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Abstract: Heat engines used to output useful work have important practical significance, which,
in general, operate between heat baths of infinite size and constant temperature. In this paper,
we study the efficiency of a heat engine operating between two finite-size heat sources with initial
temperature difference. The total output work of such heat engine is limited due to the finite heat
capacity of the sources. We firstly investigate the effects of different heat capacity characteristics
of the sources on the heat engine’s efficiency at maximum work (EMW) in the quasi-static limit.
Moreover, it is found that the efficiency of the engine operating in finite-time with maximum power
of each cycle is achieved follows a simple universality as η = ηC/4 + O

(
η2

C
)
, where ηC is the Carnot

efficiency determined by the initial temperature of the sources. Remarkably, when the heat capacity
of the heat source is negative, such as the black holes, we show that the heat engine efficiency during
the operation can surpass the Carnot efficiency determined by the initial temperature of the heat
sources. It is further argued that the heat engine between two black holes with vanishing initial
temperature difference can be driven by the energy fluctuation. The corresponding EMW is proved
to be ηMW = 2−

√
2.

Keywords: finite-size heat source; efficiency at maximum work; efficiency at maximum power

1. Introduction

As one of the most useful devices in modern society, the heat engine converts the heat extracted
from the heat sources into useful work, which is one of the core fields in thermodynamic research [1–9].
Early heat engine research was limited to reversible cycles in the quasi-static limit, with which,
as stated by the Carnot’s theorem [1], the achievable maximum efficiency of heat engines is the
so-called Carnot efficiency ηC = 1 − TL/TH, where TH (TL) is the temperature of the hot (cold)
bath. Since the last century, with the maturity of quantum theory and its related technologies,
people started to pay attention to the performance of quantum heat engines working in micro-scale
within the framework of quantum thermodynamics [4,5,8–19]. Series of the quantum effect, such as
coherence, entanglement, quantum phase transition, etc., of the working substance or heat source have
been studied to realize better heat engines [13,20–27]. On the other hand, with the development of
non-equilibrium thermodynamics [2,3,28], the optimization of actual heat engines under the framework
of finite-time thermodynamics attracted a wide range of attention [29–33]. Extensive research on the
efficiency at maximum power (EMP) [34–42], trade-off relation between power and efficiency [43–46],
and optimal operation of heat engine have been proposed [47,48]. The motivation for these studies
stems from the fact that time is a finite resource, we cannot trade at the cost of infinitely long working
time for heat engines that are efficient but have vanishing output power.

Most of studies about heat engines have regarded the heat sources as an infinite system, which
means, the sources can continuously provide or absorb heat. However, just like time, the realistic heat
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source is also a finite resource, so it is an interesting and practical task to consider the optimization of
the heat engine working between finite-size heat sources. Recently, people began to consider this issue
with different perspectives. For example, considering the Carnot heat engine working between finite
heat sources [49–51], linear irreversible heat engines working in finite time with finite-size bath [52,53],
and the bounds of optimal efficiency the engines can achieve [54,55]. In addition, the influences of the
finite-size heat source on the quantum heat engine [56–60] and quantum battery [61] also attract some
attention. In general, the finite-size effect of the heat source is reflected in the limited heat capacity.
Therefore, the feature of the heat capacity of the heat sources will directly determine the performance
of the heat engine working between them. In this paper, we discuss the effects of finite-size heat
sources with different heat capacity characteristics on heat engine’s efficiency, in both quasi-static and
finite-time circumstances. Several bounds for the efficiency in different situations with finite operation
time or finite-size sources are obtained as illustrated in Table 1. In particular, we study the case where
the heat source has a negative heat capacity, which is proved to be advantageous for improving the
efficiency of the heat engine. To our best knowledge, this has never been reported before.

Table 1. Bound for efficiency in different case. Here t is the operation time of the heat engine and C is
the heat capacity of the heat source. In the case engine working in quasi-static cycle between infinite
heat bath, i.e., t→ ∞, C → ∞, the maximum achievable efficiency, as stated by Carnot, is the Carnot
efficiency ηC = 1− TL/TH. For the engine operates in finite time, i.e., C → ∞, t 9 ∞, Esposito et al. [41]
give the bounds for the efficiency at maximum power (EMP), ηMP, with low-dissipation Carnot-like
engine. The bounds for efficiency at maximum work (EMW) (t → ∞, C 9 ∞), ηMW, and efficiency
at maximum power for each cycle (t 9 ∞, C 9 ∞), ηFT, are obtained in this paper. The detailed
derivations are illustrated in Section 2.1 and Section 3, respectively. The bounds in the latter two cases
for ηMW and ηFT in this table are limited to the heat source having a positive and constant heat capacity.
The bounds correspond to heat capacity change with temperature are discussed in Section 2.2 while
the negative heat capacity case are discussed in Section 4.

t→ ∞ t 9 ∞

C → ∞ ηmax = ηC
ηC
2 ≤ ηMP ≤

ηC
2−ηC

C 9 ∞ 1 + (1−ηC) ln(1−ηC)
ηC

≤ ηMW ≤ 1 + ηC
ln(1−ηC)

1 + ηC/2
ln(1−ηC/2) ≤ ηFT ≤ 1 + 1−ηC

ηC/2 ln 1−ηC
1−ηC/2

The paper is organized as follows: In Section 2, we first generally discuss the influence of the heat
capacity of the finite-size heat sources on the efficiency of the heat engine at maximum work (EMW)
with quasi-static cycle. Then the efficiency of the heat engine in the high and low temperature regime
with different heat capacity function are derived. In the low-temperature regime, it is found that the
dimension of the heat source will influence the EMW of the heat engine, and the higher EMW can be
achieved with higher dimension materials. In Section 3, the study in quasi-static situation is extend to
the finite-time case, where we consider the low-dissipation Carnot-like heat engine working between
two finite-size sources. We point out that when the heat engines operates with maximum power in
each cycle, the efficiency of the whole process follows a simple universality as η = ηC/4 + O

(
η2

C
)
,

where ηC is the Carnot efficiency determined by the initial temperature of the sources. With the black
hole as an illustration, we study the negative heat capacity system service as the finite-size heat source
in Section 4. Conclusions and discussions are given in Section 5.

