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Spinocerebellar ataxia type 1 is a progressive neurodegenerative, movement disorder. With potential therapies on the horizon, it is

critical to identify biomarkers that (i) differentiate between unaffected and spinocerebellar ataxia Type 1-affected individuals; (ii)

track disease progression; and (iii) are directly related to clinical changes of the patient. Magnetic resonance imaging of volumetric

changes in the brain may be a suitable source of biomarkers for spinocerebellar ataxia Type 1. In a previous report on a longitu-

dinal study of patients with spinocerebellar ataxia Type 1, we evaluated the volume and magnetic resonance spectroscopy measures

of the cerebellum and pons, showing pontine volume and pontine N-acetylaspartate-to-myo-inositol ratio were sensitive to change

over time. As a follow-up, the current study conducts a whole brain exploration of volumetric MRI measures with the aim to

identify biomarkers for spinocerebellar ataxia Type 1 progression. We adapted a joint label fusion approach using multiple, auto-

matically generated, morphologically matched atlases to label brain regions including cerebellar sub-regions. We adjusted regional

volumes by total intracranial volume allowing for linear and power-law relationships. We then utilized Bonferroni corrected linear

mixed effects models to (i) determine group differences in regional brain volume and (ii) identify change within affected patients

only. We then evaluated the rate of change within each brain region to identify areas that changed most rapidly. Lastly, we used a

penalized, linear mixed effects model to determine the strongest brain predictors of motor outcomes. Decrease in pontine volume

and accelerating decrease in putamen volume: (i) reliably differentiated spinocerebellar ataxia Type 1-affected and -unaffected indi-

viduals; (ii) were observable in affected individuals without referencing an unaffected comparison group; (iii) were detectable within

�6–9 months; and (iv) were associated with increased disease burden. In conclusion, volumetric change in the pons and putamen

may provide powerful biomarkers to track disease progression in spinocerebellar ataxia Type 1. The methods employed here are

readily translatable to current clinical settings, providing a framework for study and usage of volumetric neuroimaging biomarkers

for clinical trials.
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Introduction
Spinocerebellar ataxias (SCAs) are a set of autosomal

dominantly inherited movement disorders for which there

currently are no effective treatments. SCAs are a heter-

ogenous family of �40 disorders with progressive loss of

control of movement. Spinocerebellar ataxia Type 1

(SCA1) is caused by polyglutamine expansion of the

ataxin-1 gene (Orr et al., 1993; Banfi et al., 1994). As

therapeutics for SCAs, including SCA1, are being devel-

oped, identification of specific and sensitive, non-invasive

biomarkers of disease progression is critical.

Biomarkers that are useful for tracking the efficacy of

treatments must meet several criteria: (i) potential bio-

markers should differentiate individuals affected by the dis-

ease relative to those unaffected by the disease. (ii) Changes

in the biomarker must be reliably detectable within affected

individuals, in addition to detectable between affected and

unaffected individuals. (iii) Biomarker changes must occur

within a timeframe that will allow monitoring treatment

efficacy; slower rates of change are more difficult to track

and evaluate. (iv) Changes in biomarkers must predict dis-

ease progression; conversely, lack of change in a sensitive

biomarker would indicate lack of disease progression.

Biomarkers are not necessarily sufficient as diagnostic crite-

ria for a disease, rather they are useful for track progres-

sion in diagnosed individuals. In addition, biomarkers are

best when they can be measured non-invasively and consist-

ently in standard clinical settings. In the case of SCA1, neu-

roimaging biomarkers show particular promise (for a recent

systematic review, see Öz et al., 2020).

In 2013, Reetz et al. published on the findings from

the EUROSCA consortium evaluating change over time

in patients with SCA1, spinocerebellar ataxia Type 3

(SCA3) and spinocerebellar ataxia Type 6 (SCA6) over a

2-year interval. For SCA1, they reported changes in

brainstem, pons, caudate and putamen, but no substantial

change in cerebellar volume. Results from the BIOSCA

study suggest that volumetric changes in pons and cere-

bellum in SCA1, SCA3 and SCA6, track disease
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progression better than clinical scores (Adanyeguh et al.,

2018). Importantly, at baseline, the brainstem and cere-

bellar volumes were already substantially below normal

in this ataxic cohort while the caudate and putamen vol-

umes were normal at baseline (Reetz et al., 2013). This

suggests that brainstem and cerebellum changes occur

early in the course of disease [and likely in the pre-mani-

fest phase (Maas et al., 2015)], whereas regions such as

the striatum degenerate later in disease. It also suggests a

‘floor effect’ for change in the cerebellum meaning that if

the volume is already so low at baseline, there may not

be substantial room for significant change over time,

whereas the striatum may be changing more rapidly given

the normal volume at baseline.

Evaluation of brain regions that are considered to be

part of an integrated circuit is vital in understanding how

regions may degenerate over time, or even how other

regions in that circuit may play a compensatory role for

other nodes of the circuit that are degenerating. The cere-

bellum is a critical node in motor control networks that

involve integration with pontine nuclei and the striatum

(Hoshi et al., 2005; Bostan et al., 2010, 2013).

Evaluating changes in brain regions over time that are

associated with cerebellar–striatal circuitry could not only

help identify the most sensitive markers of change, it

could also highlight the need to evaluate functional cir-

cuitry in SCA1 as well.

