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Abstract
Francisella tularensis is composed of a number of subspecies with varied geographic distri-

bution, host ranges, and virulence. In view of these marked differences, comparative func-

tional genomics may elucidate some of the molecular mechanism(s) behind these

differences. In this study a shared probe microarray was designed that could be used to

compare the transcriptomes of Francisella tularensis subsp. tularensis Schu S4 (Ftt), Franci-
sella tularensis subsp. holarcticaOR960246 (Fth), Francisella tularensis subsp. holarctica
LVS (LVS), and Francisella novicida U112 (Fn). To gain insight into expression differences

that may be related to the differences in virulence of these subspecies, transcriptomes were

measured from each strain grown in vitro under identical conditions, utilizing a shared probe

microarray. The human avirulent Fn strain exhibited high levels of transcription of genes

involved in general metabolism, which are pseudogenes in the human virulent Ftt and Fth

strains, consistent with the process of genome decay in the virulent strains. Genes encod-

ing an efflux system (emrA2 cluster of genes), siderophore (fsl operon), acid phosphatase,

LPS synthesis, polyamine synthesis, and citrulline ureidase were all highly expressed in Ftt

when compared to Fn, suggesting that some of these may contribute to the relative high vir-

ulence of Ftt. Genes expressed at a higher level in Ftt when compared to the relatively less

virulent Fth included genes encoding isochorismatases, cholylglycine hydrolase, polyamine

synthesis, citrulline ureidase, Type IV pilus subunit, and the Francisella Pathogenicity Island

protein PdpD. Fth and LVS had very few expression differences, consistent with the deriva-

tion of LVS from Fth. This study demonstrated that a shared probe microarray designed to

detect transcripts in multiple species/subspecies of Francisella enabled comparative tran-

scriptional analyses that may highlight critical differences that underlie the relative patho-

genesis of these strains for humans. This strategy could be extended to other closely-

related bacterial species for inter-strain and inter-species analyses.
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Introduction
Francisella tularensis is a highly virulent Gram negative bacterium. A pulmonary exposure to
as few as 20 bacteria is believed to cause a fatal human disease [1]. Tularemia, the disease
caused by F. tularensis, can present with different clinical symptoms depending on the route of
entry into the human host. Ulcero-glandular tularemia is responsible for most of the natural
cases of F. tularensis infection, but other clinical forms include occulo-glandular, gastrointesti-
nal, and pulmonary tularemia. All forms can progress to a systemic infection that includes
severe prostration, multi-system organ failure, and in some cases death. The threat of bioter-
rorism has sparked resurgence in research on this pathogen, in order to develop novel therapies
and effective vaccine strategies [2, 3].

F. tularensis is classified further into several sub-species, including F. tularensis subsp. tular-
ensis (Ftt), F. tularensis subsp. holarctica (Fth), and F. tularensis subsp.mediasiatica (Ftm). The
bacterium F. novicida is alternately classified as a separate species, F. novicida (Fn) or as a Ft
subspecies F.tularensis subsp. novicida (Ftn) [4]. While genomic relatedness might indicate that
novicida should be classified as a Ft subspecies, arguments have been made to maintain these
bacteria as a separate species, and we will utilize this separate species nomenclature here (Fn)
[5]. An older classification system divided F. tularensis into highly virulent Type A strains,
which now broadly corresponds to Ftt, and less virulent Type B strains, which correspond to
Fth [6–8]. A live vaccine strain (LVS) was derived from Fth in the Soviet Union by repeated
passage, and has been used to vaccinate humans. This strain is attenuated for virulence in
humans but still can cause a lethal disease in mice. Ftm causes a mild disease and is geographi-
cally restricted to parts of Asia. Fn is considered non-pathogenic for healthy humans, but can
cause a fatal disease in mice.

F. tularensis is known to infect a variety of cells such as macrophages, hepatic cells, endothe-
lial cells, HeLa cells, mouse fibroblasts, and even amoebae [1, 9]. Its ability to infect and repli-
cate in macrophages is critical for disease. The Francisella pathogenicity island (FPI), a cluster
of genes that are essential for phagosome escape, intramacrophage replication, and virulence,
encodes a Type VI secretion system [10–12]. There are two copies of the FPI in the Ftt and Fth
strains, but only one copy in Fn. The FPI is virtually identical in the various F. tularensis
strains, with the exception of the pdpD gene, which contains a deletion in Fth and a truncation
in Ftt when compared to Fn pdpD [10]. The DNA binding protein PigR/FevR interacts with
RNA polymerase complexed with the regulatory proteins MglA and SspA to activate transcrip-
tion of the FPI genes[13–16]. Comprehensive transposon mutagenesis has identified additional
genes that contribute to intra-macrophage survival, including genes involved in LPS O-antigen,
capsule, siderophore, biotin, and DNA synthesis [17–23].