2. Heat Engine Working between Finite-Size Heat Source

As shown in Figure 1, we consider the heat engine of interest is working between two heat
source H and L with finite size, where TH (TL) and CH (CL) are the temperature and heat capacity
of the high (low) temperature source H (L), respectively. The initial temperature of the hot (cold)
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source is denoted as T(0)
H (T(0)

C ). When the working substance WS run in an arbitrary thermodynamic
cycle, the heat engine can generate output work W(i) =

∫ ti+1
ti

Ẇdt in the i-th cycle, where ti is the

start time of such cycle (t1 = 0). Accoding to the first law of thermodynamics, W(i) = Q(i)
H − Q(i)

L .

Here Q(i)
H =

∫ ti+1
ti

Q̇Hdt is the heat absorbed from the high temperature source, and Q(i)
L =

∫ ti+1
ti

Q̇Ldt
is the heat releases to the low temperature heat source. When the heat engine runs for k cycles, we can
evaluate the heat engine’s performance with its efficiency η and power P, namely,

Figure 1. Heat engine working between two finite-size heat sources. TH (TL) and CH (CL) are the
temperature and heat capacity of the high (low) temperature source H (L), respectively. W = QH −QL

is the output work of the engine per cycle while QH is the heat absorbed from the hot source and QL

the heat releases to the cold source.

η = η(tk+1) =
∑i=k

i=1 W(i)

∑i=k
i=1 Q(i)

H

=

∫ t
0 Ẇdt∫ t

0 Q̇Hdt
, (1)

P = P(tk+1) =
∑i=k

i=1 W(i)

∑i=k
i=1 τi

=

∫ t
0 Ẇdt

t
(2)

where τi = ti+1 − ti is the cycle time, tk+1 = ∑i=k
i=1 τi is the engine’s total working time from the 1-th

cycle to the k-th cycle, and we have replaced ∑i=k
i=1
∫ ti+1

ti
to
∫ t

0 for convenience. For the size of these
two heat sources approach infinity as well as the heat capacity, i.e., CH,L → ∞, their temperature will

remain constant as the initial time, namely, TH = T(0)
H and TL = T(0)

L . In such case, the two heat sources
service as two heat bath, and the maximum efficiency of the heat engine is bounded by the well-known
Carnot efficiency

ηC = 1−
T(0)

L

T(0)
H

, (3)

which can be achieved when the working substance works under a reversible Carnot cycle with
vanishing output power. However, for the heat sources with finite size, their temperature will change
as the heat engine works. Specifically, after providing heat to the working substance, TH of the
high-temperature heat source decreases, while, on the other hand, the low-temperature source’s
temperature TL increases since the working substance releases heat to it. Here we have assumed
CH,L > 0 since most physical systems have positive heat capacity, while the extreme special situation
where the heat sources have negative heat capacity, i.e., CH,L < 0 will be discussed in Section 4.
As the time goes by, the heat engine will finally stop outputting work when the temperature of the
two heat sources become the same, namely, TH (tf) = TL (tf), where tf is introduced as the stop
time of the heat engine. In this case, the output work of the engine has achieved its maximum,
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i.e., W (t) ≤ W (tf) ≡ Wmax, as the heat engine cannot continue operating after the heat source
temperature reaches the same. The corresponding efficiency

η (tf) =

∫ tf
0 Ẇdt∫ tf

0 Q̇Hdt
=

Wmax∫ tf
0 Q̇Hdt

(4)

is called the efficiency at maximum work (EMW) [52,62] and we denote it as η (tf) ≡ ηMW thereafter.
Here, we have assumed that the heat engine can run N complete cycles, thus tf = ∑i=N

i=1 τi. In the
following discussion, we focus on the situation that the heat engine can work with limited but sufficient
cycles, i.e., N � 1. With the endo-reversible condition, we have Q̇L = TLṠL, and Q̇H = −THṠH, where
SL and SH are respectively the entropy of the low-temperature and high-temperature sources. Such that

ηMW = 1−
∫ tf

0 Q̇Ldt∫ tf
0 Q̇Hdt

= 1 +

∫ tf
0 TLṠLdt∫ tf
0 TH ˙SHdt

(5)

With the operation of the heat engine, noticing the temperature difference of the two source
become smaller and smaller (for finite positive heat capacity sources), and TL > T(0)

L , TH < T(0)
H , thus

we have [52]

ηMW < 1 +
T(0)

L

∫ tf
0 ṠLdt

T(0)
H

∫ tf
0

˙SHdt
≤ ηC, (6)

where the equal sign on the right side only hold in the reversible limit with
∫ tf

0 ṠLdt = −
∫ tf

0
˙SHdt [1,2].

The above discussion implies that, the finite heat capacity of the heat sources and the irreversibility of
the cycle limit the EMW the heat engine can achieve. Therefore, the following two questions naturally
raises: (i) What is the heat engine’s maximum EMW when working at two finite-size heat bath?
(ii) How the specific feature of the heat source’s heat capacity affects such EMW? In the following of
this section, we focus on the reversible case with quasi-static cycles, and the effect of irreversibility of
the cycle in the finite-time case will be further studied in Section 3. We first rewrite the efficiency of
Equation (5) in term of CH and CL as

ηMW = 1 +

∫ tf
0 CLṪLdt∫ tf
0 CHṪHdt

, (7)

where Q̇H = −CHṪH and Q̇L = CLṪL have been used for the two heat sources. For a given physical
system, heat capacity is generally the function of temperature, i.e., CH,L = CH,L (T), and one can
complete the integral in Equation (7) explicitly with the specific form of CH,L (T). Assuming the heat
capacity of the sources follow the Debye’s Law [63], for example most of the crystal, such that C (T) =
const in the high temperature regime of T/Θ� 1, and C (T) ∝ Tn in the low-temperature regime of
T/Θ� 1. Here Θ and n are the Debye temperature and the dimension of material, respectively. In the
following discussion, we focus on these two regimes.

