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Abstract
The left atrium (LA) has a complex anatomy with heterogeneous wall thickness and curvature. The anatomy plays an important 
role in determining local wall stress; however, the relative contribution of wall thickness and curvature in determining wall 
stress in the LA is unknown. We have developed electromechanical finite element (FE) models of the LA using patient-specific 
anatomical FE meshes with rule-based myofiber directions. The models of the LA were passively inflated to 10mmHg followed 
by simulation of the contraction phase of the atrial cardiac cycle. The FE models predicted maximum LA volumes of 156.5 mL, 
99.3 mL and 83.4 mL and ejection fractions of 36.9%, 32.0% and 25.2%. The median wall thickness in the 3 cases was calculated 
as 1.32 ± 0.78 mm, 1.21 ± 0.85 mm, and 0.74 ± 0.34 mm. The median curvature was determined as 0.159 ± 0.080 mm−1 , 
0.165 ± 0.079mm−1 , and 0.166 ± 0.077mm−1 . Following passive inflation, the correlation of wall stress with the inverse 
of wall thickness and curvature was 0.55–0.62 and 0.20–0.25, respectively. At peak contraction, the correlation of wall stress 
with the inverse of wall thickness and curvature was 0.38–0.44 and 0.16–0.34, respectively. In the LA, the 1st principal Cauchy 
stress is more dependent on wall thickness than curvature during passive inflation and both correlations decrease during active 
contraction. This emphasizes the importance of including the heterogeneous wall thickness in electromechanical FE simulations 
of the LA. Overall, simulation results and sensitivity analyses show that in complex atrial anatomy it is unlikely that a simple 
anatomical-based law can be used to estimate local wall stress, demonstrating the importance of FE analyses.
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1 Introduction

Atrial fibrillation (AF) is a prevalent and progressive dis-
ease, characterized by chaotic electrical activation of the 
atria (Kirchhof et al. 2016). Early detection and treatment 

of AF are associated with improved patient outcome and 
reduced stroke risk (Keach et al. 2015). While AF is an 
electrophysiological pathology, the risk of developing AF 
is markedly increased with hypertension, mitral regurgita-
tion, mitral stenosis and aortic stenosis, which increase the 
mechanical loading on the atria (Benjamin et al. 1994; Iung 
et al. 2018; Widgren et al. 2012). The changes in mechani-
cal loading of cardiac tissue can activate fibroblasts, leading 
to an increased fibrotic burden, which might contribute to 
the initiation and sustenance of AF (Marrouche et al. 2014; 
Dzeshka et al. 2015).

In the heart, mechanical quantities, such as stress and 
strain, have previously been used to drive models of 
growth and remodeling (Kerckhoffs et al. 2012; Rodriguez 
et al. 1994). While strain can be measured directly from 
clinical images (Blume et al. 2011), stress must be calcu-
lated using a mathematical model (Yin 1981), accounting 
for the anatomy, micro-structure and material properties 
of the atria. In the left ventricle, the wall stress can be 
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approximated using the Law of Laplace (Valentinuzzi and 
Kohen 2011), in which wall stress is proportional to the 
radius of curvature (inverse of curvature) and inversely 
proportional to the wall thickness. The Law of Laplace 
assumes that the wall of the heart is thin relative to the 
radius of curvature. Due to the thin wall of the atria, the 
Law of Laplace may provide a reasonable approximation 
of atrial stress. In the atria, both the wall thickness (Bishop 
et al. 2016) and curvature (Ahmed et al. 2006) vary across 
the surface. However, their relative influence on wall stress 
remains unknown. In addition, other attributes of the atria 
including the complex anatomy, fiber structures, boundary 
conditions and active contraction play a role in determin-
ing the wall stress and are not accounted for the in the 
Law of Laplace, potentially limiting its applicability in 
the atria.

Previous models of human atrial mechanics have 
assumed a homogeneous wall thickness (Moyer et  al. 
2015; Hunter et al. 2012). Models of atrial mechanics that 
accounted for regional variations in thickness were derived 
from cadaveric data sets and might not reflect the in-vivo 
anatomy of the atria (Adeniran et al. 2015). Recent devel-
opments in computed tomography (CT) image analysis 
now allow the generation of anatomically detailed geomet-
ric models of the LA that account for varying wall thick-
ness derived from clinical scans (Bishop et al. 2016). To 
determine if local wall stress analysis in the atria requires 
patient-specific wall thickness, we investigated if wall thick-
ness is an important factor in determining local atrial stress 
or if the curvature, i.e., the endocardial surface shape, was 
the dominant factor.

In this study, we first describe an electromechanical mod-
eling framework for simulating active contraction in the LA. 
Secondly, we perform representative finite element (FE) 
simulations of the passive inflation and active contraction 
in the LA. Thirdly, we calculate the wall thickness and cur-
vature across the endocardial LA surface. Finally, we com-
pare the correlation between the 1st principal stress with 
wall thickness and curvature to identify the more prominent 
metric.

