
Research and Applications

Enhancing research informatics core user satisfaction

through agile practices

Andrew R. Post 1,2, Jared Luther1, J. Maxwell Loveless3, Melanie Ward3, and

Shirleen Hewitt1

1Research Informatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA, 2Department

of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA, and 3Research Administration, Huntsman Cancer Insti-

tute, University of Utah, Salt Lake City, Utah, USA

Corresponding Author: Andrew R. Post, MD, PhD, Department of Biomedical Informatics, University of Utah, 675 Arapeen

Dr, Suite 200, Salt Lake City, UT 84108, USA; andrew.post@hci.utah.edu

Received 10 June 2021; Revised 6 October 2021; Editorial Decision 1 November 2021; Accepted 18 November 2021

ABSTRACT

Objective: The Huntsman Cancer Institute Research Informatics Shared Resource (RISR), a software and data-

base development core facility, sought to address a lack of published operational best practices for research in-

formatics cores. It aimed to use those insights to enhance effectiveness after an increase in team size from 20 to

31 full-time equivalents coincided with a reduction in user satisfaction.

Materials and Methods: RISR migrated from a water-scrum-fall model of software development to agile soft-

ware development practices, which emphasize iteration and collaboration. RISR’s agile implementation empha-

sizes the product owner role, which is responsible for user engagement and may be particularly valuable in soft-

ware development that requires close engagement with users like in science.

Results: All RISR’s software development teams implemented agile practices in early 2020. All project teams

are led by a product owner who serves as the voice of the user on the development team. Annual user survey

scores for service quality and turnaround time recorded 9 months after implementation increased by 17% and

11%, respectively.

Discussion: RISR is illustrative of the increasing size of research informatics cores and the need to identify best

practices for maintaining high effectiveness. Agile practices may address concerns about the fit of software en-

gineering practices in science. The study had one time point after implementing agile practices and one site,

limiting its generalizability.

Conclusions: Agile software development may substantially increase a research informatics core facility’s effec-

tiveness and should be studied further as a potential best practice for how such cores are operated.

Key words: clinical research informatics, core facilities, software engineering, agile methodology, survey, quality improvement

VC The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 1

JAMIA Open, 4(4), 2021, 1–8

https://doi.org/10.1093/jamiaopen/ooab103

Research and Applications

https://orcid.org/0000-0003-1632-6403
https://academic.oup.com/
https://academic.oup.com/


Lay Summary

The Huntsman Cancer Institute Research Informatics Shared Resource (RISR), a software and database development core fa-

cility, sought to address a lack of published operational best practices for research informatics cores. It aimed to use those

insights to enhance effectiveness after a substantial increase in team size coincided with a reduction in user satisfaction as

measured by annual user surveys. We hypothesized that adopting agile software development practices, which have be-

come standard outside of science but have low adoption in science including biomedicine, may address the problem. RISR

implemented agile practices for its software and database development operations in 2020, and user surveys later that year

suggest that user satisfaction improved. The article describes the potential benefits of agile techniques for software and

database development in research informatics cores, RISR’s implementation of those practices, and the survey results. The

article discusses limitations and generalizability of the analysis, and it makes recommendations for implementing agile prac-

tices. This work may assist similar cores in optimizing their effectiveness, and it may help the informatics community de-

velop operational best practices for research informatics cores.

INTRODUCTION

Academic medical centers establish core facilities to centralize ex-

pertise, software, databases, and equipment for research labs to

share.1–4 Research informatics cores provide data management and

software development services, often as part of National Institutes

of Health (NIH)-supported cancer centers5 and clinical and transla-

tional science institutes.6 While these cores historically have opera-

tionalized and supported clinical research informatics tools and

methods,7,8 today these cores often have a broader scope encom-

passing data management across the translational spectrum.

While Huntsman Cancer Institute (HCI) has had a research in-

formatics core for more than 25 years, in general research informat-

ics cores are a recent phenomenon. As a result, the literature on how

to deliver high quality services is limited. We found literature on suc-

cess criteria for bioinformatics cores,9 which tend to focus on data

analysis not management; and governance and sustainability con-

cerns,10,11 which are important but only part of a core’s success.

