

µ1 =

(
µ1y
µ1a

)
, µ2 =

(
µ2y
µ2a

)
, Σ =

(
σ2

y σya

σya σ2
a

)
.

Therefore, β = (θ>, ϕ>)>, θ = (π1, µ1y, µ2y, σ2
y )
> and ϕ = (µ1a, µ2a, σ2

a , σya)>. The true parameters of
θ and ϕ for Case 1 are given by θ0 = (0.6,−1.2, 1.2, 0.7)> and ϕ0 = (1.8,−1.8, 0.49, 0)>, respectively.
By considering the joint density function pc(y, z, a; β) = pb|z(y, a|z; β)pz(z; θ), this candidate model
correctly specifies the true density function qc(y, z, a) = qa|x(a|y, z)qy|z(y|z)qz(z) in Case 1. On the
other hand, the model is misspecified for Case 2, and we cannot think of the true parameters.

3.2. Estimation Results

For illustrating the impact of auxiliary variables on parameter estimation in each case,
we generated a typical dataset c1, . . . , cn with sample size n = 100 from qc, which is actually picked
from 10,000 datasets generated in the simulation study of Section 6, and details of how to select the
typical dataset are also shown there. For each case, we computed the three MLEs θ̂y, θ̂b, and θ̂x, where
θ̂x is the MLE of θ calculated by using complete data x1, . . . , xn as if labels z1, . . . , zn were available.

The result of Case 1 is shown in Figure 1, where A is beneficial for estimating θ. In the left panel,
the two clusters are well separated, which makes parameter estimation stable. The estimated pb(β̂b)

captures the structure of the two clusters corresponding to the label zi = 0 and zi = 1, showing that
pc(β̂b) is estimated reasonably well, and thus px(θ̂b) is a good approximation of qx. Looking at the
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right panel, we also observe that py(θ̂b) is better than py(θ̂y) for approximating py(θ̂x), suggesting that
the auxiliary variable is useful for recovering the lost information of missing data. In fact, the three
MLEs are calculated as follows: θ̂y = (0.671,−1.143, 1.324, 0.678)>, θ̂b = (0.613,−1.228, 1.093, 0.744)>,
and θ̂x = (0.620,−1.233, 1.141, 0.695)>. By comparing ‖θ̂b − θ̂x‖ = 0.069 with ‖θ̂y − θ̂x‖ = 0.212,
we can see that θ̂b is better than θ̂y for predicting θ̂x without looking at the latent variable. All these
observations indicate that the parameter estimation of θ is improved by using A in Case 1.

The result of Case 2 is shown in Figure 2, where A is harmful for estimating θ. For fair comparison,
exactly the same values of {(yi, zi)}100

i=1 are used in both cases. Thus, θ̂y and θ̂x have the same values
as in Case 1 whereas θ̂b has a different value as θ̂b = (0.581,−0.403,−0.232, 2.015)>. By comparing
‖θ̂b − θ̂x‖ = 2.078 with ‖θ̂y − θ̂x‖ = 0.212, we can see that θ̂b is worse than θ̂y for predicting θ̂x. This is
also seen in Figure 2. In the left panel, the estimated pb(β̂b) captures some structure of the two clusters,
but they do not correspond to the label zi = 0 and zi = 1. As a result, py(θ̂b) becomes a very poor
approximation of py(θ̂x) in the right panel, indicating that the parameter estimation of θ is actually
hindered by using A in Case 2.
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Figure 1. Useful auxiliary variable (Case 1). The left panel plots {(yi, ai)}100
i=1 with labels indicating

zi. The estimated pb(β̂b) is shown by the contour lines. The right panel shows the histogram of
{yi}100

i=1, and three density functions py(θ̂x) (broken line), py(θ̂y) (dotted line), and py(θ̂b) (solid line).
In Section 4.4, this useful auxiliary variable is selected by our method (Case 1 in Table 2).

Table 2. Comparisons between θ̂b and θ̂y for predicting X, and that for Y.

px(θ̂b) vs. px(θ̂y) py(θ̂b) vs. py(θ̂y)

AICx;b − AICx;y AICy;b − AICy;y

Case 1 −2.67 −0.96
Case 2 9.86 10.37

These examples suggest that usefulness of auxiliary variables depends strongly on the true
distribution and a candidate model. Hence, it is important to select useful auxiliary variables from
observed data.
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Figure 2. Useless auxiliary variable (Case 2). The symbols are the same as Figure 1. In Section 4.4,
this useless auxiliary variable is NOT selected by our method (Case 2 in Table 2).

4. Information Criterion

4.1. Asymptotic Expansion of the Risk Function

In this section, we derive a new information criterion as an asymptotically unbiased estimator
of the risk functionRx(θ̂b) defined in (3). We start from a general framework of misspecification, i.e.,
without assuming that candidate models are correctly specified, and later we give specific assumptions.
Let β̄ be the optimal parameter value with respect to the KL divergence from qb to pb(β), that is,

β̄ =

(
θ̄

ϕ̄

)
= arg max

β∈B

∫
qb(b) log pb(b; β)db.

If the candidate model is correctly specified, i.e., there exists β0 = (θ>0 , ϕ>0 )
> such that qb = pb(β0),

then β̄ = β0 as well as θ̄ = θ0.
In this paper, we assume the regularity conditions A1 to A6 of White [16] for qb and pb(β) so

that the MLE β̂b has consistency and asymptotic normality. In particular, β̄ is determined uniquely
(i.e., identifiable) and is interior to B. We assume that Ib and Jb defined below are nonsingular in the
neighbourhood of β̄. Then White [16] showed the asymptotic normality as n→ ∞,

√
n(β̂b − β̄)

d→ Nd+ f (0, I−1
b Jb I−1

b ), (5)

where Ib and Jb are (d + f ) × (d + f ) matrices defined by using ∇ = ∂/∂β, ∇> = ∂/∂β>, and
∇2 = ∂2/∂β∂β> as

Ib = −E[∇2 log pb(b; β̄)], Jb = E[∇ log pb(b; β̄)∇> log pb(b; β̄)].