2  Methods

2.1  Personalized model generation

We focused our modeling efforts on the LA, which plays 
a more dominant role in AF compared to the right atrium 
(Kirchhof et al. 2016). The FE simulations were performed 
on 3 publicly available LA anatomical models developed 
from CT angiography images, that include a description of 

the endocardial and epicardial myofiber distributions (Fastl 
et al. 2018). Atrial fibers were represented by two distinct 
layers, consistent with previous DTMRI data which showed 
a sharp transition in fiber direction between the endocardial 
and epicardial fiber layers (Pashakhanloo et al. 2016). The 
atrial anatomies were discretized using tetrahedral elements 
with a mean edge length of ≈ 238 μm . This ensures at least 
two FEs across the myocardium of the LA, that can be as 
thin as 500 μm (Whitaker et al. 2016) and shows transmural 
variations in myofiber directions. The resulting FE meshes 
had 2.7, 1.8 and 1.1 million vertices and 14.8, 9.7 and 5.3 
million elements, respectively.

2.2  Biomechanics model

The myocardium of the LA was modeled as a nonlinear 
hyperelastic, nearly incompressible and transversely iso-
tropic material. Consistent with previous cardiac mechanics 
models (Nash and Hunter 2000), we define two rectangular 
Cartesian coordinates � and � . � defines the current loca-
tion of a material point in the deformed configuration. � 
defines the location of a material point in the undeformed 
reference configuration. The deformation gradient � , with 
J = det� > 0 , describes the deformation of a continuum 
body from the reference configuration �0(�) to the current 
configuration �t(�) . Furthermore, the right Cauchy–Green 
tensor � = �T� represents a deformation measure, while 
the Green strain tensor � =

1

2
(� − �) represents a strain 

measure. The nearly incompressible myocardium of the 
LA was modeled using a multiplicative decomposition of 
the deformation gradient � (see, e.g., Flory 1961) accord-
ing to � = J1∕3� and � = J2∕3� , with det� = det� = 1 . The 
mechanical deformation in the myocardium of the LA was 
governed by the quasi-static equilibrium equation given as

for t ∈ [0, T] , T > 0 , where �(�, t) is the displacement and 
�(�,�) is the second Piola-Kirchhoff stress tensor. In com-
putational electromechanics (EM) simulations, the math-
ematical representations of cardiac electrophysiology (EP) 
and biomechanics (BM) are interconnected. The deforma-
tion of the myocardium in the LA is caused by imposed 
loads, e.g., intra-atrial pressure, and displacements, e.g., 
mitral valve ring motion, as well as the active mechanical 
contraction generated in the heart muscle. Thus, the total 
second Piola-Kirchhoff stress tensor � is additively decom-
posed according to

(1)−∇ ⋅ ��(�,�, t) = �,

(2)� = �p + �a,
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where �p and �a are the passive and the active stress tensor, 
respectively. The corresponding Cauchy stress tensors � , �p 
and �a are computed by the push-forward operation accord-
ing to �

(∙)
= J−1��

(∙)
�⊤.

The passive stress tensor �p was calculated using the con-
stitutive relation

where Ψ is a transversely isotropic and invariant-based strain 
energy function. The strain energy function was composed 
of 3 individual functions

where Ψvol is the volumetric contribution to the strain energy 
function and Ψiso and Ψaniso are the isochoric contributions 
to the strain energy function referring to the isotropic and 
anisotropic parts, respectively. The prevailing myocyte ori-
entation is denoted as �0 . The volumetric contribution was 
modeled as

where 𝜇 > 0 is a penalty parameter to enforce the incom-
pressibility of the myocardium in the LA. The volumetric 
part of the strain energy function was modeled using the 
isotropic contribution (Demiray 1972)

with Ī1 = tr� , and the anisotropic contribution including the 
myofiber direction (Gasser et al. 2006)

with I4 = �0 ⋅ ��0 . The constitutive model parameters in (6) 
and (7), i.e., a, b, af and bf , were considered positive and 
the structural parameter � ∈ [0, 1∕3] , a phenomenological 
parameter in this case. Note, that we use an unsplit deforma-
tion gradient for the anisotropic contribution to minimize 
locking effects (Gültekin et al. 2019; Helfenstein et al. 2010; 
Sansour 2008). We test the dependence of the results on the 
penalty parameter � in the sensitivity analysis (see Sect. 3.3). 
The proposed strain energy function represents a special 
case of the strain energy function in Eriksson et al. (2013) 
used to model the myocardium of the LV, modified to incor-
porate the transverse isotropic myocardial structure of the 
LA rather than the orthotropic myocardial structure of the 
LV. While the time step size for mechanics was tmech = 1ms , 
it was significantly smaller for EP, where tEP = 25 μs.