The first full genome annotation of F. tularensis to be published was that of the Ftt strain
Schu S4 [24]. The genome is interspersed with multiple insertion sequences. The majority of
insertion sequences, isftu1, belong to the IS630 Tc-1 Mariner class of transposases, while a
smaller subset, isftu2, belong to the IS5 class. 30 percent of the annotated genes are hypothetical
proteins, and a large number of these are unique to F. tularensis. 10 percent of coding
sequences are predicted to be pseudogenes. The genome sequence of Ftt strain FSC198 differs
from strain Schu S4 by only a few SNPs [25]. The genome sequence of Ftt strain WY96-3418 is
also almost identical to Schu S4, but in contrast to FSC198, there is a marked difference in
genomic organization [26]. These differences led to the division of Ftt strains into two clades:
Type AI, which includes strains similar to strain Schu S4, and Type AII, which include strains
similar to WY96-3418.

The genomes of Fth strains OSU18 [27], and FSC200 [28], differ by only a few SNPs. Fth
shares extensive DNA sequence identity with Ftt, but shows a striking amount of genomic
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rearrangement in comparison with Ftt. Comparison of the genome of the Fth LVS strain with
other Fth strains revealed 35 genes that have mutations predicted to alter protein sequence in
LVS; some of these, including deletions in the genes encoding a Type IV pilus subunit (pilA)
and an outermembrane protein (FTT0918), are likely the cause of virulence attenuation in this
strain [28, 29]

The genome sequence of Fn strain U112 has given further insight into the evolution of F.
tularensis [30]. It is clear that Fn, despite having ~98% identity at the nucleotide level with the
more human virulent Ftt and Fth strains, contains only a fraction of pseudogenes compared to
the other strains and has therefore more functional genes. It is hypothesized that the human
pathogenic Ftt and Fth lineage emerged from a common ancestor with human non-pathogenic
Fn, and during evolution, gene decay caused by IS transpositions and nucleotide substitutions
led to increased pathoadaptation specific to human virulence in the Ftt and Fth strains [30].

In spite of the availability of large amounts of comparative genomics data, a comparative
transcriptomics analysis for F. tularensis has not been published. The current study was
designed to identify transcription differences that might contribute to differences between the
virulence of the F. tularensis subspecies. The results discussed below give a summary of these
findings.

Methods

Bacteria
Ftt strain Schu S4, Fth strains OR960246 and LVS, and Fn strain U112 were grown in Cham-
berlain’s medium [31] to an optical density of 0.6. The Fth strain OR960246 was obtained from
the Centers for Disease Control; its genome was sequenced by Baylor Center for Bioinformatics
and Computational Biology (https://wiki.umiacs.umd.edu/cbcb/index.php/Francisella_
tularensis_holarctica_OR960246). OR960246 is the Fth strain we maintain in our laboratory
and thus was chosen for analysis in the present study.

Design of the Shared Probeset Microarray
Fig 1 gives a simplified illustration of the design of the shared probe Nimble Express Affymetrix
microarray. The four genome sequences used initially for the design of the microarray were Ftt
strain Schu S4, Fth strains LVS and OSU18, and Fn strain U112 (AJ749949, AM233362,
CP000439, and CP000437 respectively). Genome sequences of the four strains were formatted
into strain specific raw sequence databases using “formatdb” of the NCBI tool box, and then
aligned using megablast with the expectation value set to 1 x 10−4. Custom scripts were written
to parse the output files to give alignment of genome sequences of the four strains. In places
where more than one region of a target sequence could be aligned to an input sequence, the
alignment that allowed the least amount of breaks in the raw sequences was selected.

Regions with a length of 25 nucleotides on both strands of the whole genome alignment
were chosen for probe selection using custom scripts. If a dissimilar nucleotide was encoun-
tered in the alignment, a probe was not designed across the region of dissimilarity. By this
methodology, consensus probes were designed throughout the length of all the four genomes.
Every effort was made to design single shared probes for all the four strains; however if a single
shared probe could not be designed that matched all four strains, then probes were designed
that were shared for the maximum number of strains in the alignment, and strain-specific
non-consensus probes were designed for the differing strains. Unique probes of 25 nucleotides
were designed for the unique regions of each strain. This strategy resulted in complete coverage
of the entire genome of all four strains, with a maximum gap in probe coverage of 10 nucleo-
tides in the initial stage of design. The probe selection regions were extended up to a maximum
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of five nucleotides in either direction in some cases to allow for a selection of probes of better
quality.

Next, due to the maximum probe set limit of the Nimble Express Affymetrix platform, steps
were taken to reduce the number of probe sets that would need to be tiled on the microarray.
In order to use similar annotation parameters for all four strains, Glimmer 2.0 was used to pre-
dict open reading frames (ORF) using default settings [32]. All ORFs with> 99% identity in all
four strains and which had no paralogs in any of the strains were selected for “traditional”
probe sets (11 probe pairs per gene: 11 match probes and 11 mis-match probes); 994 ORFs met
these criteria. The “tiled” probe sets corresponding to insertion elements with a high copy
number (isftu1 and isftu2) were removed and replaced by a single “traditional” probe set for
isftu1; isftu2 was not included due to inability of the Affymetrix design pipeline to design a reli-
able probe set. The rest of the probes representing the remaining portions of the genomes were
designed as single probe pair “tiled probe sets”. Seven additional sequences from plasmid
pFNLTP, pFNLTP6_orf3, pFNLTP6_repA, pFNLTP6_orf2, pFNLTP6_kanR,
pFNLTP6_ampR, and GFP, were selected for “traditional” probe sets. The sequences of the
probe selection regions were subjected to hard pruning and soft pruning by the Affymetrix
design team, to minimize cross-hybridization with host (human, mouse and rat) contaminant
RNA.