This work aims to identify best practices for a research informatics

core’s software and database development and use those insights to

enhance our core’s effectiveness and efficiency.

BACKGROUND AND SIGNIFICANCE

Software engineering in science
The emergence of research informatics cores reflects the emergence

of computer programming as a scientific activity. However, adop-

tion of programming best practices from software engineering12 in

science is low, leading to sustainability problems, buggy code, insuf-

ficient documentation, and poor usability.13–15 These concerns im-

pact the quality of science, even for software used only by the

researchers who developed it.14,15 The concerns are likely even

greater when producing larger and more complex software applica-

tions intended for hundreds of users, as core facilities do.

Reasons for limited adoption of software engineering in science

include lack of familiarity with the software engineering field and a

perception that software engineering practices are a poor fit for sci-

ence.16–19 While traditional waterfall engineering models12 envision

collecting requirements for a software application entirely in ad-

vance of development, it is rare that investigators can fully envision

an application in advance because the processes being modeled are

complex and incompletely understood. In addition, until recently

most software engineering projects were developed by small groups

or individuals20 who might not have perceived the value of formal

software engineering methods that are employed in industry with

larger teams.17,18

Newer agile models of application development12,21 may better

align with science by prescribing an iterative development approach

that does not require software to be specified fully in advance. Evi-

dence suggests that agile approaches benefit a wide variety of organ-

izations, particularly those that operate dynamic environments like

in science.22 Agile approaches value interactions between team

members, keeping software in a working state throughout develop-

ment, collaborating with customers, and welcoming change. These

values are recognizable to most scientists. We believe that software

engineering practices like agile that strive to produce more user-

focused and reliable software may enable more accurate, rapid, and

reproduceable research results.

In agile application development, responsibility for communica-

tion between customers and software engineers lies in a role called

the product owner.22 Product owners translate users’ requirements,

needs, and feedback into a vision for the software that is reflected by

a prioritized list of development tasks called the backlog. They man-

age project scope, deadlines, and budget; negotiate tasks with the

software developers; and ensure that the resulting software provides

the greatest value for users based on current needs and available

resources. In addition, product owners arrange for frequent software

demonstrations to obtain user feedback, and they otherwise serve as

a proxy for the customer at software developer meetings. Scientific

software groups in academia may not sell software and thus not

have products in the typical sense, but they do have customers

whose needs must be met if their groups are to remain viable.

Increased awareness of these practices in science recently led to

the creation of societies that have formulated a research software en-

gineer (RSE) role,23,24 such as the US Research Software Engineer

Association (US-RSE)25 and similar organizations overseas.26 A RSE

differs from a software engineer in that career growth involves ac-

quiring scientific expertise on-the-job in addition to pure software

development expertise, including writing grants in some cases. A

similar role in bioinformatics, the bioinformatic engineer, was re-

cently proposed.18 RSEs are envisioned to stay in science their entire

careers due to specialized expertise they gain in high performance

computing, physics, and other domains that tend to be funded in the

US by the National Science Foundation; or bioinformatics funded by

the NIH. These scientific disciplines are tech adjacent in the sense

that programming has become an essential skill for their researchers.

Software engineering in research informatics cores
In biomedical science, despite the potential advantages of agile soft-

ware development, programming guidance in the literature focuses

on software engineering tools like version control, testing, and task

tracking, which are important but only scratch the surface of current

2 JAMIA Open, 2021, Vol. 4, No. 4



best practices.15,27,28 We found only passing reference to the prod-

uct owner concept in the biomedical literature.20 Database develop-

ment, which is common in research informatics cores, has a

different culture that has adopted few of the tools of modern soft-

ware engineering, even the basics like version control, though they

likely would have similar benefits.29

While there is no literature on adoption of software engineering

best practices by biomedical core facilities in general or research infor-

matics cores in particular, adoption is likely as low as in the rest of

biomedicine. Most cores are operated by scientists3 whose leadership

experience and training are in running labs not software engineering

groups.4 Also, until recently these cores were small like other scientific

programming teams. The infrastructure software and databases that

cores build have frequently changing requirements due to changing sci-

entific priorities and data management requirements from funding

agencies, academic departments, and faculty. As a result, cores would

likely benefit from far greater adoption of agile techniques.