In the era of clinical trials aimed at slowing disease pro-

gression, showing any changes over a period of time that a

trial can accommodate would be of great advantage. We

previously reported longitudinal volumetric and neurochem-

ical changes in the cerebellum and pons in patients with

SCA1 (Deelchand et al., 2019). In a sample of early-to-

moderate stage patients scanned up to three times with 1.5-

year intervals, we found pontine total N-acetylaspartate-to-

myo-inositol ratio and pontine volume to be the most sensi-

tive magnetic resonance (MR) measures to change. That re-

port was focussed on limited brain regions as the emphasis

was on the neurochemical changes.

As a follow-up analysis, we utilized this same patient sample,

expanding the volumetric assessment to whole brain using an

advanced labelling technique. The methodologic advances of

this analysis over prior studies includes (i) use of a high-field, 3T

magnet; (ii) statistical modelling of time, which allows for ear-

liest detection of change; and (iii) a whole brain approach utiliz-

ing advanced labelling and quantification of volumes. These

methodological advances may help to better identify those

regions that change the most quickly and are predictive of

motor changes, making them candidates for sensitive bio-

markers of disease progression.

Materials and methods

Participants and study design

We utilized recently reported data (Deelchand et al.,

2019) and conducted additional volumetric analyses.

Briefly, 16 genetically confirmed individuals with SCA1

(nine women and seven men) and 21 matched unaffected

participants (8 women and 13 men) gave informed con-

sent approved by the Institutional Review Board at the

University of Minnesota in accordance with the

Declaration of Helsinki and participated in the study.

SCA1-affected individuals were recruited as an early-stage

cohort [Scale for the Assessment and Rating of Ataxia

(SARA) of <15] as the likely candidates for future clinic-

al trials. Participants were evaluated at intake and fol-

lowed up at �18 and 36 months (three visits) between

March 2011 and June 2015. Twenty-one unaffected indi-

viduals and all SCA1-affected individuals returned at

18 months. Thirteen SCA1-affected individuals returned at

36 months, while three declined to return due to disease

progression and travel difficulty. To match the SCA1-

affected cohort, only 15 unaffected individuals were

invited for their 36-month visit. At each visit, participants

underwent MR imaging and were assessed using the

SARA, which evaluates eight quantitative features for

gait, stance, sitting, speech disturbance and limb kinetic

functions (Schmitz-Hübsch et al., 2006), where scores

range from 0 (no ataxia) to 40 (most severe ataxia). We

excluded one unaffected individual and three SCA1-

affected individuals from our analyses due to excessive

noise and/or motion during one of their scans that pre-

cluded accurate volumetric labelling; our final sample

consisted of 13 SCA1-affected (eight women, five men)

and 20 unaffected individuals (8 women, 12 men).

MR acquisition

MR images were acquired on a 3T whole-body Siemens

MR scanner (Siemens Medical Solutions, Erlangen,

Germany), where the standard body coil was used for ex-

citation and a 32-channel receive-only head coil was used

for signal reception. At each visit, 3D T1-weighted

MPRAGE images were acquired with the following

parameters: 1-mm3 isotropic resolution, repetition time-

¼ 2530 ms, echo time¼ 3.65 ms, inversion time¼ 1100 ms,

flip angle¼ 7� and GRAPPA acceleration factor¼ 2.

MR processing and volumetrics

Advanced Normalization Tools (Avants et al., 2009), FSL

[FMRIB (the Functional Magnetic Resonance Imaging of

the Brain) Software Library] (Jenkinson et al., 2012), as

well as custom scripts were used for all MR processing,

volumetric segmentations and analyses (all custom scripts

will be made available online). First, T1-weighted images

were rigidly aligned to a common template to approxi-

mate anterior commissure, posterior commissure align-

ment. Next, images were denoised with an adaptive non-

local means approach using a Rician noise model

(Manjón et al., 2010). Next, preliminary brain extraction

was performed using Advanced Normalization Tools

brain extraction (Tustison et al., 2014), then iterative
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inhomogeneity correction–tissue segmentation was per-

formed using Advanced Normalization Tools atropos

(Avants et al., 2011) and the N4 debiasing algorithm

(Tustison et al., 2010). After debiasing, brain extraction

was repeated to generate a more accurate brain mask.

There are several methodological advancements in re-

gional labelling procedures that would benefit measure-

ment of neuroimaging biomarkers. Multi-atlas methods

outperform single-atlas deformations in both accuracy

and reliability of segmentations (Aljabar et al., 2009;