Note that we write derivatives by abbreviated forms, e.g., ∇2 log pb(b; β̄) means ∇2 log pb(b; β)|β=β̄

and so on. In addition, we allow interchange of integrals and derivatives rather formally when working
with models, although we actually need conditions for the models such as White [16]. Moreover,
the condition A7 of White [16] is assumed in order to establish Ib = Jb when considering a situation
that the candidate model is correctly specified. We assume the above conditions throughout the paper
without explicitly stated.
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Let us define three (d + f )× (d + f ) matrices as

Ix = −E[∇2 log px(x; θ̄)], Iy = −E[∇2 log py(y; θ̄)], Iz|y = −E[∇2 log pz|y(z|y; θ̄)] = Ix − Iy,

which will be used in the lemmas below. Since the derivatives of log px(x; θ) and log py(y; θ) with
respect to ϕ is zero, the matrices become singular when f > 0, but this is not a problem in our
calculation. The following lemma shows that the dominant term ofRx(θ̂b) is Lx(θ̄) and the remainder
terms are of order O(n−1), by noting that ∇>Lx(θ̄) = O(1) and E[β̂b − β̄] = O(n−1) in general.
The proof is given in Appendix A.1.

Lemma 1. The risk functionRx(θ̂b) is expanded asymptotically as

Rx(θ̂b) = Lx(θ̄) +∇>Lx(θ̄)E[β̂b − β̄] +
1

2n
tr(Ix I−1

b Jb I−1
b ) + o(n−1).

Just as a remark, the term ∇>Lx(θ̄)E[β̂b − β̄] = O(n−1) above does not appear in the derivation
of AIC or TIC, where B = X and thus ∇>Lx(θ̄) = 0. This term appears when the loss function for
evaluation and that for estimation differ, for example, in the derivation of the information criterion
under covariate shift; see K[1]>

w bw in Equation (4.1) of Shimodaira [17].

4.2. Estimating the Risk Function

For deriving an estimator of Rx(θ̂b), we introduce an additional condition. Let us assume that
the candidate model is correctly specified for the latent part as

qz|y(z|y) = pz|y(z|y; θ̄). (6)

This is the same condition as Equation (14) of Shimodaira and Maeda [13] except that θ̄ is replaced by

θ̄y = arg max
θ∈Θ

∫
qy(y) log py(y; θ)dy.

Since Z is missing completely in our setting, we need such a condition to proceed further. Although
any method cannot detect misspecification of pz|y if pb is correctly specified, it is often the case that
misspecification of pz|y leads to that of pb, and thus it is detected indirectly as in Case 2 of Section 3.

Note that the symbol of θ̄ in our notation should have been θ̄b, although we used θ̄ for simplicity,
and there is also θ̄x defined similarly from px(x; θ). They all differ each other with differences of order
O(1) in general, but θ̄ = θ̄y = θ̄x = θ0 when pc(β) is correctly specified as qc = pc(β0).

Now we give the asymptotic expansion of E[`y(θ̂b)], which shows that −`y(θ̂b) can be used as an
estimator of Lx(θ̄) but the asymptotic bias is of order O(n−1).

Lemma 2. Assume the condition (6). Then, the expectation of the estimated log-likelihood `y(θ̂b) can be
expanded as

E[`y(θ̂b)] = −Lx(θ̄)− C(qx)−∇>Lx(θ̄)E[β̂b − β̄] +
1
n

tr(I−1
b Kb,y)−

1
2n

tr(Iy I−1
b Jb I−1

b ) + o(n−1),

where Kb,y = E[∇ log pb(β̄)∇> log py(θ̄)] and C(qx) =
∫

qx(x) log qz|y(z|y)dx.

The proof of Lemma 2 is given in Appendix A.2. By eliminating Lx(θ̄) from the two expressions
in Lemma 1 and Lemma 2, and rearranging the formula, we get the following lemma, which plays a
central role in deriving our information criterion.
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Lemma 3. Assume the condition (6). Then, an expansion of the risk functionRx(θ̂b) is given by

Rx(θ̂b) = −E[`y(θ̂b)]− C(qx) +
1
n

tr(I−1
b Kb,y) +

1
2n

tr(Iz|y I−1
b Jb I−1

b ) + o(n−1). (7)

We can ignore C(qx) for model selection, because it is a constant term which does not depend on
the candidate model. Thus, finally, we define an information criterion from the right hand side of (7).
The following theorem is an immediate consequence of Lemma 3.

Theorem 1. Assume the condition (6). Let us define an information criterion as

r̂iskx;b = −2n`y(θ̂b) + 2tr(I−1
b Kb,y) + tr(Iz|y I−1

b Jb I−1
b ). (8)

Then this criterion is an asymptotically unbiased estimator of 2nRx(θ̂b) by ignoring the constant term C(qx).

E[r̂iskx;b] = 2nRx(θ̂b) + 2nC(qx) + o(1).

Note that the subscript of r̂iskx;b, x; b is defined in accordance with Shimodaira and Maeda [13];
thus the former x and the latter b mean random variables used in evaluation and estimation,
respectively. This criterion is an extension of TIC because when X = B = Y, r̂iskx;b coincides
with TIC of Takeuchi [9] defined as follows:

TIC = −2n`y(θ̂y) + 2tr(I−1
y Jy).

4.3. Akaike Information Criteria for Auxiliary Variable Selection

In actual use, r̂iskx;b may have a too complicated form. Thus, we derive a simpler information
criterion by assuming the correctness of the candidate model like as AIC.

Theorem 2. Suppose pc(β) is correctly specified so that qc = pc(β0) for some β0 ∈ B. Then, we have

Jb = Ib, Kb,y = Iy, (9)

and thus r̂iskx;b is rewritten as

AICx;b = −2n`y(θ̂b) + tr(Ix I−1
b ) + tr(Iy I−1

b ). (10)

This criterion is an asymptotically unbiased estimator of 2nRx(θ̂b) by ignoring the constant term C(qx).