The virulent Fth strain OR960246 was used for expression analysis. To maintain the
shared probe set nature of the microarray, the draft genome sequence of OR960246 (Dr.
Joseph Petrosino, Baylor College of Medicine; https://wiki.umiacs.umd.edu/cbcb/index.php/
Francisella_tularensis_holarctica_OR960246) was used to identify the probes affected by
subtle differences between OSU18 and OR960246, which were only a few single nucleotide
polymorphisms (SNPs) and indels. The probes that were affected by these differences were
corrected. Accession numbers of the orthologs from OSU18 are used to describe the corre-
sponding ORFs of OR960246.

Fig 1. Design Summary of Multi Strain Shared Probe Sets. An example of howmultiple shared probe sets
were created in regions of ambiguity where a full length open reading frame (ORF) is present in one strain
and the homologous ORF in the other strains is broken into fragments. In the hypothetical example shown,
ORF1 is an ORF that is intact in FnU112 and Ftt Schu S4, but the orthologs in both Fth strains are
pseudogenes separated into two putative coding regions. Two probe sets were designed to cover each of the
two fragments, such that the larger intact ORFs in Fn and Ftt were monitored by two probe sets, while each
pseudogene in Fth was monitored by one probe set. The intergenic region between ORF1 and ORF2 also
had shared probes. ORF2 is intact in all four strains so a single consensus probe set was designed. Probes
were also designed for the anti-sense regions of the ORFs (not shown).

doi:10.1371/journal.pone.0158631.g001
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Microarrays were manufactured by Affymetrix using a custom manufacturing process. Two
custom library files, one for monitoring ORF expression and another for monitoring intergenic
expression, were designed in a format that is compatible with Gene chip operating system
(GCOS). The library files were loaded into GCOS using the Library files update software pro-
vided by Affymetrix. The probe sequences, library files, and the complete design of the micro-
array were made public by submission to GEO database (GPL20119).

Processing of Samples for Microarray Analysis
Ft strains LVS, Schu S4, and OR960246 and Fn strain U112 were grown to 0.6 optical density
at 600 nm in Chamberlains defined medium (CDM) at 37°C [31]. RNA isolation, cDNA syn-
thesis and microarray processing was performed as described previously [33, 34]. Total RNA
was isolated using TRIZOL (Invitrogen) and treated with Turbo DNA-free DNase (Ambion).
cDNA was synthesized and labeled according to the Affymetrix standard prokaryotic protocol.
Labeled cDNA was hybridized to the custom Nimble Express Affymetrix microarray. All sam-
ples were performed in triplicate. GCOS (Affymetrix) was used to normalize the microarray
data, setting the mean of the core probe sets (994) to 1000; the data was further analyzed using
GeneSpring 7.2 and GeneSpring GX (Agilent Technologies). Genes with>/ = 5-fold difference
in expression level between strains (p</ = 0.05) were selected for further analysis. The p-values
were obtained using GeneSpring (One-Way ANOVA, parametric test assuming equal variance,
Benjamin–Hochberg multiple testing corrections, no post-hoc testing). All of the raw data has
been submitted to GEO database (GSE68478).

Results and Discussion

Shared Probeset Microarray
We designed a shared probe Francisella whole genome microarray, utilizing four different
genome sequences (Ftt strain Schu S4, Fth strains LVS and OSU18, and Fn strain U112). As
described above, this microarray has a core set of shared probes to sequences that are common
among the four strains (species/subspecies), as well as specific probes to those genes that are
unique to a subset of these species/subspecies. Our goal was to create a single microarray for
these species/subspecies that would enable comparative expression studies between Ftt, Fth,
and/or Fn. All the strains in the study were grown to identical optical densities in Chamber-
lain’s medium (CDM), and their transcriptomes were analyzed by the shared probe microar-
ray, as described above. Chamberlain’s medium was chosen due to the fact that it is the defined
medium that can support growth of Francisella strains, and that we and others have already
identified the proteome of various strains grown in this medium and can thus compare tran-
scriptome to proteome [34]. An example of whole genome transcription in Fn strain U112
from this approach is shown in Fig 2, indicating that the expression of ORFs can be monitored
using this microarray.