In fact, the customer population of research informatics cores

suggests an even stronger need for the potential communication ben-

efits of agile techniques than elsewhere in science. The NIH-funded

investigators in medical, population health, and other disciplines

that these cores serve usually have no programming background.

Similarly, these cores’ software engineers typically have no

graduate-level medical or scientific research training.18,30 Software

engineers in a research informatics core, in our experience, tend to

have previous jobs outside of science and medicine, and their next

jobs are usually outside of science and medicine, making them dif-

ferent than the RSEs above. Scientific computing in research infor-

matics cores is like industry software development in these respects.

The different customer population and staff composition suggest

that research informatics cores are a special case in scientific com-

puting. Putting product owner responsibilities into a dedicated infor-

mation conduit role, rather than expecting technical staff to interact

with customers informally alongside their other responsibilities,

may increase the likelihood of strong customer relationships and

successful software development. In addition, the product owner

role may enable research informatics cores to provide leadership to

their institutions in creating the strong relationships between

researchers and technical disciplines that are needed to advance

modern biomedical science.

HCI Research Informatics Shared Resource
The Research Informatics Shared Resource (RISR)31 has built over

30 home-grown software applications and databases serving

researchers and cancer center research administrators. As shown in

Figure 1, RISR serves as the conduit for cancer center data for the

other HCI cores, which include bioinformatics, high-throughput se-

quencing,32 biostatistics, genetic counseling, the biorepository, and

more. RISR also serves data to the cancer center’s research program

members, other faculty conducting cancer-focused research, and

cancer center-wide initiatives. RISR’s database support spans the en-

tire translational spectrum. RISR is directed by a MD-PhD scientist

(ARP) with a substantial software development background. Its staff

are almost all software engineers and data analysts, most of whom

do not have graduate-level training in the biological sciences or med-

icine.

Historically, RISR software applications were built by individual

engineers, or in a few projects by teams with a technical lead,

according to the waterfall model. RISR adopted basic software engi-

neering tools like version control and electronic task tracking many

years ago. Some teams partially adopted agile processes including

frequent short status meetings called scrums, led by a senior scrum

master and agile coach (JL). Engineers shared responsibility for com-

municating with users, and they did so in an informal fashion that

varied in frequency and methods from project to project. This hy-

brid adoption of agile and traditional practices is common and

sometimes called the water-scrum-fall model.35 It was effective for

many years as indicated by annual user surveys measuring quality of

service and turnaround time.

However, in 2016–2017, RISR grew from 20 to 31 FTEs due to

the launch of a large new project that also pulled some existing staff

from other projects. Afterward, annual HCI user survey scores fell.

While decreases in user satisfaction may be partially explained by

slower progress on these other projects, anecdotal comments from

RISR users suggested that the increase in size may have interrupted

relationships that RISR had with its customers. We concluded that,

at a team size of 31, previous informal methods of interacting with

users were no longer effective, and RISR needed to be more system-

atic about how it engages its user community.

Objective
Starting in January 2020, RISR adopted agile practices more

completely. It retrained staff in agile approaches and mandated the

use of agile application development for all project teams. Small

projects developed by individuals were aggregated into related proj-

ect groups developed by teams. These teams implemented scrums,

dividing work into 3- to 4-week “sprints”; meetings for sprint plan-

ning; and meetings for continuously prioritizing (grooming) the

backlog. In addition, the core director appointed a product owner

for each team. We hypothesized that these agile practices may sub-

stantially enhance investigator satisfaction with a core’s services. Be-

low we describe RISR’s agile implementation in greater detail, and

we report RISR’s user survey scores from late 2020 that provide in-

sight into the implementation’s impact.

MATERIALS AND METHODS

RISR’s revised structure is illustrated in Figure 2. All personnel re-

port to the core director. The associate director of the core governs

product owner activities (on the left side of Figure 2) and is respon-

sible for developing overall product owner strategy. A chief software

architect governs software engineering activities (on the right side of

Figure 2); oversees software development strategy and processes;

and develops overall software architecture. An agile coach and

scrum master governs agile software development practices and runs

scrum meetings, sprint planning, and backlog grooming meetings.