E[AICx;b] = 2nRx(θ̂b) + 2nC(qx) + o(1).

The proof is given in Appendix A.3. Ix, Iy and Ib are replaced by their consistent estimators in
practical situations.

The newly obtained criterion AICx;b is a generalization of AIC and some of its variants. If θ is
estimated by θ̂y instead of θ̂b, we simply let B = Y in the expression of AICx;b so that we get AICx;y

proposed by Shimodaira and Maeda [13]:

AICx;y = −2n`y(θ̂y) + tr(Ix I−1
y ) + d. (11)

Note that if B = Y, Iy is not singular because β = θ. On the other hand, if there is no latent part,
we simply let X = Y in the expression of AICx;b so that we get

AICy;b = −2n`y(θ̂b) + 2tr(Iy I−1
b ). (12)
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This can be used to select useful auxiliary variables in complete data analysis. Moreover, if X = Y = B,
AICx;b reduces to the original AIC proposed by Akaike [6]:

AICy;y = −2n`y(θ̂y) + 2d. (13)

It is worth mentioning that tr(Iz|y I−1
b ) is interpreted as the additional penalty for the latent part:

AICx;b −AICy;b = tr(Ix I−1
b )− tr(Iy I−1

b ) = tr(Iz|y I−1
b ) ≥ 0,

which is also mentioned in Equation (1) of Shimodaira and Maeda [13] for the case of B = Y.

4.4. The Illustrative Example (Cont.)

Let us return to the problem of determining whether to use the auxiliary variables or not, that is,
comparison between px(θ̂b) and px(θ̂y). By comparing AICx;b with AICx;y, we can determine whether
the vector of auxiliary variables A is useful or useless. Thus, only when AICx;b < AICx;y, we conclude
that A is useful in order to estimate θ for predicting X.

Let us apply this procedure to the illustrative example in Section 3. The generalized AICs are
computed for the two cases of the typical dataset, and the results are shown in Table 2. Looking at
the value of AICx;b −AICx;y, it is negative for Case 1, concluding that the auxiliary variable is useful,
and it is positive for Case 2, concluding that the auxiliary variable is useless. According to the AIC
values, therefore, we use the auxiliary variable of Case 1, but do not use the auxiliary variable of Case 2.
This decision agrees with the observations of Figures 1 and 2 in Section 3.2. In fact, the decision is
correct, because the value ofRx(θ̂b)−Rx(θ̂y) is negative for Case 1 and positive for Case 2 as will be
seen in the simulation study of Section 6.2.

We can also argue the usefulness of the auxiliary variable for predicting Y instead of X, that is,
comparison between py(θ̂b) and py(θ̂y). By comparing AICy;b with AICy;y, we can determine whether
A is useful or useless for predicting Y. Looking at the value of AICy;b −AICy;y in Table 2, we make the
same decision as that for X.

5. Leave-One-Out Cross Validation

Variable selection by cross-validatory (CV) choice [18] is often applied to real data analysis due to
its simplicity, although its computational burden is larger than that of information criteria; see Arlot
and Celisse [19] for a recent review of cross-validation methods. As shown in Stone [14], leave-one-out
cross validation (LOOCV) is asymptotically equivalent to TIC. Because LOOCV does not require
calculation of the information matrices of TIC, LOOCV is easier to use than TIC. There are also some
literature for improving LOOCV such as Yanagihara et al. [20], which gives a modification of LOOCV
to reduce its bias by considering maximum weighted log-likelihood estimation. However, we focus on
the result of Stone [14] and extend it to our setting.

In incomplete data analysis, LOOCV cannot be directly used because the loss function with
respect to the complete data includes latent variables. Thus, we transform the loss function as follows:

Lx(θ) = −
∫

qy(y)g(y; θ)dy,

where g(y; θ) = log py(y; θ) + f (y; θ) and

f (y; θ) =
∫

qz|y(z|y) log pz|y(z|y; θ)dz.
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Note that f (y; θ) = 0 when X = Y. Using the function g(y; θ), we then obtain the following LOOCV
estimator of the risk functionRx(θ̂b).

Lcv
x (θ̂b) = −

1
n

n

∑
i=1

g(yi; θ̂
(−i)
b ),

where θ̂
(−i)
b is the leave-out-out estimate of θ defined as

β̂
(−i)
b =

(
θ̂
(−i)
b

ϕ̂
(−i)
b

)
= arg max

β∈B

1
n

n

∑
j 6=i

log pb(bj; β) = arg max
β∈B

{
`b(β)− 1

n
log pb(bi; β)

}
.

We will show below in this section that Lcv
x (θ̂b) is asymptotically equivalent to r̂iskx;b.

For implementing the LOOCV procedure with latent variables, however, we have to estimate qz|y(z|y)
by pz|y(z|y, θ̂b) in f (y; θ). This introduces a bias to Lcv

x (θ̂b), and hence, information criteria are
preferable to the LOOCV in incomplete data analysis.

Let us show the asymptotic equivalence of Lcv
x (θ̂b) and r̂iskx;b by assuming that we know the

functional form of f (y; θ). Noting that β̂
(−i)
b is a critical point of `b(β)− log pb(bi; β)/n, we have

∇`b(β̂
(−i)
b ) =

1
n
∇ log pb(bi; β̂

(−i)
b ) = Op(n−1).