2.1. High Temperature Regime

In this case, the heat capacity only determined by the size (particle number) of the source, such
that Equation (7) is simplified as

ηMW = 1−
CL

[
TL (tf)− T(0)

L

]
CH

[
T(0)

H − TH (tf)
] , (8)

whereTL (tf) = TH (tf) ≡ TE is the equilibrium temperature of the two sources. The EMW is achieved
with the reversible cycle, in which no irreversible entropy is generated, i.e., ∑θ=H,L,WS

∫ tf
0 Ṡθdt = 0.
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Here SWS is the entropy of the working substance. Assuming the size of the heat sources are much
lager than the working substance, namely CWS/Cα � 1 (α = H, L), the entropy change of the working
substance SWS =

∫ tf
0

˙SWSdt can be ignored in comparision with that of the two sources, such that

∫ tf

0

(
Q̇Hdt

TH
+

Q̇Cdt
TC

)
= 0, (9)

where the endo-reversible condition is used for the two sources. The above equation can be further
written as, in terms of the heat capacity,

∫ TE

T(0)
L

CLdTL

TL
+
∫ TE

T(0)
H

CHdTH

TH
= 0. (10)

which is the reversible condition of the whole process. Such condition is satisfied with τi � tr(i =
1, 2, ..., N), where the� guarantees each cycle meet the quasi-static condition and thus the engine
works reversibly, tr is the characteristic time for the working substance relaxing to thermal equilibrium
with the heat source, which is determined by the coupling strength between the working substance
and the heat source. Finish the integral in Equation (10), we find the equilibrium temperature

TE = T(0)
H (1− ηC)

ξ
ξ+1 , (11)

where ξ ≡ CL/CH is defined as the heat capacity ratio between the low and high temperature heat
source, which characterizes the asymmetry of two heat sources. By substituting Equation (11) into
Equation (8), the EMW is obtained in terms of ξ and ηC as

ηMW = 1−
ξ

[
(1− ηC)

ξ
ξ+1 − (1− ηC)

]
1− (1− ηC)

ξ
ξ+1

. (12)

Here ηC = 1− TL/TH is the Carnot efficiency determined by the initial temperature of the sources.
We illustrated ηMW as the function of ηC in Figure 2. In three different limit case, namely, the symmetry
case with ξ = 1, infinite heat capacity (in comparison with the hot one) of the low-temperature source
with ξ → ∞, and infinite heat capacity (in comparison with the cold one) of the high-temperature
source with ξ → 0, we simplify Equation (12) as follows

ηMW =


1−

√
1− ηC ξ = 1

1 +
(

η−1
C − 1

)
ln (1− ηC) ξ → ∞

1 + ηC ln−1 (1− ηC) ξ → 0

(13)

As shown in Figure 2, the maximum EMW is achieved with ξ → ∞, which have also been reported
in [49]. Although, infinity is never reached in practice, one can find in Figure 2 that, when ξ = 5
(the yellow solid curve), the EMW already gets pretty close to the that of ξ → ∞, as represented by the
green dashed line. It can also be seen from Figure 2 that for a given ηC, ηMW is an increasing function
of ξ, which indicates that, in the case where the hot source with smaller heat capacity than the cold
one, the engine would operate with higher EMW.

Moreover, it can be proved from Equation (12) that the ηMW in different limits of ξ have the same
coefficient in the first order of ηC, namely, ηMW = ηC/2 + O

(
η2

C
)
, which shares the same universality

with efficiency at maximum power [32,41,64]
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Figure 2. EMW ηMW as the function of ηC with different ξ = CL/CH. The curves relate to infinite heat
capacity (in comparison with the hot one) of low-temperature source ( ξ → ∞) and infinite heat capacity
(in comparison with the cold one) of high-temperature source (ξ → 0) are given by Equation (13).
The other are plot with Equation (12).

2.2. Low Temperature Regime

Different from the above case within the high-temperature regime, the capacity of the heat sources
in the low-temperature regime of T/Θ� 1, according to the Debye’s law, follows CH,L (T) = ΛH,LTn.
Here, ΛH,L is the heat source size-dependent coefficient, and n is the dimension of the sources.
The reversible condition of Equation (10) in this case becomes

∫ TE

T(0)
L

ΛLTn−1
L dTL +

∫ TE

T(0)
H

ΛHTn−1
H dTH = 0, (14)

namely,
ΛL (Tn

E − Tn
L ) = ΛH (Tn

H − Tn
E ) , (15)

which gives the equilibrium temperature

TE =


(

T(0)
H

)n
+ ξ

(
T(0)

L

)n

1 + ξ


1
n

(16)

where ξ = CL (T) /CH (T) = ΛL/ΛH is the capacity ratio of the two sources at the same temperature.
Combining Equations (7) and (16), the EMW at low temperature regime reads

ηMW = 1− ξχ− ξ (1− ηC)
n+1

1− χ
, (17)

where

χ =

[
1 + ξ (1− ηC)

n

1 + ξ

] n+1
n

(18)

In the limit of ξ → ∞, keeping the first order of ξ−1 in χ, we obtain

ηMW (ξ → ∞) = 1− n + 1
n

[
1− ηC

1− (1− ηC)
n+1

]
. (19)
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On the other hand, in the case of ξ → 0, we expand χ up to the first order of ξ and find that

ηMW (ξ → 0) = 1− n
n + 1

[
1− (1− ηC)

n+1

1− (1− ηC)
n

]
(20)

In Figure 3, the EMW in these two limit cases are plotted as the function of ηC with the source
dimension n = 1, 2, 3. The curves shows that ηMW (ξ → ∞), the upper bound of ηMW, increases
with the heat source dimension n; while the lower bound of ηMW, i.e., ηMW (ξ → 0) decreases
with n. This means that, theoretically, we can use heat sources with higher dimension to achieve
higher efficiency.