In addition to governing product owner strategy, the associate

director provides aspects of traditional project management like co-

ordinating product roadmaps for communication with other RISR

teams and external stakeholders. However, in keeping with an itera-

tive agile approach, product roadmaps only make commitments for

the current and next quarters. Future work is captured in roadmaps

with high level descriptions and no committed timeline to avoid

overcommitting and knowing that stakeholders are likely to repri-

oritize and rethink future work as needs change.

Product owners collect customer and stakeholder input and com-

municate it to technical staff as user stories that describe the type of

user, the goal or objective, and the benefit or value. They record

user stories in the backlog (Figure 2), prioritize them, and review

them with the software developers. In addition, product owners vali-

JAMIA Open, 2021, Vol. 4, No. 4 3



date the software to ensure that it does what the user stories describe

prior to releasing it to users. As an extension to agile practices,

larger projects have “vision” meetings in which the core director

and RISR’s agile coach support the product owner in prioritizing

user stories.

To facilitate communication between product owners and devel-

opment teams, each team has a technical lead who is responsible for

implementing the customers’ vision for the software as articulated

by the product owner. Technical leads also coordinate with the

core’s chief software architect to ensure that the project’s code con-

forms to software development best practices.

RESULTS

In January 2020, the RISR director appointed 5 product owners

from existing staff. The agile coach provided training as described

above. In July, HCI appointed one of the product owners (SH) the

associate director (Figure 2). Also, in mid-2020, RISR hired a new

business analyst who serves as a product owner, and appointed a

product owner from existing staff, for a total of 6 product owners.

The product owners are all part-time in that role. Their other roles

include software engineer (1), data architect (1), software architect

(1), business data analyst (2), and scrum master (1). For the project

Figure 1. Pyramid on the left showing that RISR serves as a conduit of research data to the other cancer center shared resources, as well as the cancer center re-

search programs and disease centers (teams of clinician-researchers). Circle on the right illustrates the breadth of data managed by RISR. ORIEN, Oncology Re-

search Information Exchange Network.33,34

Director

Associate
Director

Lead Software 
Architect

Process for 
collecting

customer and
stakeholder 

input

Delivered
software

Software 
Development

Teams

Product backlog

Product Owners

Validation by
customers 

and
stakeholders

x 8

Figure 2. Structure of RISR. Product owners on the left, governed by the associate director, serve as a conduit for collecting customer and stakeholder input and

translating that input into a product backlog to guide the software development teams. The product owners also guide software validation by customers and

stakeholders, and they make decisions to release software. RISR currently has 6 product owners and 8 software development teams of various sizes.

4 JAMIA Open, 2021, Vol. 4, No. 4



in which RISR’s scrum master serves as product owner, the project’s

technical lead serves as scrum master.

RISR used HCI’s annual user survey of its shared resources to

evaluate the impact of RISR’s new structure in its first year. The sur-

vey is administered by the HCI Research Administration office and

is distributed through Survey Monkey to cancer center members and

recent users of at least one HCI shared resource. While the survey

asks many questions that applied to RISR, the questions that are the

focus of this analysis are listed in Table 1.

The user survey was open between September 11 and September

24. Thus, it provided feedback 9 months after RISR introduced agile

practices into its operations. A total of 17 respondents answered the

questions (Table 1) out of 52 identified RISR users (33% response

rate). For quality of service, 7 answered exceptional, and 8 answered

high, for a total of 88% who rated quality of service as high or ex-

ceptional. For turnaround time, 7 answered exceptional and 6 an-

swered high, for a total of 76% who rated turnaround time as high

or exceptional. The same questions were posed to users in the 2013–

2019 surveys, and trends for 2013–2020 are shown in Figure 3.

Compared to 2019, survey scores rose in 2020 by 17% for quality

and 11% for turnaround time. Response rate in 2019 was 58%.

Scores between 2017 and 2019 were all lower than the 2020 scores.