By applying Taylor expansion to ∇`b(β) around β = β̂b, it follows from ∇`b(β̂b) = 0 that

∇2`b(β̃i
b)(β̂

(−i)
b − β̂b) =

1
n
∇ log pb(bi; β̂

(−i)
b ), (14)

where β̃i
b lies between β̂

(−i)
b and β̂b. We can see from (14) that β̂

(−i)
b − β̂b = Op(n−1). Next, we regard

g(yi; θ) as a function of β and apply Taylor expansion to it around β = β̂b. Therefore, g(yi; θ̂
(−i)
b ) can

be expressed as follows:

g(yi; θ̂
(−i)
b ) = g(yi; θ̂b) +∇>g(yi; θ̃i

b)(β̂
(−i)
b − β̂b), (15)

where θ̃i
b lies between θ̂

(−i)
b and θ̂b (θ̃i

b does not corresponding to β̃i
b). Then we assume that

1
n

n

∑
i=1
∇2`b(β̃i

b)
−1∇ log pb(bi; β̂

(−i)
b )∇>g(yi; θ̃i

b)
p→ −I−1

b E[∇ log pb(b; β̄)∇>g(y; θ̄)]. (16)

By noting β̂
(−i)
b = β̂b + Op(n−1), we have β̃i

b = β̄ + Op(n−1/2) and θ̃i
b = θ̄ + Op(n−1/2), and thus (16)

holds at least formally. With the above setup, we show the following theorem. The proof is given in
Appendix A.4.

Theorem 3. Supposing the same assumptions of Theorem 1 and (16), we have

2nLcv
x (θ̂b) = r̂iskx;b − 2

n

∑
i=1

f (yi; θ̄) + op(1). (17)

Because the second term on the right-hand side of (17) does not depend on candidate models
under condition (6), this theorem implies that Lcv

x (θ̂b) is asymptotically equivalent to r̂iskx;b except
for the scaling and the constant term. However, someone may wonder why f (y; θ) is included
in g(y; θ) for comparing models of p(b; β). By assuming that pz|y(θ) is correctly specified for qz|y,
f (y; θ̄) =

∫
qz|y(z|y) log qz|y(z|y)dz does not depend on the model anymore, so we may simply exclude

f (y; θ) from g(y; θ), leading to the loss Ly(θ) instead. The reason for including f (y; θ) in g(y; θ) is
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explained as follows. Lcv
x (θ̂b), as well as r̂iskx;b (and AICx;b), include the additional penalty for

estimating θ̂b in f (y; θ̂b), which depends on the candidate models even if pz|y(θ) is correctly specified.

6. Experiments with Simulated Datasets

This section shows the usefulness of auxiliary variables and the proposed information criteria
via a simulation study. The models illustrated in Section 3 are used for confirming the asymptotic
unbiasedness of the information criterion and the validity of auxiliary variable selection.

6.1. Unbiasedness

At first, we confirm the asymptotic unbiasedness of AICx;b for estimating 2nRx(θ̂b) except for the
constant term, C(qx). The simulation setting is the same as Case 1 in Section 3, thus the data generating
model is given by

qb|z(y, a|z) = zN2((y, a)>; µ10, Σ0) + (1− z)N2((y, a)>; µ20, Σ0),

qz(z) = 0.6z + 0.4(1− z),

where µ10 = −µ20 = (−1.2, 1.8)> and Σ0 = diag(0.7, 0.49). We generated T = 104 independent
replicates of the dataset {(yi, zi, ai)}n

i=1 from this model; in fact, we used {(yi, zi, ai,1)}n
i=1 generated

in Section 6.2. The candidate model is given by (4), which is correctly specified for the above data
generating model. Because AICx;b is derived by ignoring C(qx), we compare E[AICx;b − AICx;y]

with 2n{Rx(θ̂b)−Rx(θ̂y)}. The computation of the expectation is approximated by the simulation
average as

E[AICx;b −AICx;y] ≈
1
T

T

∑
t=1
{AIC(t)

x;b −AIC(t)
x;y},

2n{Rx(θ̂b)−Rx(θ̂y)} ≈
2n
T

T

∑
t=1
{Lx(θ̂

(t)
b )−Lx(θ̂

(t)
y )},

where AIC(t)
x;b, AIC(t)

x;y, θ̂
(t)
b , and θ̂

(t)
y are those computed for the t-th dataset (t = 1, . . . , T).

Here, we remark about calculation of the loss function Lx(θ̂) in two-component GMM.
Let θ̂ = (π̂1, µ̂1, µ̂2, σ̂2)> be an estimator of θ. We expect that the components of GMM corresponding
to Z = 1 and Z = 0 consist of (π̂1, µ̂1, σ̂2) and (1− π̂1, µ̂2, σ̂2), respectively. However, we cannot
determine the assignment of the estimated parameters in reality, i.e., (π̂1, µ̂1, σ̂2) and (1− π̂1, µ̂2, σ̂2)

may correspond to Z = 0 and Z = 1, respectively, because the labels z1, . . . , zn are missing.
The assignment is required to calculate Lx(θ̂) whereas it is not used for Ly(θ̂) and the proposed
information criteria. Hence, in this paper, we define Lx(θ̂) as the minimum value between L(θ̂) and
L(θ̂′), where θ̂′ = (1− π̂1, µ̂2, µ̂1, σ̂2)>.

Table 3 shows the result of the simulation for n = 100, 200, 500, 1000, 2000, and 5000. For all n,
we observe that E[AICx;b −AICx;y] is very close to 2n{Rx(θ̂b)−Rx(θ̂y)}, indicating the unbiasedness
of AICx;b.