Pierson et al., 2011; Chakravarty et al., 2013; Wang

et al., 2013). Cleaned images were labelled using a mul-

tiple, automatically generated, morphologically matched

atlas approach (MAGMA). MAGMA combines several

existing methods and optimizations that produce regional

labels that are relatively invariant to site, scanner, mor-

phological abnormalities and scan quality. Non-cerebellar

regions and cerebellar regions were labelled separately in

order to optimize registration parameters and computa-

tions to each sub-region. The MAGMA procedure was

adapted from the BRAINSAutoWorkup pipeline, which

optimizes tissue classification through an iterative frame-

work and produces robust parcellation of brain regions

(Pierson et al., 2011). Briefly, brain regions were labelled

using a multi-atlas, similarity-weighted, majority-vote pro-

cedure [joint label fusion (Wang et al., 2013)] using a set

of expert-segmented templates. For non-cerebellar regions,

templates were adapted from the Desikan–Killiany atlas

(Desikan et al., 2006) and, for cerebellar sub-regions, the

COBRAlab cerebellar templates and segmentations were

used (Park et al., 2014). To further improve parcellation

accuracy for cerebellar parcellations, the MAGMA pro-

cedure implements a secondary procedure adapted from

the MAGeT parcellation pipeline (Chakravarty et al.,

2013; Park et al., 2014; Pipitone et al., 2014), which cre-

ates a set of subject-to-subject registrations leveraging in-

dividual variation in neuroanatomy to improve label

accuracy. In contrast to MAGeT, which pre-selects a sub-

sample of exemplar images for use of all subject-to-sub-

ject registrations, MAGMA optimizes exemplar selection

for each individual based on morphological similarity to

the target image, further improving labelling accuracy.

Briefly, each subject is normalized to a template space

[an unbiased average T1-weighted image from the S1200

Human Connectome release (Van Essen et al., 2013)],

and Jacobian determinants of the deformation matrix to

this space are calculated. MAGMA then selects a unique

subset of exemplars from the entire sample (in this case

10 unique individuals) where their similarity in Jacobian

determinants within the brain, as measured by Pearson

correlation, is greatest. These subsets were generated

uniquely for each subject and time point. The MAGMA

procedure then performs a joint label fusion using this

set of 10 exemplars each with five sets of labels from the

cerebellar atlases (50 labelled images total) to generate

the final, MAGMA labels for each individual. Finally,

manual check for accuracy of regional label and editing

was completed by an individual blind to the participant’s

diagnosis.

We explored 32 volumes of interest (VOIs). Five were

global measures of whole brain, cerebrum, cerebral grey

matter, cerebral white matter (WM) and whole cerebel-

lum volumes. The remaining 27 were sub-regions includ-

ing the following (and shown in Fig. 1): cerebellar

Lobule 1 and 2, cerebellar Lobule 3, cerebellar Lobule 4,

cerebellar Lobule 5, cerebellar Lobule 6, cerebellum Crus

1, cerebellum Crus 2, cerebellar Lobule 7b, cerebellar

Lobule 8a, cerebellar Lobule 8b, cerebellar Lobule 9,

cerebellar Lobule 10, cerebellar WM and deep nuclei,

corpus callosum, frontal lobe, occipital lobe, parietal

lobe, temporal lobe, caudate, putamen, pallidum, accum-

bens, hippocampus, amygdala, thalamus, hypothalamusþ
(includes some anterior midbrain in addition to hypothal-

amus proper) and brainstem.

Statistical analysis

Much of the research on SCAs has used estimated total

intracranial volume (ICV) from either FreeSurfer (Dale

et al., 1999) or subsampling methods (Eritaia et al.,

2000) to normalize for differences in brain size. These

estimates have the potential to be inaccurate, which can

inject estimated total ICV error into the normalized varia-

bles. While more difficult, labelling of intracranial voxels

using multi-atlas methods provides a direct measurement

of ICV.

First, regional brain volumes (VOIs) depend to some

degree on the overall size of an individual, their heads

and their brains. While some decrease in brain volume

may be expected in a neurodegenerative disorder like

SCA1, most observed differences in adult ICV likely re-

flect developmental differences since ICV reflects maximal

brain growth rather than current brain volume. We are

interested in change over time in VOIs (especially region-

al neurodegeneration), rather than differences in develop-

mental processes between SCA1-affected and -unaffected

adults. Thus, we adjusted VOIs by ICV using the power

proportion method (Liu et al., 2014), which allows for

power-law relationships between ICV and VOIs in add-

ition to linear or proportional relationships. Briefly, for

each VOI, we fit a non-linear regression model,

VOI ¼ aICVb;

where a is a constant and b is the scaling exponent of

the power function (implemented in R, https://github.com/

tkoscik/tkmisc, 4 November 2020, date last accessed).

Once b is estimated for each regional volume, we divide

each VOI by ICV raised to power b.

VOIadjusted ¼
VOI

ICVb :

In order to recover natural units, we scaled VOIs by

centring on the adjusted mean and scaling by the
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adjusted standard deviation, then scaling to the unadjust-

ed standard deviation and adding in the unadjusted

mean.

VOIadjusted ¼
VOIadjusted � lVOIadjusted

rVOIadjusted

 !
� rVOI þ lVOI:

Second, since we are interested in change over time, we

calculated change in VOIs from baseline. In addition, we

decomposed age at testing into its variance subcompo-

nents in order to model these effects independently, spe-

cifically baseline age (i.e. between-individuals variance)

and change in age between visits (i.e. within-individuals

variance).

A baseline analysis of volume differences was conducted

comparing volumes of all regions across groups, using linear

regression models that included age at baseline and gender

as covariates. For each model, dependent variables (VOIs)

were scaled such that beta coefficients in regression models

were standardized to allow for comparison between VOIs,

despite gross differences in regional volumes.