Particularly, when the considered heat source is one-dimensional, i.e., n = 1, Equation (17) is
directly simplified as

ηMW (n = 1) =
ηC

2− κηC
, (21)

where κ = ξ/ (1 + ξ) , κ ∈ (0, ∞). Since ηEMW (n = 1) is a monotonically increasing function of κ,
we conclude that

ηL ≡
ηC

2
≤ ηMW (n = 1) ≤ ηC

2− ηC
≡ ηU. (22)

Similar result has been found by [55] with the energy-entropy relation. In addition, in the limit of
ηC → 1, the lower bound of ηMW in Equation (20) is found to be only determined by the heat source
dimension, i.e.,

lim
ηC→1

ηMW (ξ → 0) =
1

n + 1
. (23)

This phenomenon is observed in Figure 3, where the intersection of the three dash-dotted lines
and ηC = 1 are, from top to bottom, ηMW = 1/2, ηMW = 1/3, and ηMW = 1/4, respectively. We also
plot the EMW as the fucntion of ηC with different ξ for source dimension fixed at n = 3 in Figure 4.
As demonstrated by Figure 4, similar to Figure 2 corresponding to the high-temperature regime, EMW
in the low-temperature regime also increases with ξ. However, unlike the high-temperature behavior,
when ηC is relatively large, ηMW with ξ of very large value can approach the upper bound of EMW,
i.e., ηMW (ξ → ∞). It can be seen from the figure that when ξ = 100, there is still a significant distance
between the upper bound of EMW (red solid curve) and ηMW (ξ = 100) (yellow solid curve) in the
large-ηC regime. Moreover, as the result of Equation (17), up to the first order of ηC, an universality is
found for the EMW as

ηMW =
ηC

2
+ O

(
η2

C

)
, (24)

which is hold in both low-temperature regime (Equation (17)) and high-temperature regime
(Equation (12)). Such an universality has been discovered before for EMP [32,41,64].
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Figure 3. EMW ηMW as the function of ηC with different source dimension n. The curves relate to
ξ → ∞ and ξ → 0 are given by Equation (19) and Equation (20), respectively.
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Figure 4. EMW ηMW as the function of ηC with different ξ for source dimension n = 3. The curves
with finite ξ are plotted with Equation (17), while the curves relate to ξ → ∞ and ξ → 0 are given by
Equation (19) and Equation (20), respectively.

For those systems that do not satisfy the Debye’s law, we can first derive the heat capacity as
the function of temperature from its energy spectrum and the corresponding equilibrium population.
Then taking using of Equations (7) and (10) to obtain the EMW in quasi-static limit. It should be
mentioned that the general result of Equation (17) is also suitable for Fermi gas at low temperature
and photon(black body radiation) by taking n = 1 and n = 3, respectively. Since the capacity of the
former follows CFG (T) ∝ T, while CPG (T) ∝ T3 for the latter [65].

3. Finite-Time Performance of the Heat Engine

In the previous section, we derive the EMW of heat engines operating under the reversible
condition, which is satisfied by the quasi-static cycles with almost vanishing output power. In this
section, we extend our discussion in Section 2 to the finite-time case [52,53]. Note that, in such situation,
the heat engine no longer operates in the reversible cycles, thus the irreversibility of the heat engine,
characterized by the irreversible entropy generation [2], should be taken into consideration.

Unlike the optimization goal of Refs. [52,53], where the efficiency at maximum time-average
power of the whole process is studied, we focus on how efficient the engine can be when the power of
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each cycle is maximized. Similar to the situation in Section 2, the engine of interest can run N cycle
from t = 0 to the stop time t = tf, where N � 1 but finite as we assumed before. The operation time of
the i-th cycle (i = 1, 2, ...N) begins at t = ti is denoted as τi = ti+1 − ti. It follows from Equation (1)
that the efficiency of the whole process then reads

η = 1− ∑N
i=1 Q(i)

L

∑N
i=1 Q(i)

H

, (25)

where Q(i)
H =

∫ ti+1
ti

Q̇Hdt and Q(i)
L =

∫ ti+1
ti

Q̇Ldt. In the i-th cycle, the output power is P(i) =(
Q(i)

H −Q(i)
L

)
τ−1

i . Below we try to obtain the upper and lower bounds for η under the condition

that the maximum P(i) is achieved in each cycle. Suppose the heat engine works in the finite-time
Carnot-like cycle, which contains two adiabatic processes and two finite-time isothermal process.
In the finite-time isothermal processes, the heat transfer generally follows, in the the i-th cycle,

Q(i)
H = T(i)

H S(i)
re −Q(i)

irr,H, (26)

Q(i)
L = T(i)

L S(i)
re + Q(i)

irr,L. (27)

Here, T(i)
H (T(i)

L ) is the temperature of the high (low) temperature heat source, which can be
considered as a constant in the whole process of the i-cycle, since the temperature of the heat source
changes very little in each cycle with the assumption N � 1. S(i)

re is reversible entropy change, and Q(i)
irr,α

(α = H, L) is the irreversible heat transfer relates to the corresponding source. With the low-dissipation
assumption, as suggested first by Esposito et al. [41], the irreversible heat transfer follows the 1/τ

scaling as Q(i)
irr,α = Γ

(i)
α /τ

(i)
α , where Γ

(i)
α depends on the dissipative feature of the working substance

when contacting with the heat source [46] and τ
(i)
α is the operation time of the corresponding process.