Expression of Pseudogenes and Transposases in Francisella
The Ftt and Fth genomes contain a relatively large number of ORFs annotated as pseudogenes,
when compared to the Fn genome, and this genomic decay has been ascribed to pathoadapta-
tion by the more virulent strains [30]. Many of the ORFs annotated as pseudogenes in Ftt, Fth
and Fn have high levels of transcription (S1, S2, S3, S4, S5 and S6 Tables). We previously
observed that peptide fragments from pseudogenes are present in the Ftt proteome [34]. The
biological significance of these transcribed and/or translated pseudogenes is not known.
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The most prevalent insertion sequence (IS) element in the Ftt and Fth genomes is isftu1; Ftt
strain Schu S4 has 50 copies, Fth strain OSU18 has 59 copies, whereas Fn strain U112 has only
a single copy. Carlson et al showed that the transposase encoded in isftu1, along with that in
another IS element isftu2, are transcribed in Ftt Schu S4 and Fth LVS, and their transcription
increases in response to spermine [35]. Comparative transcriptional analysis performed with
the shared probe microarray demonstrated that isftu1 was highly transcribed in both virulent
sub-species (Ftt and Fth) during growth in CDM, in contrast to Fn, which showed no signifi-
cant expression (S7 Table). Because all copies of isftu1 are identical, we could not determine if
the high level of transcription is due to the cumulative effect resulting from the high copy num-
ber in Ftt/Fth, or if only a subset of isftu1 elements is transcribed to high levels. Transcription
of the other prevalent IS element isftu2 could not be monitored, due to the lack of reliable
probe sets on the microarray. The less prevalent IS elements, (isftu3, isftu4, isftu5, or isftu6)
did not have comparable high expression levels in any of the strains. The high level transcrip-
tion of the isftu1 transposase in Ftt and Fth suggests that these genomes have a potential for
ongoing rearrangements.

Fig 2. Expression of Open Reading Frames in Fn U112. Expression of predicted genes (open reading
frames) in Fn U112 genome. Genes in the outer circle are on the plus strand while those in the inner circle are
on the minus strand. Red indicates genes with high expression, yellow indicates genes with intermediate
expression and blue indicates genes with low expression. The 12 O’clock position corresponds to the start of
the genome.

doi:10.1371/journal.pone.0158631.g002
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Differential RNA Expression in Strains of Francisella
Because the Francisella genomes largely share the same genes, and the microarray was designed
to detect the shared gene set, transcription levels can be directly compared between the three
Francisella species/subspecies grown under identical conditions. Interestingly, we found that
transcription levels of many genes are notably different among the three species/subspecies of
Francisella (Fig 3, Table 1, Table 2 and Table 3, S1, S2, S3, S4, S5 and S6 Tables). In general,
transcription of relatively more genes was higher in Fn compared to Ftt or Fth. In addition to
unique genes in each species/subspecies, pseudogene formation in Ftt and Fth due to possible
genome decay may have contributed to significant transcriptional differences. The large num-
ber of pseudogenes in the Ftt and Fth genomes may be one cause of the difference in expression
between Ftt/Fth and Fn, because the pseudogene may not be expressed to the same level as the
corresponding gene in Fn, or the presence of a pseudogene may influence transcription of
downstream genes. Likewise, transposons in Ftt and Fth may negatively impact transcription
of genes by inserting into that gene or its promoter, or downstream genes within an operon.
Finally genomic reorganization in Ftt and Fth may cause breaks within operons that place
genes in a different genomic context. However, differential expression for a number of genes
could not be easily attributed to one of these possibilities, and thus transcriptional differences
between the strains may be due to differences in regulatory genes and/or networks elsewhere in
the genome (i.e. trans effects).

Comparison of transcription in Ftt and Fn
When transcription in the human virulent Ftt Schu S4 strain is compared to transcription in
the human avirulent Fn U112 strain (Fig 4; S1 and S2 Tables), the largest group of shared genes
falls into similar levels of expression (<5-fold). However, the majority of the genes that falls

Fig 3. Comparison of Transcriptomes among Species/Subspecies of F.tularensis. The left and right panels
show the same 3 dimensional graph visualized from two different angles. Each point represents a probe set
monitoring the transcription of an ORF. The values on x, y and z axes represent the geometric mean of normalized
intensity of the three biological replicates of Ftt Schu S4, Fth OR960246 and Fn U112 respectively. Probe sets that
have differential expression of less than five fold and/or a p-value greater than 0.05 in both of the one way
comparisons of Ftt Schu S4 and Fth OR960246 with Fn U112 are colored grey. Of the remaining probe sets, those
representing genes which are intact in all of the three strains are colored red, while the probe sets representing
genes with at least one of the orthologs annotated as a pseudogene are colored blue.

doi:10.1371/journal.pone.0158631.g003
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outside this range are transcribed at higher levels in Fn compared to Ftt. A number of these
genes have low expression in Ftt either due to pseudogene formation or polar effects of pseudo-
genes and transposases. In contrast, most of the genes with high expression in Ftt are actually
unique to Ftt and missing from Fn.

Of particular interest are shared genes that are more highly transcribed in Ftt when com-
pared to Fn, as these may give insight into the higher virulence of Ftt for humans. Some of
these include an acid phosphatase, an Emr secretion protein, an iron acquisition gene cluster
(fsl operon), transposases (described above) and genes encoding hypothetical proteins
(Table 1). EmrA proteins are typically the membrane fusion protein components (MFP) of tri-
partite efflux assemblies, which encompass multidrug efflux systems (RND) and Type I secre-
tion systems (T1SS) [36, 37]. MFPs span the periplasm and connect the efflux transporter in

Table 1. Genes with High Expression in Ftt Schu S4 Compared to Fn U112**.