To address our first criterion for biomarkers—to differenti-

ate individuals affected by SCA1 relative to those

unaffected—we explored whether changes in VOIs within-

individuals differs between SCA1-affected and -unaffected

individuals. Changes should be disease related, not due to

normal, age-related change; this is not a diagnostic tool

where SCA1 is defined by molecular genetics, rather a means

to differentiate abnormal from normal change. In other

words, we evaluated interaction effects between groups

(SCA1 affected versus unaffected) and elapsed time between

visits. We used linear mixed effects (LME) models to predict

changes in VOIs with fixed effects of group, elapsed time be-

tween visits, age at baseline and gender, as well as the critic-

al interaction between group and elapsed time. We included

individuals as random effects to account for repeated obser-

vations. This model was applied to each VOI separately and

we controlled family-wise error rates using Bonferroni

correction.

To address our second criterion for biomarkers—changes

in the biomarker must be detectable and reliable within

affected individuals—we explored whether changes in VOIs

are observable within affected individuals only. This criterion

is critical; SCA1-affected individuals will not enter a clinical

setting with a matched comparison group; thus, successful

biomarkers must track affected individuals, relative to their

Figure 1 Volumes of interest. Example of VOI labels in a SCA1 participant. The top row depicts subcortical VOIs, including caudate,

putamen, pallidum, nucleus accumbens, hippocampus, amygdala, thalamus and hypothalamus (including a portion of the midbrain), generated

using BRAINSAutoWorkup. The middle row depicts cerebellar sub-region parcellations, including major lobules, generated using the MAGMA

procedure. The bottom row depicts pons and medulla generated using FreeSurfer
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own baseline. We repeated LME models predicting changes

in VOIs within SCA1-affected individuals only. We included

fixed effects of elapsed time (the variable of interest), base-

line age and gender, as well as the random effect of

repeated measures within-participants in each of our models.

Again, we applied Bonferroni correction to control the fam-

ily-wise error rate.

To address our third criterion for biomarkers—changes

must occur within a reasonable timeframe to monitor

treatment efficacy—we explored when changes in regional

volume exhibit detectable differences from zero within

SCA1-affected individuals. We estimated the 99% confi-

dence interval for the elapsed time main effect from our

LME models. Once this confidence interval no longer

overlapped zero (no detectable change), our models

would suggest that we could detect a change within indi-

viduals with a high level of confidence. The faster a

change can be detected within SCA1-affected regional

volumes, the better for a potential biomarker.

To address our fourth criterion for biomarkers—changes

in biomarkers must predict disease progression—we

assessed which variables predict changes in disease progres-

sion. We use SARA scores as a measure of disease progres-

sion in SCA1, where increases in values indicate a greater

disease burden. To capture change in disease burden, we

subtracted baseline SARA scores from scores obtained at

each follow-up visit. Given that rates of change between

brain regions exhibit at least some multicollinearity (i.e.

they all tend to decrease in SCA1) and there is the potential

for over-fitting our data, we performed an LME-least abso-

lute shrinkage and selection operator procedure, where pre-

dictors (change in regional brain volume) are penalized if

they are less important in the model. This model allows for

feature selection or demonstrating which predictors best ex-

plain the rate of change in SARA score. This method also

includes a cross-validation procedure to select the penaliza-

tion parameters that minimize prediction error. Our LME

model that predicted change in SARA score includes: fixed

effects for all VOIs that significantly differentiate groups

and have detectable change within SCA1-affected individu-

als only, interaction effects between these VOIs and elapsed

time, as well as main effects of elapsed time age at baseline

and gender and random effects of participant.

Data availability

Data and software can be made available upon reason-

able request.

Results

Cohort characteristics

SCA1-affected and -unaffected individuals did not differ

in age at baseline [t(30.9) ¼ �0.191, P¼ 0.8499, mean

SCA1¼ 53.3 years, mean unaffected¼ 52.5 years], in

elapsed time between first and second visit [t(24.3) ¼
0.867, P¼ 0.394, mean SCA1¼ 1.6 years, mean unaffec-

ted¼ 1.5 years], nor in elapsed time between first and

third visit [t(22.8) ¼ 1.191, P¼ 0.246, mean

SCA1¼ 3.008 years, mean unaffected¼ 2.942 years].

Given that there were slightly more men in our unaffect-

ed group relative to the SCA1-affected group, we ran a

chi-squared test, which suggests that the differences in

gender distribution between groups were not significant

[v2(1) ¼ 0.405, P¼ 0.524].

Intracranial volume

SCA1-affected individuals had comparable mean ICV to

unaffected individuals [b ¼ �57 058.5, t(30.99) ¼
�1.219, P¼ 0.232]. Both groups exhibited significant

variance in ICV [SCA1 ICV (mm3): mean¼ 1 472 062.4,

SD¼ 116 358.8, min¼ 1 288 409, max¼ 1 699 525; un-

affected ICV (mm3): mean¼ 1 535 453.8, SD¼ 135 385.6,

min¼ 1 292 165, max¼ 1 743 620]. Moreover, ICV was

highly correlated with each VOI, with coefficients ranging

from r¼ 0.219 to 0.949 (see Supplementary Table 1).

Correcting for this relationship, power parameters varied

around 1 (relatively linear relationship) for cortical

regions, but tended to be <1 for non-cortical regions

(indicating that these regions scale at a lower rate with

increasing ICV; for a listing of all values, see

Supplementary Table 1). Critically, following power pro-

portion corrections, virtually no correlation between VOIs

and ICV remains, ranging from r ¼ �0.0375 to 0.0234.