Such scaling has been proved for both classical [66] and quantum system [46,47] and was observed in
some recent experiments [48,67]. Applying straightforward optimization of P(i)

(
τ
(i)
H , τ

(i)
L

)
with respect

to τ
(i)
H and τ

(i)
L , the EMP in the i-th cycle is obtained as [41] (see Appendix A for detailed derivation)

η
(i)
MP =

η
(i)
C

2− γ(i)η
(i)
C

, (28)

where

γ(i) =

(
1 +

√
Γ
(i)
L /Γ

(i)
H

)−1
∈ [0, 1] (29)

and η
(i)
C = 1− T(i)

L /T(i)
H is the Carnot efficiency determined by the temperature of the sources in

the i-th cycle. It is worth mentioning that the optimal operation time related to the above EMP of
each cycle relies on the corresponding temperature of the sources (for a detailed deviation, please see
Equations (A5) and (A6) of Appendix A). When the maximum power output for each cycle is achieved,
the efficiency of Equation (25), denoted as ηFT, becomes

ηFT =
∑N

i=1 η
(i)
MPQ(i)

H

∑N
i=1 Q(i)

H

. (30)

For simplicity, we only consider the heat source with constant heat capacity in the following.
As we studied In Section 2, the EMW in the reversible situation is bounded as ηMW (ξ → 0) ≤ ηMW ≤
ηMW (ξ → ∞) (see Equation (13)). Therefore, to achieve higher efficiency in finite time, we should
focus on the case of ξ → ∞, where the heat capacity of the low-temperature source is much lager than
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that of the high-temperature one, such that the cold source is kept at a constant temperature in the
whole process, i.e., T(i)

L = T(0)
L and the hot source temperature decreases with time until T(N)

H = T(0)
L

and the heat engine stops working. Substituting Equation (28) into Equation (30), and replace the sum
by integral with N � 1, we obtain

ηFT =

∫ tf
0

ηC(t)
2−γηC(t)

Q̇Hdt∫ tf
0 Q̇Hdt

, (31)

where we have assumed γ(i) = γ for each cycle. The above equation can be further simplified as,
noticing ηC(t) = 1− T(0)

L /TH (t) and dQH = −CHdTH,

ηFT
U =

∫ T(0)
L

T(0)
H

TH(t)−T(0)
L

(2−γ)TH(t)+γT(0)
L

dTH∫ T(0)
L

T(0)
H

dTH

, (32)

After finishing the integral, the upper bound for efficiency is finally found as, in terms of the
initial Carnot efficiency ηC,

ηFT (ξ → ∞) =
1

2− γ

[
1− 2(1− ηC)

(2− γ) ηC
ln

2− γηC

2(1− ηC)

]
, (33)

which is a monotonically increasing function of γ, since

∂ηFT (ξ → ∞)

∂γ
=

1

(2− γ)2

[
1 +

4(1− ηC)

(2− γ) (2− γηC)

]
> 0 (34)

Thus, ηFT (ξ → ∞) is bounded by the following inequality

ηFT
L (ξ → ∞) ≤ ηFT (ξ → ∞) ≤ ηFT

U (ξ → ∞) , (35)

where the upper bound

ηFT
U (ξ → ∞) = 1− 2(1− ηC)

ηC
ln

2− ηC

2(1− ηC)
. (36)

is obtained by taking γ = 1, while

ηFT
L (ξ → ∞) =

1
2

[
1 +

(
η−1

C − 1
)

ln (1− ηC)
]

, (37)

is the lower bound of ηFT (ξ → ∞), which is achieved by taking γ = 0, and is exactly half of
ηMW (ξ → ∞) in Equation (13) in the reversible case. Similarly, in the limit of ξ → 0, another two
bounds for ηFT are obtained and the corresponding derivation are given in Appendix B. Here we make
a brief summary of the bounds for ηFT obtained in different limit as follows

ηFT
U (ξ → ∞) = 1 +

2(1− ηC)

ηC
ln

2(1− ηC)

2− ηC
, (38)

ηFT
L (ξ → ∞) =

ηMW (ξ → ∞)

2
, (39)

ηFT
U (ξ → 0) =

ηMW (ξ → 0)
2− ηMW (ξ → 0)

, (40)

ηFT
L (ξ → 0) = 1 +

ηC

2
ln−1

(
1− ηC

2

)
, (41)
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where ηMP (ξ → ∞) and ηMP (ξ → 0) are the corresponding efficiency in the reversible limit as given
by Equation (13). Interestingly, the dependence of η on ηMW in the limit of (ξ → ∞, γ→ 0) and
(ξ → 0, γ→ 1) follows the same form as its corresponding counterpart in the infinite heat source case:
the lower bound of the efficiency at maximum power follows ηC/2, while the upper bound of the
efficiency at maximum power follows ηC/ (2− ηC). These efficiency in different limit of ξ and γ are
illustrated in Figure 5 with the solid lines, where the dashed lines are the upper and lower bounds
of EMW, i.e., ηMW (ξ → ∞) and ηMW (ξ → 0). It is easily to check that these efficiency follow the
universality as

ηFT =
ηC

4
+ O

(
η2

C

)
. (42)

Note that ηMW can be regarded as the limit efficiency of ηFT at the quasi-static limit with no
irreversibility. In finite-time thermodynamics, for a heat engine working between two constant
temperature heat sources (heat capacity of the sources approach infinite), the universality of the
efficiency at maximum power ηMP is generally written as a function of ηC(quasi-static limit), as

ηMP =
ηC

2
+ O

(
η2

C

)
(43)

Similarly, comparing Equation (42) with Equation (24), we can also write the universality of ηFT

in term of ηMWas

η =
ηMW

2
+ O

(
η2

MW

)
, (44)

which means that, up to the first order of ηC, the efficiency when the power of each cycle is maximized
is just half of the EMW. Such universality is also found for the efficiency at maximum time-average
power with linear irreversible heat engine under the tight coupling condition [52,53].

0 0.2 0.4 0.6 0.8 1

C

0

0.2

0.4

0.6

0.8

1

MW
( )

MW
( 0)

FT

U
( )

FT

L
( )

FT

U
( 0)

FT

L
( 0)

Figure 5. Upper (ηFT
U ) and lower (ηFT

L ) bounds for efficiency of the heat engine in finite-time operation
as the function of ηC in different limit of ξ. ηFT

U and ηFT
L respectively correspond to γ→ 1 and γ→ 0.

Here ξ and γ respectively characterize the asymmetry in size and in dissipation of the two heat sources.
As the comparison, the red(black) dashed line represent the upper (lower) bound of EMP in the
reversible limit given by Equation (13). Other are plotted with Equations (38)–(41).