DISCUSSION

RISR (Figure 1) increased its adoption of agile software develop-

ment in early 2020 after an increase in FTE count co-occurred with

decreases in service and turnaround scores (Figure 3) in annual user

surveys. As part of this change, RISR implemented a product owner

team (Figure 2) under the rationale that the core’s growth necessi-

tated more systematic user engagement than in the past. While com-

mercial software engineering teams have included product owners

for years, we are unaware of other core facilities that have created a

product owner team. In addition, while many publications have ar-

ticulated the theoretical benefits of agile application development in

science,20,30,36,37 this is the first study we could find that has quanti-

fied the end-user experience benefits of adopting it.

In theory, agile application development increases the likelihood

that the right software is developed at the right time, resulting in

faster software development due to less “unnecessary” work taking

place. Agile is also designed to facilitate user engagement, which is

critical in science because software engineers often do not possess

deep biomedical science knowledge.18,30 While increasing speed of

development may increase user satisfaction, keeping users engaged

in software development progress may increase satisfaction indepen-

dently of speed. We believe that the most likely explanation for the

observed increase in user ratings of service and turnaround time is

the increase in user engagement via product owners. Measuring ve-

locity change in RISR’s software development teams is future work.

In addition, detailed measurement of user engagement may be a

fruitful future path for better understanding the impact of agile

approaches in science.

Other potential interpretations include increases in the number

and complexity of the projects that were conducted during the years

of lower survey scores, followed by a return to a smaller number of

projects of lower complexity. However, during 2020 the project that

was launched in 2016 was still ongoing, and many large projects were

launched including full rewrites of the front-end code of 17 of the

core’s software applications. If anything, the core’s workload was

higher in 2020 than it was when the survey scores dropped. Another

potential explanation is turnover of stakeholders and investigators

who were particularly critical of the core, but stakeholders of major

projects remained the same throughout the years analyzed. The survey

did not attempt to discern whether a low score from an investigator

might be due to a single bad experience shortly before getting the sur-

vey request versus consistently negative impressions over time.

RISR achieved these benefits within 9 months of introducing

product owners despite limitations in the implementation of its

product owner team. RISR’s product owner team lacks full-time

product owners, which is the norm in commercial teams. For a proj-

ect with many software engineers, collecting and managing user sto-

ries, creating and maintaining the product vision, and

communicating with users and software engineers is ideally a full-

time job. In addition, giving product owner roles to existing staff de-

creased software engineering capacity. As is typical in academia,

RISR staff often have multiple responsibilities, even with a staff size

of 31. Our results suggest that a successful product owner imple-

mentation is possible despite the resource constraints that are typical

in academia.

The survey data has multiple limitations. The survey was used

retrospectively rather than constructed for the needs of this study, it

included questions about HCI’s other shared resources, and it was

sent to a large group of investigators, not just those to whom RISR

provided support.

In addition, while the response rates are not unusual for this type

of survey, the absolute response counts were small. RISR’s overall

user count as measured by software logins or a clinical trial man-

aged by RISR’s software (142 cancer center members in 2019) was

substantially higher than the number of investigators who requested

Table 1. 2013–2020 shared resource user survey questions about the quality and turnaround time of services provided by RISR

Question Possible responses

Overall, how would you rate the quality of the service/product you received from

the Research Informatics Shared Resource?

• Exceptional
• High
• Average
• Poor
• Unacceptable

Overall, how would you rate the turnaround time for receiving data, products, or

other services from the Research Informatics Shared Resource?

• Exceptional
• High
• Average
• Poor
• Unacceptable

JAMIA Open, 2021, Vol. 4, No. 4 5



services (48 in 2018, 53 in 2019, and 52 in 2020). The latter was the

survey’s denominator for consistency with measurements from

HCI’s other shared resources. Higher response counts (Figure 3)

were associated with lower user satisfaction scores, suggesting that

researchers were more likely to make time for the survey when they

were unhappy with the service.