Baseline volume differences

At the time of initial assessment, the following regions

were substantially lower in volume in the SCA1 patients

compared to unaffected individuals: total cerebellar vol-

ume [b ¼ �1.30, t(29) ¼ �4.603, P¼ 0.00260], cerebel-

lar Lobule 3 [b ¼ �1.064, t(29) ¼ �3.533, P¼ 0.0475]

and cerebellar WM and deep nuclei [b ¼ �1.678, t(29)

¼ �77.644, P¼ 6.76 � 10�7] (all P’s Bonferroni cor-

rected). All other cerebellar regions had lower baseline

volumes, contributing to the aggregate total cerebellum

volume; they were not significant after Bonferroni correc-

tion individually. Also lower in volume at baseline was

the hypothalamus (VOI includes portions of the mid-

brain) [b ¼ �1.353, t(29) ¼ �4.939, P¼ 0.00102], me-

dulla [b ¼ �1.385, t(29) ¼ �1.385, P¼ 0.00106], pons

[b ¼ �1.726, t(29) ¼ �8.325, P¼ 1.205 � 10�7] and

the superior cerebellar peduncle [b ¼ �1.596, t(29) ¼
�6.645, P¼ 9.38 � 10�6]. See Fig. 2 for visual display

of the baseline volume analysis.

Differences in VOI change between
groups

Changes in VOIs exhibited different relationships between

groups in relation to elapsed time. Several VOIs
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decreased at a faster rate in SCA1-affected individuals

relative to unaffected individuals. LME models revealed

several VOIs where change was predicted by the group

by elapsed time interaction (all P’s are Bonferroni cor-

rected). These include: cerebellar Lobule 6 [b ¼
�191.258, t(60.3) ¼ �4.64, P¼ 6.51 � 10�4], cerebellar

WM and deep nuclei [b ¼ �258.66, t(60.5) ¼ �4.59,

P¼ 7.76 � 10�4], caudate [b ¼ �106.223, t(59.8) ¼
�4.1, P¼ 0.00432], putamen [b ¼ �136.797, t(59.2)

¼ �4.77, P¼ 0.000416], pallidum [b ¼ �75.485, t(60)

¼ �5.38, P¼ 4.41 � 10�5] and pons [b ¼ �348.144,

t(59.9) ¼ �8.54, P¼ 2.01 � 10�10] (Fig. 3). These

regions meet our first criterion for a potential biomarker

for SCA1 disease progression—the rate of change in

cerebellar Lobule 6, cerebellar WM and deep nuclei,

caudate, putamen, pallidum and pons differentiate be-

tween SCA1-affected and -unaffected individuals. For

group by elapsed time interaction effects for all VOIs, see

Table 1; for full LME model results, see Supplementary

Table 2.

VOI change within SCA1-affected
individuals

In line with our second criterion for a potential biomark-

er, change in several VOIs was observable over time

within SCA1-affected individuals, without reference to the

unaffected group. LME models revealed that elapsed time

predicts change in cerebellar Lobule 6 [b ¼ �210.984,

t(24.8) ¼ �6.03, P¼ 9.33 � 10�5], cerebellar WM and

deep nuclei [b ¼ �308.859, t(24.7) ¼ �6.71, P¼ 1.76 �
10�5], corpus callosum [b ¼ �46.005, t(24.6) ¼ �3.96,

P¼ 0.0193], caudate [b ¼ �106.709, t(24.8) ¼ �4.17,

P¼ 0.0109], putamen [b ¼ �141.078, t(24.7) ¼
�5.68, P¼ 0.000229], pallidum [b ¼ �58.671, t(24.6) ¼
�4.49, P¼ 0.0049], thalamus [b ¼ �210.56, t(24.9) ¼
�6.36, P¼ 4.07 � 10�5] and pons [b ¼ �304.985,

t(25.1) ¼ 9.8, P¼ 1.6 � 10�8]. For elapsed time effects

for all VOIs, see Table 2; for full LME model results, see

Supplementary Table 3.

Timeframe for observable VOI
change in SCA1-affected individuals

Potential markers are more useful for evaluation of treat-

ment efficacy if change (or lack thereof) is observable

within a short timeframe. To examine when change in

each VOI can be reliably detected, we extrapolated from

our LME models within SCA1-affected individuals only.

Specifically, we calculated the elapsed time at which the

99% confidence interval of the models no longer over-

lapped zero (i.e. 99% confidence that the change is non-

zero). Our models indicated that several VOIs exhibit re-

liable change within 6–12 months, and critically, these

VOIs are the same regions that differentiate SCA1-

affected and -unaffected individuals. These VOIs include:

cerebellar Lobule 6 (0.51 year), cerebellar WM and deep

nuclei (0.58 year), caudate (0.99 year), putamen

(0.67 year), pallidum (0.76 year) and pons (0.49 year)

(Fig. 4). For elapsed time to detectable differences for all

VOIs, see Supplementary Table 4.