4. Black Holes Served as Heat Sources

In the previous section, we have discussed the situation that heat engine operates to stop between
two finite-size heat sources when the high-temperature and low-temperature source reach the same
temperature. This actually based on the assumption that the heat capacity of the heat sources are
positive as we mentioned before, such that the temperature of the high-temperature heat source is
lowered and the temperature of the low-temperature heat source is increased as the engine’s working.
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Although most physical systems have positive heat capacity, there are indeed some systems with
negative heat capacity, i.e., C = ∂U/∂T < 0, such as black holes [68,69]. All the thermodynamic
properties of a black hole only rely on its mass M, angular momentum J, and charge Q, known as the
three hairs of black hole [69]. For simplicity, we consider the Schwarzschild black hole, which only
has one hair, the mass. The internal energy and temperature of a Schwarzschild black hole B with
mass M are respectively U = M and T = 1/ (8πM). Here and after, we use the natural unit system.
Therefore, the heat capacity of B is C = ∂U/∂T = −8πM2. Obviously, such heat capacity is negative
and increases quadratically with the black hole’s mass.

Now we consider two Schwarzschild black holes of mass MH and ML served as high and low
temperature heat source, respectively. Note that TH = 1/ (8πMH) should be higher than TL =

1/ (8πML), thus the high temperature black hole has smaller mass than the low temperature one,
namely, MH < ML. The working substance reciprocates between the two black holes and exchanges
heat as well as output work, and we ignore the influence of gravity on the cycle process in the following
discussion. After the heat engine absorbs heat from the high temperature black hole, the mass of
the high temperature black hole decreases, i.e., MH ↓ and then its temperature rises, namely TH ↑;
and when the heat is released to the low-temperature black hole, the massMC ↑ and the temperature
TL ↓ consequently. This is exactly the opposite of what we discussed for the positive heat capacity bath.
Thus, the condition that the heat engine stops working is no longer the temperature convergence of the
two heat sources (TL (tf) = TH (tf) ≡ TE), but the high temperature heat source, i.e., the smaller black
hole, is exhausted, namely, MH (tf) = 0. As a result, the efficiency of the heat engine work between
these two black holes follows

η = 1− ML (tf)−ML

MH
. (45)

Here we have assumed that, apart from exchanging heat, the black holes and heat engine have
no other energy exchange channels. We still consider the reversible cycle for convenient, and the the
reversible condition of Equation (10) now becomes

∫ 0

M(0)
H

dMH

1/ (8πMH)
+
∫ ML(tf)

M(0)
L

dML

1/ (8πML)
= 0, (46)

where M(0)
H and M(0)

L are the initial mass of these two black holes. Then we obtain(
M(0)

H

)2
+
(

M(0)
L

)2
= M2

L (tf) . (47)

This result has been obtained in a recent work [70], where the black hole and corresponding
radiation are considered as the heat reservoir. In addition, Equation (47)can also be derived with the
conservation of black hole area entropy with no information loss [70–74] as

∑
α=H,C

SBH

(
M(0)

α

)
= ∑

α=H,C
SBH [Mα (tf)] (48)

with SBH (M) = 4πM2 being the Beckenstein-Hawking Entropy. Combining Equations (45) and (47),
the EMW of this case reads

ηMW = 1−

√
(1− ηC)

2 + 1− 1

1− ηC
(49)

where

ηC = 1−
T(0)

L

T(0)
H

= 1−
M(0)

H

M(0)
L

. (50)
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is the Carnot efficiency defined by the initial mass of the two black holes. Note that

ηMW =
2− ηC −

√
(1− ηC)

2 + 1

1− ηC

= ηC +
(1− ηC)

2 + 1−
√
(1− ηC)

2 + 1

1− ηC

≥ ηC (51)

which implies that the ηMW of the heat engine can surpass the initial Carnot efficiency due to the
unusual nature of negative heat capacity of black hole. ηMW as the function of ηC is plotted in Figure 6,
where ηMW can be found to be obviously higher than ηC. We should emphasize here that this result
does not violate the second law of thermodynamics, since the temperature of the two black holes
are not constant, but has an increasing temperature difference as the heat engine works. Such that,
the efficiency of the cycle, which is a monotonically increasing function of the temperature difference
of the sources, will also increase as time goes by. Moreover, compared with the result relates to positive
heat capacity sources in Equations (12) and (17), the EMW of Equation (49) only rely on the initial
Carnot efficiency, i.e., ηC, without relying on other parameters. Since ηC only depends on the initial
mass of the two black holes, as shown by Equation (50), we can regard this result as the embodiment
of the No-hair theorem [69], which states that the features of black holes are uniquely determined by
only a few parameters of the black holes, namely, mass, charge, and angular momentum, in efficiency
for heat engines operating between black holes.

0 0.2 0.4 0.6 0.8 1

C

0

0.2

0.4

0.6

0.8

1

Figure 6. Efficiency at maximum work ηMW of a heat engine working between two Schwarzschild
black holes.

When the initial mass of the two black holes are the same, i.e., M(0)
H = M(0)

L and ηC = 0, the heat
engine can be driven with some energy fluctuation near the horizon of the black hole due to the
Hawing radiation process [75,76]: due to energy fluctuations, black holes of the same mass may
have a slight temperature difference, and the heat engine is then driven. As we mentioned before,
the temperature difference between black holes will be amplified as the heat engine works. In such
circumstance, one has

lim
ηC→0

ηMW = 2−
√

2. (52)

The above limit is represented by the black dashed line in Figure 6. We note that there are studies
that have linked black holes to heat engines [77–79]. However, to our best knowledge, these works
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mainly consider the black holes as the working substance rather than heat sources, and do not consider
the finite-size effect.

Besides the black hole, the negative heat capacity also been observed in some Cluster of atom
system with phase transition [80–82]. The discussion in this section can be extends to these systems,
we hope to use these novel materials to achieve high energy conversion efficiency in the near future.