Table 3. Expected Akaike Information Criterion (AIC) difference is compared with the risk difference.
The values are computed from T = 104 runs of simulation with their standard errors in parentheses.

n 100 200 500 1000 2000 5000

E[AICx;b −AICx;y] −3.559 −3.263 −3.221 −3.197 −3.195 −3.180
(0.074) (0.021) (0.015) (0.013) (0.013) (0.012)

2n{Rx(θ̂b)−Rx(θ̂y)} −3.603 −3.333 −3.275 −3.208 −3.182 −3.232
(0.071) (0.054) (0.050) (0.050) (0.050) (0.050)
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6.2. Auxiliary Variable Selection

Next, we demonstrate that the proposed AIC selects a useful auxiliary variable (Case 1), while it
does not select a useless auxiliary variable (Case 2). In each case, we generated T = 104 independent
replicates of the dataset {(yi, zi, ai)}n

i=1 from the model. In fact, the values of {(yi, zi)}n
i=1 are shared in

both cases, so we generated replicates of {(yi, zi, ai,1, ai,2)}n
i=1, where ai,1 and ai,2 are auxiliary variables

for Case 1 and Case 2, respectively. In each case, we compute AICx;b and AICx;y, then we select θ̂b
(i.e., selecting the auxiliary variable A) if AICx;b < AICx;y and select θ̂y (i.e., not selecting the auxiliary
variable A) otherwise. The selected estimator is denoted as θ̂best. This experiment was repeated for
T = 104 times. Note that the typical dataset in Section 3 was picked from the generated datasets
so that it has around the median value in each of Lx(θ̂b)−Lx(θ̂y), Ly(θ̂b)−Ly(θ̂y), AICx;b −AICx;y,
and AICy;b −AICy;y in both cases.

The selection frequencies are shown in Tables 4 and 5. We observe that, as expected, the useful
auxiliary variable tends to be selected in Case 1, while the useless auxiliary variable tends to be not
selected in Case 2.

For verifying the usefulness of the auxiliary variable in both cases, we computed the risk value
Rx(θ̂) for θ̂ = θ̂y, θ̂b, and θ̂best. They are approximated by the simulation average as

Rx(θ̂) ≈
1
T

T

∑
t=1
Lx(θ̂

(t)).

The results are shown in Tables 6 and 7. For easier comparisons, the values are the differences from
Lx(θ0) with the true value θ0. For all n, we observe that, as expected, Rx(θ̂b) < Rx(θ̂y) in Case 1,
and Rx(θ̂b) > Rx(θ̂y) in Case 2. In both cases, Rx(θ̂best) is close to min{Rx(θ̂b),Rx(θ̂y)}, indicating
that the variable selection is working well.

Table 4. Useful auxiliary variable (Case 1): selection frequencies of θ̂b and θ̂y.

n 100 200 500 1000 2000 5000

θ̂b 9230 9475 9649 9687 9711 9727
θ̂y 770 525 351 313 289 273

Table 5. Useless auxiliary variable (Case 2): selection frequencies of θ̂b and θ̂y.

n 100 200 500 1000 2000 5000

θ̂b 1508 212 1 0 0 0
θ̂y 8492 9788 9999 10,000 10,000 10,000

Table 6. Useful auxiliary variable (Case 1): estimated risk functions of θ̂b, θ̂y, and θ̂best, and their
standard errors in parenthesis

n 100 200 500 1000 2000 5000

2n{Rx(θ̂b)−Lx(θ0)} 4.229 4.079 4.051 4.039 4.029 4.033
(0.032) (0.030) (0.029) (0.028) (0.029) (0.028)

2n{Rx(θ̂y)−Lx(θ0)} 7.831 7.412 7.326 7.247 7.211 7.266
(0.078) (0.061) (0.058) (0.058) (0.058) (0.058)

2n{Rx(θ̂best)−Lx(θ0)} 5.109 4.741 4.501 4.491 4.479 4.454
(0.052) (0.045) (0.041) (0.042) (0.042) (0.041)
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Table 7. Useless auxiliary variable (Case 2): estimated risk functions of θ̂b, θ̂y, and θ̂best, and their
standard errors in parenthesis

n 100 200 500 1000 2000 5000

2n{Rx(θ̂b)−Lx(θ0)} 105.527 214.659 543.685 1091.105 2182.647 5452.623
(0.111) (0.167) (0.301) (0.474) (0.723) (1.151)

2n{Rx(θ̂y)−Lx(θ0)} 7.831 7.412 7.326 7.247 7.211 7.266
(0.078) (0.061) (0.058) (0.058) (0.058) (0.058)

2n{Rx(θ̂best)−Lx(θ0)} 22.064 11.555 7.375 7.247 7.211 7.266
(0.358) (0.304) (0.079) (0.058) (0.058) (0.058)

7. Experiments with Real Datasets

We show an example of auxiliary variable selection using Wine Data Set available at UCI Machine
Learning Repository [21], which consists of 1 categorical variable (3 categories) and 13 continuous
variables, denoted as V1, . . . , V13. For simplicity, we only use the first two categories and regard
them as a latent variable Z ∈ {0, 1}; the experiment results were similar to the other combinations.
The sample size is then n = 130 and all variables except for Z are standardized. We set one of the
13 continuous variables as the observed primary variable Y, and set the rest of 12 variables as auxiliary
variables A1, . . . , A12. For example, if Y is V1, then A1, . . . , A12 are V2, . . . , V13. The dataset is now
{(yi, zi, ai,1, . . . , ai,12)}n

i=1, which is randomly divided into the training set with sample size ntr = 86
(zi is not used) and the test set with sample size nte = 44 (ai,1, . . . , ai,12 are not used).

In the experiment, we compute AICx;b` for B` = (Y, A`), ` = 1, . . . , 12, and AICx;y for Y from the
training dataset using the model (4). We select θ̂best from θ̂b1 , . . . , θ̂b12 and θ̂y by finding the minimum
of the 13 AIC values. Thus we are selecting one of the auxiliary variables A1, . . . , A12 or not selecting
any of them. It is possible to select a combination of the auxiliary variables, but we did not attempt
such an experiment. For measuring the generalization error, we compute Lx(θ̂y)−Lx(θ̂best) from the
test set as

Lx(θ̂y)−Lx(θ̂best) ≈ −
1

nte
∑

i∈Dte

{log px(yi, zi; θ̂y)− log px(yi, zi; θ̂best)},

whereDte ⊂ {1, . . . , n} represents the test set. The assignment problem of Lx(·) mentioned in Section 6
is avoided by a similar manner.