Predicting SCA1 disease
progression with VOIs

In relation to our final criterion for a potential biomark-

er—biomarkers must track disease progression—we

assessed which VOIs best predict change in SARA scores

using an LME-least absolute shrinkage and selection op-

erator procedure. First, we varied the starting lambda

values, which control the penalization of regression

Figure 2 Baseline volume differences. Differences in volume

between groups (SCA1 versus unaffected) at baseline. Values on

the x-axis correspond to standardized beta coefficients from linear

regression models, where negative values indicate lower volumes in

SCA1 relative to unaffected individuals. A standardized beta of 1

indicates 1 standard deviation difference. Black indicates a

significant group difference in the VOI after Bonferroni correction;

grey indicates non-significant results. Error bars indicate 95%

confidence intervals for standardized beta coefficients. The dotted

vertical line indicates no difference between groups
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parameters from 1 to 100 and compared model fits using

Bayesian information criteria. The optimal lambda value

is indicated where Bayesian information criteria is least;

for our data, the optimal lambda was 37. LME-least ab-

solute shrinkage and selection operator regression indi-

cates that change in pontine volume predicts change in

SARA scores [b ¼ �0.00272, z ¼ –2.235, P¼ 0.0254]

(Fig. 5, right panel); this is consistent with previously

reported results, which suggested that pontine volume

was among the most sensitive markers of disease progres-

sion in SCA1-affected individuals (Reetz et al., 2013;

Deelchand et al., 2019). In addition, we observe that the

Figure 3 Group by elapsed time interactions by VOI. Regional brain volumes where volumetric change was predicted by a group (SCA1

affected versus unaffected) by elapsed time (time between visits) interaction. While most brain regions do not change in volume in unaffected

individuals, volumes of cerebellar Lobule 6, cerebellar WM and deep nuclei, caudate, putamen, pallidum and pons decrease over time in SCA1-

affected individuals. Solid lines indicate values for SCA1-affected individuals, where grey lines and circles represent observed values, and the black

line represents the fitted model. Dotted lines indicate values for unaffected individuals, where grey lines and squares represent observed values

and the black; dotted line is the fitted model. Shaded regions indicate 95% confidence intervals
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rate of change in putamen volume predicts change in

SARA score, as indicated by a significant putamen by

elapsed time interaction [b¼ 0.000419, z ¼ �2.393,

P¼ 0.0167] (Fig. 5, left panel). All other terms excluding

the pontine volume by elapsed time interaction were

reduced to zero by the least absolute shrinkage and selec-

tion operator regularization procedure but were not sig-

nificant [b¼ 0.000297, z¼ 0.640, P¼ 0.5222].

Discussion
Our analyses indicate the change in pontine volume

and the rate of change in putamen volume may provide

clinically useful biomarkers to track progression of

SCA1. First, they predicted increases in SCA1 disease

burden as measured by SARA. Second, change in these

volumes was detectable within a short amount of time

(�6–9 months). Third, these changes were observable in

SCA1-affected individuals without referencing an un-

affected comparison group. Fourth, changes differenti-

ated between SCA1-affected and -unaffected

individuals. Finally, both of these measures are

obtainable using standard, non-invasive, clinically avail-

able MR imaging.

These results are consistent with previous work suggest-

ing that pontine volume is a sensitive potential biomarker

in SCA1 (Deelchand et al., 2019) and that decrease in

putamen volume is present in SCA1 (Reetz et al., 2013).

Our analysis leverages the longitudinal nature of our

sample to predict the timeframe in which these changes

are detectable, and specifically relate these potential bio-

markers to a measure of disease burden (SARA score).

From a methodological perspective, this work provides a

framework for robustly labelling brain regions in an

automated fashion using the MAGMA procedure, which

builds upon and optimizes state-of-the-art, multi-atlas

labelling techniques. In addition, our data manipulation

and modelling procedures provide a robust approach to

account for non-linear relationships to ICV, repeated

measures in a longitudinal design using a LME frame-

work and a variable selection procedure that can be used

when data exhibit multicollinearity and have a potential

for over-fitting.