5. Conclusions and Discussion

In summary, we studied the efficiency of a heat engine working between two finite-size heat
sources in both quasi-static and finite-time cases. The effect of the heat capacity of the finite-size
heat source on the engine’s efficiency was clarified. When the engine operates in quasi-static cycles,
with the assumption that the source’s capacity follows the Debye’s law, we obtained the corresponding
efficiency at maximum work (EMW) in the high and low temperature regime, as given by Equation (12)
and Equation (17), respectively. We also found some bounds for such EMW in different circumstances
(Equation (13) of high temperature regime and Equations (19) and (20) for low temperature). We proved
that, in the low temperature case, with the limit of ηC → 1, the lower bound of ηEMW only determined
by the heat source’s dimension, i.e., lim

ηC→1
ηMW (ξ → 0) = (n + 1)−1. Particularly, for the 1-dimensional

sources, the upper and lower bound are obtained as ηU = ηC(2− ηC)
−1 and ηL = ηC/2, respectively.

We noted that some results of Section 2, for example Equation (22), have been reported in Ref. [55].
However, Ref. [55] uses the energy-entropy relation, while our consideration it based on the perspective
of heat capacity. Moreover, to our best knowledge, the universality for EMW, namely, ηC/4 + O

(
η2

C
)

was first given in this paper.
For the heat engine working within finite time, we modeled the engine as a low-dissipation

Carnot-like engine and studied the efficiency with the output power of each cycle is maximized.
A series of bounds for the efficiency are obtained in Equations (38)–(41) and plotted in Figure 5, where
the overall upper bound is achieved with ξ → ∞, γ→ 1, namely, the heat capacity of cold source is
much lager than that of the hot one while the dissipation between the cold source and the heat engine
approaches vanish. An universality was found for all these bounds obtained with finite-size sources
and finite-time as η = ηC/4 +O

(
η2

C
)
, where the coefficient of ηC’s first order is half of that of the EMP

and EMW. Unlike the optimization in Refs. [52,53], where the efficiency at maximum time-average
power of the whole process is studied, in this work, we focus on how efficient the engine can be when
the power of each cycle is maximized.

Although we have discussed the effect of asymmetry in the size of the hot and cold sources on
the efficiency, the results are obtained for the heat capacity function rely on temperature of the sources
share the same form. Considering that the heat capacity of the high and low temperature sources
have different temperature dependence, such as cold source’s heat capacity varies with temperature
following the power law while the capacity of the hot source heat capacity remains constant, etc.,
is a potential direction for the optimization of the heat engine’s performance. In addition, the effect
of phase transition (PT) is also worth exploring in future study, as the heat capacity of sources with
PT may have completely different characteristics in different phases due to temperature changes.
Note that, recently, PT of the working substance has been found to be beneficial to the heat engines’
performance [22,83,84].

In the last part of this paper, we studied an unusual case where the sources have negative heat
capacity. Using black holes as a demonstration, we obtain the EMW for a heat engine working between
two Schwarzschild black holes as shown in Equation (6). The EMW is found always higher than the
initial Carnot efficiency defined by the initial mass of the two black holes. However, we emphasize
that this does not violate the second law of thermodynamics, since the temperature of the two black
hole are not constant but has an increasing temperature difference as the heat engine operates due
to the negative heat capacity of the sources. In addition, even when the initial mass of the two black
holes are the same, the heat engine can be driven with some energy fluctuation between the working
substance and one of the black hole from the Hawing radiation process. In this situation, the EMW is
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proved to be ηMW = 2−
√

2. We note that the output-work in such situation is also studied in Ref. [70].
However, our work mainly focus on the EMW of the thermodynamic process, and emphasizes that for
negative heat capacity systems such as black holes, EMW can exceed the Carnot efficiency determined
by the initial heat source temperature, which have not been reported before.

In this paper, we only studied the quasi-static heat engines working between the Schwarzschild
black holes, and the black holes only exchange heat with the working substance without external
energy transfer. Considering the finite-time effect, the non-negligible energy loss due to the Hawking
radiation, the cases with other types of black holes, and the gravitational effect on the efficiency of
the heat engine will be a series of interesting and challenging tasks, which will be investigated in our
further studies. Moreover, since there have been some experimental reports on negative heat capacity
materials [80–82], it is feasible to take use of these materials as heat sources providing energy for the
heat engines to test our predictions.

Funding: This work is supported by the National Basic Research Program of China (Grant No. 2016YFA0301201),
the NSFC (Grant No. 11534002), and the NSAF (Grant No. U1930403 & No. U1930402).

Acknowledgments: I thank Hong Yuan (Graduate School of China Academy of Engineering Physics) for helpful
discussion and Yun-He Zhao (Capital Normal University High School) for carefully proofreading of this paper.
I am grateful to the anonymous referees for helpful comments and suggestions on the manuscript. I would like to
thank Y. Pomeau (Ecole Normale Superieure) for reminding me of the origin of Curzon-Ahlborn efficiency and
introducing the pioneer work of J. Yvon [34] on maximum power efficiency to me. The Curzon-Ahlborn efficiency,
one of the most important result in finite-time thermodynamics, was successively obtained by H. B. Reitlinger
in 1929 ([85]), J. Yvon in 1955 [34], and then been re-discovered by P. Chambadal in 1957 [86], I. I. Novikov in
1958 [35] and Curzon and Ahlborn in 1975 [36]. Detailed story of the history about Curzon-Ahlborn efficiency can
be found in two recent review articles [87,88].