Run charts, like in Figure 3, are a common practice in healthcare

quality improvement to detect early signals of improvement after

process change.38,39 This work was an informatics quality improve-

ment activity, and the goal was to obtain an early signal of whether

agile practices had an effect. Unlike traditional analyses that aim to

determine statistical significance, the run chart preserves the time or-

der of the data, which is useful for decision-making on whether to

make a process change permanent. There are quantitative process

control methods for determining whether an improvement is non-

random. However, a minimum of four more years of survey data

would be necessary to detect a shift (data consistently above the

baseline median) or trend (data consistently increasing), and two

more years of data to detect a run (nonrandom crossings of the base-

line median line),39 which would provide useful information but not

as an early signal. Informal feedback from users since the 2020 sur-

vey indicates that there was indeed a noticeable improvement in ser-

vice, and the difference is also valuable for reporting on

performance for HCI’s Cancer Center Support Grant. Future sur-

veys might be helpful in determining whether the improvement is

nonrandom, but core facilities like RISR constantly adjust opera-

tions to improve service, thus introducing confounders.

Despite the limitations of the survey, we believe that these user

satisfaction improvements are likely to be repeatable by other core

facilities that adopt agile application development. In rapidly chang-

ing scientific fields, the waterfall model may lead to infrastructure

software that is outdated by the time that it is released. Increased

user engagement is especially likely to increase software quality in

scientific domains where the software engineering staff may lack do-

main knowledge that must be provided by users. These benefits are

likely to be greater the more products the core produces due to in-

creased likelihood that user communication might otherwise fall

through the cracks. As a result, agile software development may be

even more valuable to cores than it is to research laboratories.

Furthermore, based on RISR’s experience and the literature, agile

practices may have the most impact on larger cores that have multiper-

son teams. Because agile practices originated in the software engineer-

ing community,21 such cores have an opportunity to adopt agile

practices themselves, and then provide a service to their institutions in

agile coaching for other shared resources and research labs. Recom-

mendations for those that wish to adopt agile approaches include:

1. Understand that adopting agile is a multiyear process that

involves continuous refinement. Agile requires training, behav-

ioral change, and appropriate information technologies. The

water-scrum-fall model is frequently an intermediate step. At

RISR, the overall process had begun prior to 2020, and it contin-

ues to undergo refinement.

2. Hire expertise like a certified scrum master and agile coach,

which RISR did. The meeting volume associated with managing

the backlog, sprint planning, and scrums is substantial, and these

meetings must be efficient and effective to retain staff buy-in.

RISR plans to budget for an administrative assistant to manage

agile-related meeting schedules.

3. Allow product owners to focus at least 50% effort on product

owner duties. The nature of the other 50% of their duties can

vary depending upon expertise. For projects with 5 or more engi-

neers, product ownership is ideally a full-time job.

4. Empower teams to self-organize in estimating and assigning

work, while holding them accountable for results. Achieving this

may require a culture change in organizations that are used to

work being assigned in a command-and-control fashion.

5. Customize agile methods for your teams and consider complemen-

tary approaches that may be better suited to some aspects of the

teams’ work. Complementary approaches are particularly useful

when working with other organizational units that have traditional

project structures. For example, traditional project management

may be valuable in clarifying expectations and timelines when ask-

ing user groups to make time for training and application testing.

CONCLUSION

Data from one research informatics core suggest that introduction

of agile practices can measurably and positively impact user percep-

tions of quality and turnaround time. It is likely that an expanded

study will show that agile approaches have the most impact on

Figure 3. Service quality and turnaround user survey scores, 2013–2020. Number of respondents per year: 24 in 2013, 20 in 2014, 16 in 2015, 41 in 2016, 37 in

2017, 32 in 2018, 31 in 2019, and 17 in 2020.

6 JAMIA Open, 2021, Vol. 4, No. 4



larger informatics core facilities and cores that need to be more re-

sponsive to user needs. These findings may assist the leadership of

similar cores in optimizing their effectiveness. They also may pro-

vide guidance to the informatics community in developing opera-

tional best practices for research informatics cores.

FUNDING

Research reported in this publication utilized the Research Informat-

ics Shared Resource at Huntsman Cancer Institute at the University

of Utah and was supported by the National Cancer Institute of the

National Institutes of Health under Award Number P30CA042014.

The content is solely the responsibility of the authors and does not

necessarily represent the official views of the NIH.