Locus in Ftt Locus in Fn Fold Difference* Product

FTT0027 FTN_1684 16 pyridoxal-dependent decarboxylase (lys1)

FTT0028 FTN_1683 6 drug:H+ antiporter-1 (DHA1) family protein

FTT0029 FTN_1682 17 siderophore biosynthesis protein (fslA)

FTT0103 FTN_1612 5 transposase

FTT0221 FTN_0090 5 acid phosphatase (precursor)(acpA)

FTT1140 FTN_1122 9 hypothetical protein

FTT1242 FTN_1260 10 hypothetical protein

FTT1653 FTN_0030 99 hypothetical protein

FTT1654 FTN_0029 190 HlyD family secretion protein(emrA2)

FTT1655 FTN_0028 72 hypothetical protein

*� 5 fold

p� 0.05

** The table only lists the genes that are intact in both Ftt and Fn. Please see S1 and S2 Tables for a complete list that includes pseudogenes and missing

genes, as well as genes expressed at lower levels in Ftt compared to Fn.

doi:10.1371/journal.pone.0158631.t001

Table 2. Genes with High Expression in Ftt Schu S4 Compared to FthOR960246**.

Locus in Ftt Locus in Fth Fold Difference* Product

FTT0127 FTH_1591 5 major facilitator superfamily (MFS) transport protein

FTT0442 FTH_1570 8 major facilitator superfamily (MFS) transport protein

FTT0707 FTH_1479 6 nicotinamide mononucleotide transport (NMT) family protein

FTT0784 FTH_1400 6 hypothetical protein

FTT0815 FTH_1370 5 chitin binding protein

FTT1004 FTH_1172 6 DMT superfamily drug/metabolite transporter

FTT1089 FTH_1087 5 isochorismatase hydrolase family protein

FTT1090 FTH_1086 8 possible NMC family Nicotinamide mononucleotide uptake permease PnuC

FTT1175 FTH_0772 5 hypothetical protein

FTT1234 FTH_0713 18 choloylglycine hydrolase family protein

FTT1414 FTH_0648 7 hypothetical protein

FTT1784 FTH_1866 11 hypothetical protein

*� 5 fold

p� 0.05

** The table only lists the genes that are intact in both Ftt and Fth. Please see S3 Table for a complete list that includes pseudogenes and missing genes.

doi:10.1371/journal.pone.0158631.t002
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the cytoplasmic membrane with a specific outermembrane porin to facilitate secretion across
both membranes in one step [38]. MFPs are generally involved in transport of various sub-
stances (e.g. hemolysins, multidrug resistance). The OM porin TolC known to be utilized for
MDR and T1S in other bacteria is involved in efflux of detergents, dyes and antibiotics in Fran-
cisella, and the transporter/MFP pair AcrAB also function in resistance to antibiotics; both con-
tribute to the virulence of Francisella [39, 40]. Also, the EmrA1 MFP in Fth (LVS) has been
shown to be required for resistance to oxidative stress and virulence [41]. The emrA2
(FTT1654) gene in Francisella is flanked by two ORFs in an apparent operon: a predicted lipo-
protein with a conserved domain of unknown function (FTT1653; DUF3568), and a putative
inner membrane protein involved in fusaric acid resistance (FTT1655). All of these genes are
highly transcribed in Ftt Schu S4 and in both of the Fth strains (OR960246 and LVS), but
expressed at low levels in Fn U112.

The fsl gene cluster is likewise highly expressed in Ftt and both Fth strains, but transcribed
at low levels in Fn. The fsl genes are required for siderophore synthesis in Francisella [42–44].
Siderophores facilitate iron uptake in bacteria by scavenging ferric iron in the surrounding
environment and transporting it to the cytoplasm. The fslA gene product is a siderophore syn-
thetase, and the other genes within the operon (fslBCDEF) are also required for siderophore
synthesis/utilization [42, 44]. Mutations in these genes leads to poor growth in iron depleted
medium [44], however there is another uptake system for ferrous iron (feo) that has been
shown to compensate for the lack of siderophore synthesis in vivo, at least in Fth [45]. The high
level of transcription of the ferric-siderophore operon in Ftt and Fth strains when compared to
Fn during growth in CDM suggests that Ftt and Fth are experiencing iron limitation, but that
Fn may have additional mean(s) to acquire iron under these conditions.

Acid phosphatases have been hypothesized to contribute to the virulence of Francisella by
inhibition of the oxidative burst inside the phagosome [46]. There are 5–6 genes encoding acid
phosphatases in the different Francisella species. It has been shown that four functional acid
phosphatases AcpA, AcpB, AcpC and HapA contribute 90–99% of the acid phosphatase activ-
ity in Fn and Ftt and together are required for intramacrophage survival and virulence [47–49].
However it has also been reported that acid phosphatases do not contribute to Ftt virulence
[50]. AcpA, which provides most of the acid phosphatase activity, is secreted in vitro [51], and
translocated into the host macrophage cytosol by Fn and Ftt [52]. Higher level transcription of
acpA in Ftt compared to Fnmay influence the relative virulence these strains have for humans.
Further investigation is necessary to definitively identify the role of AcpA in the virulence of
different species/subspecies of Francisella.