In relation to prior work regarding the pons where

both decreasing volume over time and neurochemical

Table 1 Group by elapsed time interactions by VOI

VOI b SE df t P PBonferroni

Whole brain �8417.702 6623.368 60.3 �1.27 0.209 1

Cerebrum �6864.891 6402.336 60.3 �1.07 0.288 1

Cerebral GM �5325.858 3680.643 59.9 �1.45 0.153 1

Cerebral WM 82.611 2117.327 60.7 0.039 0.969 1

Cerebellum �1111.813 337.35 60 �3.3 0.00165 0.0562

Cerebellar Lobules 1 and 2 6.182 2.126 60.3 2.91 0.00508 0.173

Cerebellar Lobule 3 �3.674 10.721 60.2 �0.343 0.733 1

Cerebellar Lobule 4 �14.073 19.859 60.4 �0.709 0.481 1

Cerebellar Lobule 5 �104.775 40.724 58.8 �2.57 0.0126 0.43

Cerebellar Lobule 6 �191.258 41.204 60.3 �4.64 1.91 � 10�5 6.51 � 10�4

Cerebellum Crus 1 �212.965 121.987 60.4 �1.75 0.0859 1

Cerebellum Crus 2 �397.944 197.379 61.9 �2.02 0.0481 1

Cerebellar Lobule 7b �5.103 106.154 61 �0.0481 0.962 1

Cerebellar Lobule 8a 154.298 91.619 60.9 1.68 0.0973 1

Cerebellar Lobule 8b 57.53 61.447 60.4 0.936 0.353 1

Cerebellar Lobule 9 �45.321 41.75 59.4 �1.09 0.282 1

Cerebellar Lobule 10 28.049 17.78 59.8 1.58 0.12 1

Cerebellar WM and deep nuclei �258.66 56.339 60.5 �4.59 2.28 � 10�5 7.76 � 10�4

Corpus callosum �26.852 15.458 60.2 �1.74 0.0875 1

Frontal lobe �5563.115 2729.405 60.1 �2.04 0.0459 1

Occipital lobe 521.456 740.068 60 0.705 0.484 1

Parietal lobe �480.415 1743.822 59.8 �0.275 0.784 1

Temporal lobe 1107.655 1093.294 60.1 1.01 0.315 1

Caudate �106.223 25.915 59.8 �4.1 0.000127 0.00432

Putamen �136.797 28.651 59.2 �4.77 1.22E-05 0.000416

Pallidum �75.485 14.032 60 �5.38 1.3E-06 4.41E-05

Accumbens 12.328 31.652 60.4 0.39 0.698 1

Hippocampus �4.378 11.367 58.8 �0.385 0.702 1

Amygdala �8.45 7.248 59.8 �1.17 0.248 1

Thalamus �59.833 49.289 58.8 �1.21 0.23 1

Hypothalamusþ �78.27 41.578 60.5 �1.88 0.0646 1

Medulla �29.044 58.287 59.9 �0.498 0.62 1

Pons �348.144 40.743 59.9 �8.54 5.91E-12 2.01E-10

SCP �4.505 2.773 60.8 �1.62 0.109 1

GM, grey matter.

Brain volume changes track SCA-1 progression BRAIN COMMUNICATIONS 2020: Page 9 of 13 | 9



abnormalities were identified as important potential bio-

markers (Deelchand et al., 2019), it is important to con-

sider how these potential biomarkers may be useful for

evaluation of therapeutics. For example, volumetric quan-

tification may prove useful in evaluating the preventative

potential of a given treatment, i.e. by virtue of reducing

the steepness of the slope of decline or preventing decline

altogether. However, volumes are unlikely to increase due

to regeneration of neuronal populations in regions where

neurons have been lost. By contrast, regional metabolite

abnormalities, while less sensitive to disease progression

relative to volumetrics (Deelchand et al., 2019), may be

reversible and thereby provide insight into functional nor-

malization of already damaged tissues where volumetric

change may be obscured.

Our data suggest that cerebellar volume is not an ad-

equate biomarker for disease progression after motor

onset in SCA1. While the primary neuronal pathology is

the loss of Purkinje cells in the cerebellum (Dürr et al.,

1996; Lin et al., 2000; Edamakanti et al., 2018), this

may occur long before motor onset. This is supported by

our study and the Reetz study in that at the baseline

assessment, the volume of the cerebellum was already

quite low. On the other hand, the pons was also very

low at baseline and did show substantial change over

time. Although there was significant change over time in

sub-regions of the cerebellum (Lobe 6 and WM/deep nu-

clei), these changes were not directly related to changes

in motor score (SARA).

Lack of relationship between change of cerebellar struc-

ture and symptoms highlight the need to move beyond

evaluation of regions of interest and consider circuitry.