AUTHOR CONTRIBUTIONS

ARP, SH, and JL implemented agile software engineering practices

at RISR. JML and MW led administration of the annual user sur-

veys and provided substantial input on their use in this manu-

script. ARP and SH analyzed the survey results. ARP drafted the

manuscript, and JL, JML, MW, and SH reviewed it and made

edits.

ACKNOWLEDGMENTS

The authors wish to thank Dr Holly Zullo for suggestions on use of

the annual user survey data and Dr Phuong-Anh Duong for thought-

ful suggestions on the manuscript.

CONFLICT OF INTEREST STATEMENT

None declared.

DATA AVAILABILITY

The data underlying this article are available in the Dryad Digital

Repository, at https://doi.org/10.5061/dryad.00000004v.

REFERENCES

1. De Paoli P. Institutional shared resources and translational cancer re-

search. J Transl Med 2009; 7: 54.

2. Lewitter F, Rebhan M, Richter B, Sexton D. The need for centralization of

computational biology resources. PLoS Comput Biol 2009; 5 (6):

e1000372.

3. Brown CM. Careers in core facility management. Cold Spring Harb Per-

spect Biol 2018; 10 (8): a032805.

4. Farber GK, Weiss L. Core facilities: maximizing the return on investment.

Sci Transl Med 2011; 3 (95): 95cm21.

5. Institute of Medicine. Informatics Needs and Challenges in Cancer Re-

search: Workshop Summary. Washington, DC: The National Academies

Press; 2012: 146.

6. Rosenblum D. Access to core facilities and other research resources pro-

vided by the Clinical and Translational Science Awards. Clin Transl Sci

2012; 5 (1): 78–82.

7. Bakken S. The maturation of clinical research informatics as a subdo-

main of biomedical informatics. J Am Med Inform Assoc 2021; 28 (1):

1–2.

8. Embi PJ, Payne PR. Clinical research informatics: challenges, opportuni-

ties and definition for an emerging domain. J Am Med Inform Assoc 2009;

16 (3): 316–27.

9. Lewitter F, Rebhan M. Establishing a successful bioinformatics core facil-

ity team. PLoS Comput Biol 2009; 5 (6): e1000368.

10. Obeid JS, Tarczy-Hornoch P, Harris PA, et al. Sustainability considera-

tions for clinical and translational research informatics infrastructure. J

Clin Transl Sci 2018; 2 (5): 267–75.

11. Sanchez-Pinto LN, Mosa ASM, Fultz-Hollis K, Tachinardi U, Barnett

WK, Embi PJ. The emerging role of the chief research informatics officer

in academic health centers. Appl Clin Inform 2017; 8 (3): 845–53.

12. Pressman RS, Maxim BR. Software Engineering: A Practitioner’s Ap-

proach. 8th ed. New York: McGraw-Hill Education; 2015.

13. Merali Z. Computational science: . . .error. Nature 2010; 467 (7317):

775–7.

14. Brito JJ, Li J, Moore JH, et al. Recommendations to enhance rigor and re-

producibility in biomedical research. Gigascience 2020; 9 (6): giaa056.

15. Silva LB, Jimenez RC, Blomberg N, Luis Oliveira J. General guidelines for

biomedical software development. F1000Res 2017; 6: 273.

16. Segal J. Some problems of professional end user developers. In: IEEE Sym-

posium on Visual Languages and Human-Centric Computing (VL/HCC

2007); New York: IEEE; 23–27 September, 2007.

17. Hannay JE, MacLeod C, Singer J, Langtangen HP, Pfahl D, Wilson G, edi-

tors. How do scientists develop and use scientific software? In: 2009 ICSE

Workshop on Software Engineering for Computational Science and Engi-

neering; New York: IEEE; 23–23 May, 2009.

18. Lawlor B, Walsh P. Engineering bioinformatics: building reliability, per-

formance and productivity into bioinformatics software. Bioengineered

2015; 6 (4): 193–203.

19. Baxter SM, Day SW, Fetrow JS, Reisinger SJ. Scientific software

development is not an oxymoron. PLoS Comput Biol 2006; 2 (9):

e87.