For each case of Y = V`, ` = 1, . . . , 13, the above experiment was repeated 100 times, and the
experiment average of the generalization error was computed. The result is shown in Table 8. A positive
value indicates that θ̂best performed better than θ̂y. We observe that θ̂best is better than or almost the
same as θ̂y for all cases ` = 1, . . . , 13, suggesting that AIC works well to select a useful auxiliary
variable.

Table 8. Experiment average of nte{L(θ̂y)−Lx(θ̂best)} for each case of Y = V`, ` = 1, . . . , 13. Standard
errors are in parenthesis.

Y V1 V2 V3 V4 V5 V6 V7
nte{Lx(θ̂y)−Lx(θ̂best)} 0.13 −0.14 89.71 46.24 −1.76 3.34 76.54

(0.08) (0.12) (3.82) (4.17) (2.52) (1.34) (6.09)

Y V8 V9 V10 V11 V12 V13

nte{Lx(θ̂y)−Lx(θ̂best)} 13.91 39.45 1.72 111.24 15.48 0.23
(2.21) (3.12) (0.29) (8.46) (2.11) (0.09)

8. Conclusions

We often encounter a dataset composed of various variables. If only some of the variables are
of interest, then the rest of the variables can be interpreted as auxiliary variables. Auxiliary variables
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may be able to improve estimation accuracy of unknown parameters but they could also be harmful.
Hence, it is important to select useful auxiliary variables.

In this paper, we focused on exploiting auxiliary variables in incomplete data analysis.
The usefulness of auxiliary variables is measured by a risk function based on the KL divergence
for complete data. We derived an information criterion which is an asymptotically unbiased estimator
of the risk function except for a constant term. Moreover, we extended a result of Stone [14] to our
setting and proved asymptotic equivalence between a variant of LOOCV and the proposed criteria.
Since LOOCV requires an additional condition for its justification, the proposed criteria are preferable
to LOOCV.

This study assumes that variables are different between training set and test set. There are other
settings, such as covariate shift [17] and transfer learning [22], where distributions are different between
the training set and test set. It will be possible to combine these settings to construct a generalized
framework. It is also possible to extend our study for taking account of a missing mechanism. We will
leave these extensions as future works.
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 1

Proof. Taylor expansion of Lx(θ) around θ = θ̄, by formally taking it as a function of β, gives

Lx(θ̂b) = Lx(θ̄) +∇>Lx(θ̄)(β̂b − β̄) +
1
2

tr{Ix(β̂b − β̄)(β̂b − β̄)>}+ op(n−1),

where ∇2Lx(θ̄) = Ix is used above. By taking the expectation of both sides,

E[Lx(θ̂b)] = Lx(θ̄) +∇>Lx(θ̄)E[β̂b − β̄] +
1
2

tr{IxE[(β̂b − β̄)(β̂b − β̄)>]}+ o(n−1)

= Lx(θ̄) +∇>Lx(θ̄)E[β̂b − β̄] +
1

2n
tr(Ix I−1

b Jb I−1
b ) + o(n−1),

where the asymptotic variance of β̂b in (5) is given as

nE[(β̂b − β̄)(β̂b − β̄)>] = I−1
b Jb I−1

b + o(1). (A1)

Appendix A.2. Proof of Lemma 2

Proof. Taylor expansion of `y(θ) around θ = θ̄, by formally taking it as a function of β, gives

`y(θ̂b) = `y(θ̄) +∇>`y(θ̄)(β̂b − β̄)− 1
2

tr{Iy(β̂b − β̄)(β̂b − β̄)>}+ op(n−1),

where ∇2`y(θ̄) = −Iy + op(1) is used above. By taking the expectation of both sides,

E[`y(θ̂b)] = E[`y(θ̄)] + E[∇>`y(θ̄)(β̂b − β̄)]− 1
2

E[tr{Iy(β̂b − β̄)(β̂b − β̄)>}] + o(n−1)

= E[`y(θ̄)] + E[∇>`y(θ̄)(β̂b − β̄)]− 1
2n

tr(Iy I−1
b Jb I−1

b ) + o(n−1).
(A2)
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In the last expression, we used (A1) for the asymptotic variance of β̂b. For working on the second term
in (A2), we first derive an expression of β̂b − β̄. Taylor expansion of the score function ∇`b(β) around
β = β̄ gives

∇`b(β̂b) = ∇`b(β̄) +∇2`b(β̄)(β̂b − β̄) + op(n−1/2)

= ∇`b(β̄)− Ib(β̂b − β̄) + op(n−1/2),

where ∇2`b(β̄) = −Ib + op(1) is used above. By noticing ∇`b(β̂b) = 0, we thus obtain

β̂b − β̄ = I−1
b ∇`b(β̄) + op(n−1/2) =

1
n

n

∑
i=1

I−1
b ∇ log pb(bi; β̄) + op(n−1/2), (A3)

where E[∇`b(β̄)] = 0 and each term in the summation has mean zero, because E[∇ log pb(b; β̄)] =

∇E[log pb(b; β̄)] = 0. Now we are back to the the second term in (A2). Using (A3), we have

∇>`y(θ̄)(β̂b − β̄) = E[∇>`y(θ̄)](β̂b − β̄) + {∇>`y(θ̄)− E[∇>`y(θ̄)]}(β̂b − β̄)

= E[∇>`y(θ̄)](β̂b − β̄) + {∇>`y(θ̄)− E[∇>`y(θ̄)]}I−1
b ∇`b(β̄) + op(n−1).

(A4)

By noting E[∇`b(β̄)] = 0, the expectation of the second term in (A4) is

E[{∇>`y(θ̄)− E[∇>`y(θ̄)]}I−1
b ∇`b(β̄)] = E[∇>`y(θ̄)I−1

b ∇`b(β̄)]

=
1
n2

n

∑
i=1

n

∑
j=1

E[∇> log py(yi; θ̄)I−1
b ∇ log pb(bj; β̄)]

=
1
n

E[∇> log py(y; θ̄)I−1
b ∇ log pb(b; β̄)]

=
1
n

tr{I−1
b E[∇ log pb(b; β̄)∇> log py(y; θ̄)]}

=
1
n

tr(I−1
b Kb,y).