Our results are consistent with the notion that compensa-

tory mechanisms within cerebellar-connected networks

might explain the observed decoupling of the primary

pathology of SCA1 (cerebellar atrophy) (Klockgether

et al., 1998; Schulz et al., 2010; Jacobi et al., 2012) and

progression of ataxia. There are well established striato-

cerebellar circuits involved in motor control (Hoshi et al.,

2005; Bostan et al., 2010, 2013), and the pathways con-

necting the cerebellum and putamen in this network relay

through the pons. Like the Reetz et al. paper, in the cur-

rent study, the putamen was normal in volume at the

time of first assessment, but then had a rapid decline in

Table 2 VOI change in SCA1-affected only

VOI b SE df t P PBonferroni

Whole brain �12 584.624 6057.012 24.7 �2.08 0.0483 1

Cerebrum �10 848.905 5855.834 24.7 �1.85 0.0759 1

Cerebral GM �6523.224 3313.096 24.7 �1.97 0.0603 1

Cerebral WM �1610.601 1915.169 24.7 �0.841 0.408 1

Cerebellum �971.808 305.995 24.6 �3.18 0.004 0.136

Cerebellar Lobules 1 and 2 1.645 1.275 24.7 1.29 0.209 1

Cerebellar Lobule 3 5.003 7.273 24.7 0.688 0.498 1

Cerebellar Lobule 4 �26.158 12.249 24.3 �2.14 0.043 1

Cerebellar Lobule 5 �40.215 31.987 23.1 �1.26 0.221 1

Cerebellar Lobule 6 �210.984 34.977 24.8 �6.03 2.75E-06 9.33E-05

Cerebellum Crus 1 �129.373 100.688 24.4 �1.28 0.211 1

Cerebellum Crus 2 �193.729 172.791 24.8 �1.12 0.273 1

Cerebellar Lobule 7b 11.347 69.978 24.7 0.162 0.873 1

Cerebellar Lobule 8a 19.061 86.51 24.6 0.22 0.827 1

Cerebellar Lobule 8b �18.594 46.305 24.8 �0.402 0.691 1

Cerebellar Lobule 9 �5.616 38.073 24.1 �0.148 0.884 1

Cerebellar Lobule 10 31.742 14.051 25 2.26 0.0328 1

Cerebellar WM and deep nuclei �308.859 46.01 24.7 �6.71 5.18E-07 1.76E-05

Corpus callosum �46.005 11.63 24.6 �3.96 0.000569 0.0193

Frontal lobe �5454.899 1638.349 24.9 �3.33 0.00271 0.0921

Occipital lobe �284.578 708.166 24.6 �0.402 0.691 1

Parietal lobe �2305.137 1287.966 24.7 �1.79 0.0858 1

Temporal lobe 1395.581 991.918 24.6 1.41 0.172 1

Caudate �106.709 25.568 24.8 �4.17 0.000321 0.0109

Putamen �141.078 24.83 24.7 �5.68 6.75E-06 0.000229

Pallidum �58.671 13.059 24.6 �4.49 0.000144 0.0049

Accumbens 3.968 29.17 24.7 0.136 0.893 1

Hippocampus 1.551 9.005 25 0.172 0.865 1

Amygdala �9.143 7.016 24.8 �1.3 0.204 1

Thalamus �210.56 33.103 24.9 �6.36 1.2E-06 4.07E-05

Hypothalamusþ �89.29 30.356 24.7 �2.94 0.00699 0.238

Medulla 11.577 28.214 24.3 0.41 0.685 1

Pons �304.985 31.126 25.1 �9.8 4.70E-10 1.60E-08

SCP �8.247 2.218 24.9 �3.72 0.00102 0.0348

GM, grey matter.
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volume. In addition, in the current study, we found that

decline in volume of the putamen to be directly related

to a decline in motor function. Although some regions of

the cerebellum did continue to decrease over time, there

was no association between cerebellar volume decrease

and motor function deterioration. Given the integration

of the cerebellar–striatal circuitry, we hypothesize that the

putamen may potentially play a compensatory role in the

pre-manifest and early course of the disease. However,

this increases the processing burden on the putamen, and

this compensation eventually results in a decrease in puta-

men function. Consistent with our data, a decline in these

compensatory mechanisms in the putamen should then be

closely related to disease progression. In addition, since

the connections for this network run through and con-

nect to pontine areas, it may be that the decay of this

pathway and/or compensation by pontine areas will also

contribute to compensation and disease progression when

these mechanisms fail. These findings are similar to our

work in Huntington’s disease where we find that in the

pre-symptomatic phase of the disease, striatal degener-

ation occurs decades prior to motor onset (van Der Plas

et al., 2019), and at the same time, there is hyper-con-

nectivity of the cerebellar–putamen circuits as seen using

resting state MRI (Tereshchenko et al., 2020). Further re-

search, particularly prospective research prior to onset of

the primary pathology of SCA1 might help disentangle

this potential for compensatory mechanisms.

Given the supposition that the striato-cerebellar motor

control networks are impacted by SCA1, future research

focussing on functional connectivity and physical connect-

ivity within this network will undoubtedly shed light on

the mechanisms of SCA1 disease processes and may point

to even stronger potential biomarkers that would be use-

ful in the development of clinical trials. In addition, given

that the pons is composed of several nuclei as well as

has many WM tracts coursing to and through it, higher

resolution neuroimaging and histology of this region

would aid in isolating the dysfunctional mechanisms that

are associated with SCA1. Currently, it is unclear if this

effect is due to a loss of pontine neurons or the loss of

WM pathways connecting cerebellar regions to the rest

of the brain.

Finally, this is the first study to detect changes in brain

structures within a relatively short period of time.

Although the follow-up time in the current study was, on

average, 1.5 years, our statistical analysis allowed for ex-

trapolation of the model to detect significant changes

within the 6–12-month time frame, including the puta-

men and pons. This is an important finding in the con-

text of utilization of these biomarkers in clinical trials

where shorter observation times are highly desired.

Further research is needed to address issues surrounding

the limitations in temporal fidelity (i.e. short follow-up

periods would be ideal to reduce the need for extrapola-

tion to shorter timescales), sample size and the single

centre nature of the current study, and while MRI data

acquisition is highly translatable the sophisticated analyt-

ical methods in regard to volumetry and statistical analy-

ses may require optimization to be more useful in a

clinical setting.

In conclusion, we have demonstrated that volumetric

MR imaging, particularly within the pons and putamen,

might make potent biomarkers for clinical trials of treat-

ments for SCA1. The measurement and modelling proce-

dures utilized here can be readily translated to a clinical

setting and provide a framework to study the potential

for isolating similar mechanisms as useful biomarkers

across the broader family of spinocerebellar ataxias.
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Communications online.
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Manjón JV, Coupé P, Martı́-Bonmatı́ L, Collins DL, Robles M.

Adaptive non-local means denoising of MR images with spatially

varying noise levels. J Magn Reson Imaging 2010; 31: 192–203.
Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet

AL, et al. Expansion of an unstable trinucleotide CAG repeat in spi-
nocerebellar ataxia type 1. Nat Genet 1993; 4: 221–6.
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