20. Kane DW, Hohman MM, Cerami EG, McCormick MW, Kuhlmman KF,

Byrd JA. Agile methods in biomedical software development: a multi-site

experience report. BMC Bioinformatics 2006; 7: 273.

21. Beck K, Beedle M, van Bennekum A, et al. Manifesto for agile software de-

velopment 2001 [cited 2021 Jun 8]. http://agilemanifesto.org/.

22. Rigby K, Sutherland J, Takeuchi H. Embracing agile. Harv Bus Rev 2016;

40 (8): 50.

23. Katz DS, McHenry K, Reinking C, Haines R, editors. Research software

development & management in universities: case studies from Manches-

ter’s RSDS Group, Illinois’ NCSA, and Notre Dame’s CRC. In: 2019

IEEE/ACM 14th International Workshop on Software Engineering for

Science (SE4Science); New York: IEEE; 28 May, 2019.

24. Stadler K, Lonka R, Bouman E, Majeou-Bettez G, Stromman AH. The In-

dustrial Ecology Digital Laboratory. Luxembourg: Zenodo; 2017.

25. US-RSE – The US Research Software Engineer Association 2021, cited 29

September 2021. https://us-rse.org/.

26. Research Software Engineers International 2021, cited 29 September

2021. https://researchsoftware.org/.

27. Woods NT, Jhuraney A, Monteiro AN. Incorporating computational

resources in a cancer research program. Hum Genet 2015; 134 (5):

467–78.

28. Osborne JM, Bernabeu MO, Bruna M, et al. Ten simple rules for effective

computational research. PLoS Comput Biol 2014; 10 (3): e1003506.

29. Harriman A, Hodgetts P, Leo M, editors. Emergent database design: liber-

ating database development with agile practices. In: Agile Development

Conference; New York: IEEE; 22–26 June 2004.

30. Segal J. Models of scientific software development. In: SECSE 08, First In-

ternational Workshop on Software Engineering in Computational Science

and Engineering; New York: Association for Computing Machinery;

2008; Leipzig, Germany.

31. Research Informatics – Huntsman Cancer Institute j University of Utah

2021, updated 2021; cited 7 May 2021. https://risr.hci.utah.edu.

32. Nix DA, Di Sera TL, Dalley BK, et al. Next generation tools for genomic

data generation, distribution, and visualization. BMC Bioinformatics

2010; 11: 455.

33. M2Gen. ORIEN 2021, cited 7 May 2021. https://www.oriencancer.org/.

34. Schmidt C. Cancer: reshaping the cancer clinic. Nature 2015; 527 (7576):

S10–1.

JAMIA Open, 2021, Vol. 4, No. 4 7

https://doi.org/10.5061/dryad.00000004v
http://agilemanifesto.org/
https://us-rse.org/
https://researchsoftware.org/
https://risr.hci.utah.edu
https://www.oriencancer.org/


35. West D, Gilpin M, Grant T, Anderson A. Water-scrum-fall is the reality of

agile for most organizations today 2011, cited 16 May 2021. http://www.

storycology.com/uploads/1/1/4/9/11495720/water-scrum-fall.pdf.

36. Leppla L, Hobelsberger S, Rockstein D, et al. Implementation science

meets software development to create eHealth components for an inte-

grated care model for allogeneic stem cell transplantation facilitated by

eHealth: the SMILe study as an example. J Nurs Scholarsh 2021; 53 (1):

35–45.

37. Kane D. Introducing agile development into bioinformatics: an experience

report. In: Proceedings of the Agile Development Conference, 2003 (ADC

2003); New York: IEEE; 28 June 2003.

38. McQuillan RF, Silver SA, Harel Z, et al. How to measure and interpret

quality improvement data. Clin J Am Soc Nephrol 2016; 11 (5): 908–14.

39. Perla RJ, Provost LP, Murray SK. The run chart: a simple analytical tool

for learning from variation in healthcare processes. BMJ Qual Saf 2011;

20 (1): 46–51.

8 JAMIA Open, 2021, Vol. 4, No. 4

http://www.storycology.com/uploads/1/1/4/9/11495720/water-scrum-fall.pdf
http://www.storycology.com/uploads/1/1/4/9/11495720/water-scrum-fall.pdf