(A5)

Combining (A4) and (A5), we have

E[∇>`y(θ̄)(β̂b − β̄)] = E[∇>`y(θ̄)]E[β̂b − β̄] +
1
n

tr(I−1
b Kb,y) + o(n−1). (A6)

We next show that E[∇>`y(θ̄)] = −∇>Lx(θ̄). Let us recall that we have assumed qz|y(z|y) =

pz|y(z|y; θ̄) in (6), which leads to

E[∇ log pz|y(z|y; θ̄)] =
∫

qy(y)
∫

pz|y(z|y; θ̄)∇ log pz|y(z|y; θ̄) dzdy

=
∫

qy(y)
∫
∇pz|y(z|y; θ̄) dzdy

=
∫

qy(y)∇
∫

pz|y(z|y; θ̄) dzdy = 0.

Therefore,

−∇Lx(θ̄) = ∇E[log px(x; θ̄)]

= E[∇ log px(x; θ̄)]

= E[∇ log py(y; θ̄)] + E[∇ log pz|y(z|y; θ̄)]

= E[∇`y(θ̄)].



Entropy 2019, 21, 281 17 of 19

Substituting this and (A6) into the second term in (A2), we have

E[`y(θ̂b)] = E[`y(θ̄)]−∇>Lx(θ̄)E[β̂b − β̄]

+
1
n

tr(I−1
b Kb,y)−

1
2n

tr(Iy I−1
b Jb I−1

b ) + o(n−1).
(A7)

The first term on the right hand side in (A7) is

E[`y(θ̄)] = E[log py(y; θ̄)]

= E[log px(x; θ̄)]− E[log pz|y(z|y; θ̄)]

= −Lx(θ̄)− C(qx),

where (6) is used again in the last term. Finally (A7) is rewritten as

E[`y(θ̂b)] = −Lx(θ̄)− C(qx)−∇>Lx(θ̄)E[β̂b − β̄]

+
1
n

tr(I−1
b Kb,y)−

1
2n

tr(Iy I−1
b Jb I−1

b ) + o(n−1).

Appendix A.3. Proof of Theorem 2

Proof. First recall that we have assumed that qc(c) = pc(c; β0), which also implies the condition (6) as
qz|y(z|y) = pz|y(z|y; θ0) with β̄ = β0. Thus Theorem 1 holds. Substituting Jb = Ib and Kb,y = Iy in the
penalty term of (8), we have

2tr(I−1
b Kb,y) + tr(Iz|y I−1

b Jb I−1
b ) = 2tr(I−1

b Iy) + tr((Ix − Iy)I−1
b ) = tr(I−1

b Iy) + tr(Ix I−1
b ),

giving the penalty term of (10). Therefore, we only have to show (9). Noting the identity

∇2 log pb(b; β) =
1

pb(b; β)
∇2 pb(b; β)−∇ log pb(b; β)∇> log pb(b; β),

it follows from qb(b) = pb(b; β0) that

Ib = −E[∇2 log pb(b; β0)] = −
∫
∇2 pb(b; β0)db + E[∇ log pb(b; β0)∇> log pb(b; β0)]

= −∇2
∫

pb(b; β0)db + Jb = Jb.

Note that the same result can be obtained from Theorem 3.3 in White [16]. Next we show Kb,y = Iy.
Since qa|y(a|y) = pa|y(a|y; β0),∫

qa|y(a|y)∇ log pa|y(a|y; β0)da =
∫
∇pa|y(a|y; β0)da = ∇

∫
pa|y(a|y; β0)da = 0.

Therefore, we have

Kb,y = E[∇ log pb(b; β0)∇> log py(y; θ0)]

= E[∇ log py(y; θ0)∇> log py(y; θ0)] + E[∇ log pa|y(a|y; β0)∇> log py(y; θ0)]

= Iy +
∫

qy(y)
(∫

qa|y(a|y)∇ log pa|y(a|y; β0)da
)
∇> log py(y; θ0)dy

= Iy.
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Appendix A.4. Proof of Theorem 3

Proof. It follows from (14) and (15) that

g(yi; θ̂
(−i)
b ) = g(yi; θ̂b) +

1
n
∇>g(yi; θ̃i

b)∇
2`b(β̃i

b)
−1∇ log pb(bi; β̂

(−i)
b )

= g(yi; θ̂b) +
1
n

tr{∇2`b(β̃i
b)
−1∇ log pb(bi; β̂

(−i)
b )∇>g(yi; θ̃i

b)}.

This and the assumption (16) imply that

Lcv
x (θ̂b) = −

1
n

n

∑
i=1

g(yi; θ̂b)−
1
n2

n

∑
i=1

tr{∇2`b(β̃i
b)
−1∇ log pb(bi; β̂

(−i)
b )∇>g(yi; θ̃i

b)}

= − 1
n

n

∑
i=1

g(yi; θ̂b) +
1
n

tr{I−1
b E[∇ log pb(β̄)∇>g(y; θ̄)]}+ op(n−1).

Under the assumption qz|y(z|y) = pz|y(z|y; θ̄),

∇ f (y; θ̄) =
∫

qz|y(z|y)∇ log pz|y(z|y; θ̄)dz =
∫
∇pz|y(z|y; θ̄)dz = 0. (A8)

This yields that

E[∇ log pb(β̄)∇>g(y; θ̄)] = E[∇ log pb(β̄)∇> log py(θ̄)] = Kb,y.