FTT1140 (198 bp) and FTT1242 (1263 bp) are both annotated as encoding hypothetical
proteins. FTT1140 is predicted to encode a short peptide of 65 aa, whereas the Fn ortholog
(FTN1122) is predicted to be 129 aa. Interestingly, the Ftt protein appears to have a truncation

Table 3. Genes with Low Expression in Ftt Schu S4 Compared to FthOR960246**.

Locus in Ftt Locus in Fth Fold Difference* Product

FTT0845 FTH_0338 9 hypothetical protein

FTT1143 FTH_0806 14 hypothetical protein

FTT0642 FTH_0895 6 acetolactate synthase small subunit

FTT0158 FTH_1669 9 hypothetical membrane protein

*� 5 fold

p� 0.05

** The table only lists the genes that are intact in both Ftt and Fth. Please see S4 Table for a complete list that includes pseudogenes and missing genes.

doi:10.1371/journal.pone.0158631.t003
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at the N-terminus with respect to the Fn protein, and this region is predicted to contain a trans-
membrane segment (HMMTOP), suggesting that these proteins would have different subcellu-
lar locations within the two strains. FTT1242 contains a conserved domain (COG0172) found
in seryl-tRNA synthetases. Interestingly, Fn contains two FTT1242 orthologs (FTN1260 and
FTN1261) that share 65% identity; FTT1242 shares the closest identity to FTN1260 (95%) than
to FTN1261 (61%). This suggests that the FTN1261 gene was deleted from Ftt/Fth during their
evolutionary divergence from Fn. The relevance of these two hypothetical genes being tran-
scribed at higher levels in Ftt is not clear.

Fig 4. Comparison of Transcriptomes of Ftt Schu S4 and Fn U112.Despite high genomic identity, Ftt and Fn
have large scale transcriptional differences when grown under identical conditions. Each point represents a probe
set monitoring the transcription of an ORF. The values on x and y axes represent the geometric mean of three
biological replicates. Probe sets that have differential expression of less than five fold and/or a p-value greater than
0.05 in one way comparisons of Ftt Schu S4 with FnU112 are colored grey. Of the remaining probe sets, those
representing genes which are intact in both strains are colored red, while the probe sets representing genes with
one of the orthologs annotated as a pseudogene are colored blue.].

doi:10.1371/journal.pone.0158631.g004
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Comparison of transcription of Ftt and Fth
Ftt strain Schu S4 and Fth (wildtype) strain OR960246 are more closely related to each other
than to Fn, however a number of differences in gene expression were observed when these
strains were grown under identical conditions. Since Ftt is known to be more virulent in
humans than Fth, some of these transcription differences may underlie their relative virulence
(S3 and S4 Tables). Genes that are similar between these two strains but with significant tran-
scription differences are noted in Tables 2 and 3.

The FTT1089-FTT1091 operon is highly expressed in Ftt in comparison to Fth. This operon
encodes two isochorismatases (FTT1089 and FTT1091) and a transporter (FTT1090). Isochor-
ismatases catalyze one of the steps in the conversion of isochorismate to 2-3-Dihydroxy Ben-
zoic acid (2-3-DHBA), which itself can act as an iron chelator or can be diverted to form
further complex siderophores [53]. It is unknown whether 2-3-DHBA is involved in iron
uptake in Francisella. This operon appears intact in Ftt, whereas in Fth (both OR960246 and
LVS), one of the isochorismatases (the ortholog of FTT1091) is a pseudogene due to insertion
of a transposase, and in Fn, the transporter (the ortholog of FTT1090) is a pseudogene. In Fth
the operon is not expressed, in contrast to Ftt Schu S4. Due to the differences in transcription
and translation between Ftt and Fth, as well as the differences in siderophore (fsl) transcription
mentioned above, this operon warrants further investigation.

Four different genes predicted to encode transporters were transcribed at higher levels in Ftt
Schu S4 than in Fth OR960246: FTT0127, FTT0442, FTT0707, and FTT1004. Transposon
insertions upstream of the FTT1004 and FTT1234 orthologs in Fth may explain their lower
transcription, but it is unclear why the other genes are also expressed at lower levels in Fth.
FTT1234 encodes a cholylglycine hydrolase that has been implicated in virulence in Brucella
and Listeria [54, 55]. FTT0784, FTT1175, FTT1414, and FTT1784 encode hypothetical pro-
teins whose orthologs are transcribed at lower levels in Fth; the presence of pseudogenes
upstream in Fth possibly explains this differential expression. Orthologs to hypothetical genes
FTT0185, FTT0845, and FTT1143, as well as a gene involved in valine biosynthesis, FTT0642,
were transcribed at higher levels in Fth OR960246 compared to Ftt Schu S4 (Table 3).