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Optimization of Low-Dissipation Carnot-Like Engine

In this Appendix, we briefly show the optimization of the low-dissipation Carnot-like engine
introduced in Section 3, we follow the same optimization method in Ref. [41]. For such engine working
in the i-th Carnot-like cycle, the heat transfer in the two finite-time isothermal processes read

Q(i)
H = T(i)

H S(i)
re −

Γ
(i)
H

τ
(i)
H

, (A1)

and

Q(i)
L = T(i)

L S(i)
re +

Γ
(i)
L

τ
(i)
L

, (A2)

where, T(i)
H (T(i)

L ) is the temperature of the high (low) temperature heat source, S(i)
re is reversible entropy

change, Γ
(i)
α depends on the dissipative nature of the working substance when contacting with the

heat source and τ
(i)
α is the corresponding operation time. Thus, the efficiency and power of the engine

for the i-th cycle follows

η(i) =
Q(i)

H −Q(i)
L

Q(i)
H

=

(
T(i)

H − T(i)
L

)
S(i)

re −
Γ
(i)
H

τ
(i)
H

− Γ
(i)
L

τ
(i)
L

T(i)
H S(i)

re −
Γ
(i)
H

τ
(i)
H

, (A3)

and

P(i) =
∆Q(i)

H − ∆Q(i)
L

τ
(i)
H + τ

(i)
L

=

(
T(i)

H − T(i)
L

)
∆S(i)

re −
Γ
(i)
H

τ
(i)
H

− Γ
(i)
L

τ
(i)
L

τ
(i)
H + τ

(i)
L

(A4)
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Here the operation time in the two adiabatic processes are ignored [41]. The maximum power of
each cycle is obtained by setting the derivatives of P(i) = P(i)

(
τ
(i)
H , τ

(i)
L

)
with respect to τ

(i)
H and τ

(i)
L

equal to zero. Thus we find the corresponding times for the engine working at maximum power as

τ
(i)
H = 2

Γ
(i)
H(

T(i)
H − T(i)

L

)
S(i)

re

1 +

√√√√Γ
(i)
L

Γ
(i)
H

 (A5)

and

τ
(i)
L = τ

(i)
H

√√√√Γ
(i)
L

Γ
(i)
H

(A6)

Substituting Equations (A5) and (A6) into Equation (A3), the efficiency at maximum power is
obtained as

η
(i)
MP =

η
(i)
C

2− γ(i)η
(i)
C

, (A7)

where

γ(i) =

(
1 +

√
Γ
(i)
L /Γ

(i)
H

)−1
(A8)

and η
(i)
C = 1− T(i)

L /T(i)
H is the Carnot efficiency determined by the temperature of the sources in the

i-th cycle

Appendix B. Bounds for Efficiency in Finite Time in the Limit of ξ → 0

In this Appendix, we derive the upper and lower bounds for efficiency of heat engine working
between finite-size source within finite time in the limit of ξ → 0. In this case, the size of the cold
source is much smaller than that of the hot one, thus T(i)

H = T(0)
H and T(N)

L = T(0)
H at t = tf. In the limit

of γ→ 1, the efficiency of Equation (30) becomes

η =

∑N
i=1

η
(i)
C

2−η
(i)
C

Q(i)
H

∑N
i=1 Q(i)

H

. (A9)

Note that in this limit, Equations (A5) and (A6) respectively reduce to τ
(i)
H = 2Γ

(i)
H /(T(i)

H η
(i)
C S(i)

re )

and τ
(i)
L = 0, substituting which into Equation (A1) and Equation (A2), we find the relation between

heat transfer and reversible entropy change as

∆Q(i)
H = T(i)

H S(i)
re

(
1−

η
(i)
C
2

)
. (A10)

= T(0)
H S(i)

re

(
1−

η
(i)
C
2

)
. (A11)

and
∆Q(i)

L = T(i)
L S(i)

re . (A12)
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Using Equations (A11) and (A12), and replace the sum by integral with N � 1, Equation (A9) is
simplified as

η =

∫ tf
0

ηC(t)
2−ηC(t)

[
1− ηC(t)

2

]
T(0)

H Ṡredt∫ tf
0

[
1− ηC(t)

2

]
T(0)

H Ṡredt
(A13)

=

∫ tf
0 ηC(t)Ṡredt∫ tf

0 [2− ηC(t)] Ṡredt
(A14)

=

∫ T(0)
H

T(0)
L

ηC(t)
(

CLdTL
TL

)
∫ T(0)

H

T(0)
L

[2− ηC(t)]
(

CLdTL
TL

) (A15)

=

∫ T(0)
H

T(0)
L

(
T(0)

H
TL
− 1
)

dTL∫ T(0)
H

T(0)
L

(
T(0)

H
TL

+ 1
)

dTL

(A16)

By straightforward calculation, we have

ηFT
U (ξ → 0) = 1− 2ηC

ηC − ln (1− ηC)
, (A17)

which can be re-expressed with ηMW (ξ → 0) of Equation (13) as

ηFT
U (ξ → 0) =

ηEMW (ξ → 0)
2− ηEMW (ξ → 0)

(A18)

This is the upper bound for ξ → 0 we illustrated in Equation (40). On the other hand, for γ→ 0,
Equation (30) becomes,

η =

∫ tf
0

ηC(t)
2 T(0)

H Ṡredt∫ tf
0 T(0)

H Ṡredt
(A19)

=

∫ T(0)
H

T(0)
L

ηC(t)
2 T(0)

H

[
2−2ηC(t)
2−ηC(t)

] (
CLdTL

TL

)
∫ T(0)

H

T(0)
L

T(0)
H

[
2−2ηC(t)
2−ηC(t)

] (
CLdTL

TL

) (A20)

=

∫ T(0)
H

T(0)
L

T(0)
H −TL

T(0)
H +TL

dTL

2
∫ T(0)

H

T(0)
L

1
T(0)

H +TL
dTL

, (A21)

where we have used
∆Q(i)

H = T(i)
H ∆S(i)

re = T(0)
H ∆S(i)

re (A22)

and

∆Q(i)
L = T(i)

L ∆S(i)
re

(
2− η

(i)
C

2− 2η
(i)
C

)
, (A23)

in the limit of γ→ 0. Finish the integral of Equation (A21), we obtain

ηFT
L (ξ → 0) = 1 +

ηC

2
ln−1

(
1− ηC

2

)
, (A24)
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which is the lower bound ηFTof in the limit of ξ → 0 as illustrated in Equation (40).
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