Hence, by noting g(y; θ) = log py(y; θ) + f (y; θ), it holds that

Lcv
x (θ̂b) = −`y(θ̂b)−

1
n

n

∑
i=1

f (yi; θ̂b) +
1
n

tr(I−1
b Kb,y) + op(n−1). (A9)

For evaluating the second term on the right hand side, we apply Taylor expansion to n−1 ∑n
i=1 f (yi; θ)

around θ = θ̄ by formally taking it as a function of β. By noting (A8), this gives

1
n

n

∑
i=1

f (yi; θ̂b) =
1
n

n

∑
i=1

f (yi; θ̄) +
1

2n

n

∑
i=1

(β̂b − β̄)>∇2 f (yi; θ̄)(β̂b − β̄) + op(n−1)

=
1
n

n

∑
i=1

f (yi; θ̄) +
1

2n
tr

{
n

∑
i=1
∇2 f (yi; θ̄)(β̂b − β̄)(β̂b − β̄)>

}
+ op(n−1).

It follows from the law of large numbers that

1
n

n

∑
i=1
∇2 f (yi; θ̄) =

1
n

n

∑
i=1

∫
qz|y(z|yi)∇2 log pz|y(z|yi; θ̄)dz

p→ E[∇2 log pz|y(z|y; θ̄)] = −Iz|y.

Hence, (A1) indicates that

1
n

n

∑
i=1

f (yi; θ̂b) =
1
n

n

∑
i=1

f (yi; θ̄)− 1
2n

tr(Iz|y I−1
b Jb I−1

b ) + op(n−1). (A10)

By substituting (A10) into (A9), we establish that

Lcv
x (θ̂b) = −`y(θ̂b) +

1
n

tr(I−1
b Kb,y) +

1
2n

tr(Iz|y I−1
b Jb I−1

b )− 1
n

n

∑
i=1

f (yi; θ̄) + op(n−1).
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Hence, the proof is complete.

References

1. Breiman, L.; Friedman, J.H. Predicting multivariate responses in multiple linear regression. J. R. Stat. Soc.
Ser. B Stat. Methodol. 1997, 59, 3–54. [CrossRef]

2. Tibshirani, R.; Hinton, G. Coaching variables for regression and classification. Stat. Comput. 1998, 8, 25–33.
[CrossRef]

3. Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
4. Mercatanti, A.; Li, F.; Mealli, F. Improving inference of Gaussian mixtures using auxiliary variables. Stat. Anal.

Data Min. 2015, 8, 34–48. [CrossRef]
5. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
6. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723.

[CrossRef]
7. Shibata, R. An optimal selection of regression variables. Biometrika 1981, 68, 45–54. [CrossRef]
8. Shibata, R. Asymptotic mean efficiency of a selection of regression variables. Ann. Inst. Stat. Math. 1983, 35,

415–423. [CrossRef]
9. Takeuchi, K. Distribution of information statistics and criteria for adequacy of models. Math. Sci. 1976, 153,

12–18. (In Japanese)
10. Shimodaira, H. A new criterion for selecting models from partially observed data. In Selecting Models

from Data; Cheeseman, P., Oldford, R.W., Eds.; Springer: New York, NY, USA, 1994; pp. 21–29.
11. Cavanaugh, J.E.; Shumway, R.H. An Akaike information criterion for model selection in the presence of

incomplete data. J. Stat. Plan. Inference 1998, 67, 45–65. [CrossRef]
12. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm.

J. R. Stat. Soc. Ser. B Methodol. 1977, 39, 1–38. [CrossRef]
13. Shimodaira, H.; Maeda, H. An information criterion for model selection with missing data via complete-data

divergence. Ann. Inst. Stat. Math. 2018, 70, 421–438. [CrossRef]
14. Stone, M. An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J. R.

Stat. Soc. Ser. B Methodol. 1977, 39, 44–47. [CrossRef]
15. Ibrahim, J.G.; Lipsitz, S.R.; Horton, N. Using auxiliary data for parameter estimation with non-ignorably

missing outcomes. J. R. Stat. Soc. Ser. C Appl. Stat. 2001, 50, 361–373. [CrossRef]
16. White, H. Maximum likelihood estimation of misspecified models. Econometrica 1982, 50, 1–25. [CrossRef]
17. Shimodaira, H. Improving predictive inference under covariate shift by weighting the log-likelihood

function. J. Stat. Plan. Inference 2000, 90, 227–244. [CrossRef]
18. Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B Methodol.

1974, 36, 111–147. [CrossRef]
19. Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79.

[CrossRef]
20. Yanagihara, H.; Tonda, T.; Matsumoto, C. Bias correction of cross-validation criterion based on

Kullback–Leibler information under a general condition. J. Multivar. Anal. 2006, 97, 1965–1975. [CrossRef]
21. Dua, D.; Karra Taniskidou, E. UCI Machine Learning Repository; University of California, School of Information

and Computer Science: Irvine, CA, USA, 31 July 2017.
22. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359.

[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/1467-9868.00054
http://dx.doi.org/10.1023/A:1008815025242
http://dx.doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.1002/sam.11256
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1093/biomet/68.1.45
http://dx.doi.org/10.1007/BF02480998
http://dx.doi.org/10.1016/S0378-3758(97)00115-8
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1007/s10463-016-0592-7
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01603.x
http://dx.doi.org/10.1111/1467-9876.00240
http://dx.doi.org/10.2307/1912526
http://dx.doi.org/10.1016/S0378-3758(00)00115-4
http://dx.doi.org/10.1111/j.2517-6161.1974.tb00994.x
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1016/j.jmva.2005.10.009
http://dx.doi.org/10.1109/TKDE.2009.191
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Incomplete Data Analysis for Primary Variables
	Statistical Analysis with Auxiliary Variables
	Comparing the Two Estimators

	An Illustrative Example with Auxiliary Variables
	Model Setting
	Estimation Results

	Information Criterion
	Asymptotic Expansion of the Risk Function
	Estimating the Risk Function
	Akaike Information Criteria for Auxiliary Variable Selection
	The Illustrative Example (Cont.)

	Leave-One-Out Cross Validation
	Experiments with Simulated Datasets
	Unbiasedness
	Auxiliary Variable Selection

	Experiments with Real Datasets
	Conclusions
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Theorem 3

	References