There are interesting differences in the presence and expression of genes predicted to be
involved in polyamine synthesis between the various Ft strains (S1 and S3 Tables). The
response of bacterial pathogens to polyamines has been associated with various aspects of viru-
lence. It has been shown that the Fth and Ftt response to exogenous spermine and spermidine
alters global gene expression patterns, including an upregulation of transcription from ISFtu1
and ISFtu2 insertion elements, which also increases expression of genes adjacent to these ele-
ments [35]. Growth of Ft in spermine or spermidine downregulates expression of TNFα and
IL-12 by infected macrophages. CDM contains spermine, and was utilized in the studies pre-
sented here.

Putrescine and spermidine are the major endogenous polyamines in bacteria, and they can
synthesize putrescine either directly from ornithine or indirectly via arginine, and then convert
putrescine to spermidine; bacteria do not synthesize spermine. Ftt Schu S4 contains a cluster of
genes, speD (S-adenosylmethionine carboxylase), speE (spermidine synthase), speA (arginine
decarboxylase), FTT0434 (agmatine deiminase; aguA) and FTT0435 (N-carbamoylputrescine
amidohydrolase; aguB) in an apparent operon. In Fth strains, speD and speE are intact while
speA, aguA and aguB are pseudogenes, and the entire region is absent in Fn U112. Thus Fth
strains might be predicted to not be able to convert arginine to putrescine because they lack the
three genes necessary, but to maintain the ability to convert putrescine to spermidine due to
the presence of speD and speE, whereas Fn lacks this entire pathway. Alternatively, bacteria can
convert ornithine directly to putrescine by ornithine decarboxylase (speC), but no speC
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ortholog has been annotated in the Ft genome. The gene annotated as diaminopimelate decar-
boxylase (lysA; FTT0027) may fulfill this function as SpeC. As mentioned above, this gene lies
within the siderophore synthesis operon and is also annotated as fslC for its role in iron uptake.
The Ft siderophore resembles rhizoferrin and has a putrescine backbone [42], and FTT0027 is
a member of the pyridoxal-dependent decarboxylases (pfam02784) which include ornithine
decarboxylases. Thus this gene may provide synthesis of putrescine directly from ornithine.

Interestingly, even though speD and speE are intact in the Fth strains, their expression is sig-
nificantly lower than their orthologs in Ftt Schu S4 when grown under identical conditions.
The lower expression of speD and speE, and absence of speA, aguA and aguB in Fth compared
to Ftt may contribute to the relative lower virulence of this subspecies in humans. Considering
that Fn lacks all five genes and exhibits the lowest virulence of all three subspecies in humans,
this suggests that endogenous polyamine synthesis may contribute to Ft virulence. Endogenous
polyamines influence many aspects of bacteria, including transcription, translation, cell
growth, and stress resistance, and polyamines have been shown to modulate the virulence of a
variety of pathogens, including Shigella, Yersinia, and Salmonella [56].

Additional genes more highly expressed in Ftt compared to Fth may contribute to enhanced
virulence (S3 Table). For example, NADPH-quinone reductase (mdaB) catalyzes the reduction
of quinones and may help protect against damage by free radicals and reactive oxygen species
within the macrophage more effectively. The tlyC gene, which encodes a protein with
cystathionine beta-synthase (CBS) domains found in transporters, is more highly expressed in
Ftt, but it is not clear whether this protein has any hemolytic activity despite being annotated
as a hemolysin [57]. The pdpD gene within the Francisella pathogenicity island is expressed
higher in Ftt than in Fth. Differences in this gene distinguish the different Francisella subspe-
cies, with Fn expressing a PdpD protein that is 50 aa larger than that in Ftt. In contrast, the
pdpD gene is essentially missing from Fth, with only a small portion of the C-terminal coding
sequence remaining [10]. The shared probes within the microarray were designed to this por-
tion, and transcription was reduced 12-fold in Fth vs Ftt, while the transcription of the down-
stream genes (iglABCD) was not altered. PdpD contributes to the virulence of Fn in chicken
embryos and mice, but it is not required for intracellular growth in vitro [58]. Francisella spp
have Type IV pilus genes that are involved in secretion and pilus fiber expression [59]. The
high transcription of pilT and pilA in Ftt Schu S4 compared to Fth may contribute to its higher
virulence.

Comparison of transcription of Fth OR960246 and Fth LVS
The Fth LVS strain is highly attenuated for virulence and was derived by repeated passage in
the laboratory. The LVS genome differs from that of the wildtype Fth OR960246 strain by a
number of SNPs and indels. Not surprisingly, comparative transcriptional analysis revealed
that the two Fth strains have very similar expression profiles, mirroring their highly similar
genome architecture (Fig 5, Tables 4 and 5). There are two paralogs, FTH_0431 (fopC) and
FTH_0432, in Fth that share 50.4% homology and that have undergone recombination to form
a fusion gene in LVS, FTL_0439. The difference in architecture of the gene between the two
Fth strains is shown in Fig 5. In Fth OR960246 and in Ftt Schu4, the two genes in the ortholo-
gous genomic region have different levels of expression; FTH_0431 (fopC) is highly expressed
and FTH_0432 has a much lower expression. Due to the fusion of the C-terminal region of
FTH_0432 (probe set region D) to the N-terminal region of FTH_0431 (probe set region A) in
LVS, the two regions (probe set regions A and D) have the same level of expression.

FopC (FupC) is a paralog of figE (fslE) of the fig operon described in the sections above. It
has been implicated in the high affinity uptake of ferrous iron [60]. The ortholog of FTH_0431
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in Ftt Schu S4 (FTT_0918) was shown to be required for virulence and a strain with a mutation
in this gene was effective as a live vaccine [61]. Reintroduction of the FTH_0431 (fopC) along
with pilA (FTH_0384) into LVS restored virulence to a level indistinguishable from the wild

Fig 5. Comparison of Transcriptomes of Strains of FthOR960246 and Fth LVS. The genomic region of Fth
LVS FTL0439 compared to the orthologous region FTH0431 and FTH0432 in FthOR960246 is shown in the top
panel. The bottom panel shows the comparison of gene expression in FthOR960246 and Fth LVS strains. Each
point represents a probe set monitoring the transcription of a unique computationally predicted gene (average of
three biological replicates). Probe sets that have differential expression of less than five fold and/or a p-value
greater than 0.05 in one way comparisons of Fth OR960246 with Fth LVS are colored grey. Of the remaining probe
sets, those representing genes which are intact in both strains are colored red, while the probe sets representing
genes with one of the orthologs annotated as a pseudogene are colored blue. The probe sets covering the
FTL0439/FTH0431-0432 region are colored green and indicated by letter corresponding to top panel.

doi:10.1371/journal.pone.0158631.g005
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type Fth strains [29]. FopC has also been shown to help in avoiding IFN gamma-mediated
immune defenses [62]. No studies have been performed to understand the biological function
and immunogenicity of the downstream FTH_0432. It is probable that one of the major factors
responsible for the attenuation of LVS is the lack of the C-terminal region of FTH0431.

In addition to FTL_0431, the other gene that is highly expressed in OR960246 when com-
pared to LVS is a pilA gene. Pilus genes have been shown previously to be required for viru-
lence [63]. The genes that are highly expressed in LVS and expressed at lower levels in
OR960246 are an esterase and nagC. NagC is involved in the synthesis and catabolism of gluco-
saminoglycans and chitin [64]. The biological role of these genes and their effect on virulence
is not yet known.

Limitations
This study represents a comparison of the transcriptome of multiple strains of Francisella
grown under identical conditions in the chemically-defined Chamberlain’s medium. We have
noted the genes with 5-fold or greater differences in transcription (p< 0.05) between the
strains, and suggested that some of these differences may contribute to the relative virulence of
these strains. However this technique was utilized as a discovery tool, and further analyses like
1) RT-PCR confirmation 2) comparative proteomic analyses 3) growth analyses in different
media and cells, and 4) animal infection studies will be required to validate these expression
differences as the bases of differences in virulence. Additionally, different growth conditions
(e.g. medium, temperature, etc) are likely to highlight additional differences in gene expression
between species/subspecies. There are also multiple genes whose expression differed from 2- to
5-fold between strains (p<0.05) that were not discussed but that could also be of significance.
Of course numerous other factors not addressed here may also contribute to relative expression
of the corresponding proteins, such as message half-life, translation efficiency, and post transla-
tional modifications.

Table 4. Genes with High Expression in FthOR960246 Compared to Fth LVS.

Locus in Fth OR960246 Locus in Fth LVS Fold Difference* Product

FTH_0160 FTL_0167 10 DNA helicase

FTH_0384 None 182 pilA

FTH_0431 None 494 fopC

FTH_0432 None 583 hypothetical protein

FTH_0752 FTL_0750 5 hypothetical protein

*� 5 fold

p� 0.05

doi:10.1371/journal.pone.0158631.t004

Table 5. Genes with Low Expression in FthOR960246 Compared to Fth LVS.

Locus in Fth OR960246 Locus in Fth LVS Fold Difference* Product

FTH_0061 None 6 predicted pseudogene

FTH_0383 None 25 predicted pseudogene

FTH_1250 FTL_1277 5 nagC

FTH_1328 FTL_1363 7 Esterase

*� 5 fold

p� 0.05

doi:10.1371/journal.pone.0158631.t005
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Summary and Future Directions
The Francisella shared probe set microarray designed for this study allowed us to perform com-
parative transcription studies of Ftt, Fth, and Fn strains grown under identical conditions. In
the past, microarray studies have been performed with probes designed and optimized for Ftt,
but utilized for additional Francisella strains [43, 65]. These approaches were useful, but had
significant limitations due to the variability of genome sequences across the Francisella subspe-
cies. However, due to high similarity in the genomes of these subspecies, we were able to design
a consensus microarray for Ftt, Fth, and Fn that represented the core set of shared genes, as
well as the species-specific genes and the inter-genic regions. Our studies allowed us to perform
direct comparisons of relative transcript levels across species/subspecies, and highlighted
potentially interesting differences in gene expression that may be the basis for further studies
to identify the underlying cause of the relative virulence of these strains in humans.
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