(3)�p = 2
�Ψ(�)

��

(4)Ψ(�) = Ψvol(J) + Ψiso(�) + Ψaniso(�, �0),

(5)Ψvol(J) =
�

2
ln(J)2,

(6)Ψiso(�) =
a

2b
{exp[b(Ī1 − 3)] − 1},

(7)

Ψaniso(�, �0) =
af

2bf
{exp[bf(�I1 + (1 − 3�)I4 − 1)2] − 1},

2.3  Electrophysiology model

The cellular EP was described using the standard Courte-
manche model (Courtemanche et al. 1998) to simulate the 
human atrial action potential in all patients. The modifica-
tions suggested in Cherry and Evans (2008) and Cherry et al. 
(2008), i.e., constant intracellular sodium and potassium, 
were implemented to prevent a transient model behavior. 
The intracellular current flow responsible for the spread of 
electrical activation in the atrial myocardium was calculated 
using the monodomain equation

where �m is the membrane surface-to-volume ratio, Cm is 
the membrane capacity, Vm is the transmembrane potential, 
Iion is the density of the total ionic currents as a function 
of Vm and a set of state variables � , Itr is a transmembrane 
stimulus current and Dm represents the monodomain con-
ductivity tensor.

2.4  Electromechanics model

The active stress tensor �a resulting from the mechanical 
contraction of the cardiac myocytes in the LA was assumed 
to act in the myofiber direction �0 and fiber dispersion is 
considered as in Eriksson et al. (2013). Thus,

where Ŝa is the scalar valued active stress generated in the 
cardiac myocytes and � ∈ [0, 1∕3] is the same dispersion 
parameter as in (7). The active stress Ŝa was determined 
using a simplified form of the Niederer phenomenological 
active contraction model (Niederer et al. 2011b), without 
length dependence, given as

where Tpeak is the peak isometric tension, ts is the time after 
the onset of contraction, tt is the duration of the active con-
traction and �c and �r are the contraction and relaxation time 
constants, respectively. The time after the onset of the con-
traction was calculated as

with t denoting the finite element simulation time, ta is the 
local activation time, defined when the local transmembrane 
potential passes the threshold voltage Vm,thresh and td is the 
electromechanical delay.

(8)�mCm

dVm

dt
+ �mIion(Vm, �) = ∇ ⋅ (Dm∇Vm) + Itr,

(9)
�̂a =

𝜅

1 − 2𝜅
�

−1
+

1 − 3𝜅

1 − 2𝜅
(�0 ⋅ ��0)

−1
�0 ⊗ �0,

�a(�, �0) = Ŝa�̂a,

(10)Ŝa =

{
Tpeak tanh

2
(

ts

𝜏c

)
tanh2

(
tt−ts

𝜏r

)
if 0 < ts < tt

0 otherwise

(11)ts = t − ta − td,
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2.5  Computational model parameters

2.5.1  Passive tissue biomechanics

Bellini et al. (2013) measured passive stiffness in tissue 
samples taken from anterior and posterior regions of the 
human LA. For each region, the material samples were 
studied under biaxial loading. In thin square samples, 
orthogonal distributed tensions were applied along each 
edge, where the square lay in the plane defined by direc-
tions 1 and 2 and direction 3 was out of plane. The ratio 
between tensions in the 1 and 2 directions were set to 
1:0.5, 0.5:1, 1:0.75 and 0.75:1, as well as equiaxial load-
ing, 1:1. The reference tension was set to 30 Nm−1 , such 
that a ratio of 1:0.5 corresponded to tensions of 30 Nm−1 
and 15 Nm−1 in directions 1 and 2, respectively. We used 
this data to fit the parameters of our strain energy function 
given in Eq. 4.

In the posterior samples, we assumed that endocardial 
and epicardial fiber directions aligned with direction 1, cor-
responding to Green strain E11 and stress S11 . In the anterior 
samples, we assumed that the fibers were orthogonal with 
the endocardial fibers running in direction 2, corresponding 
to Green strain E22 and stress S22 and with the epicardial fib-
ers running in direction 1. The relative contribution of the 
endocardial and epicardial layers was defined as a free vari-
able � , where a value of 1 would mean the stress was borne 
entirely by the endocardial layer. The strain energy function 
of the 2-layer material was given as (DeBotton 2005; DeBot-
ton and Shmuel 2009)

where Ψendo and Ψepi are the strain energy function for the 
endocardial and epicardial layers, respectively, each defined 
by Eq. 4. We assumed that both layers experience the same 
applied deformation. The second Piola-Kirchhoff stress ten-
sor � for an incompressible material was calculated as

where ph is the Lagrange multiplier enforcing incompress-
ibility. The expansion of the relation led to

The nonlinear least squares problem associated with the 
characterization of the mechanical material behavior in the 
LA was solved in MATLAB (The MathWorks, Inc., Natick, 
United States of America) subsequent to initial data clean-
ing. The objective function used in the minimization prob-
lem was given as

(12)Ψ(�) = �Ψendo(�) + (1 − �)Ψepi(�),

(13)� = −ph�
−1

+ 2
�Ψ(�)

��
,

(14)� = − ph�
−1

+ 2

(
�
�Ψendo(�)

��
+ (1 − �)

�Ψepi(�)

��

)
.

where Sdata is the measured stress, Smodel is the simulated 
stress and n is the total number of data points recorded after 
data averaging including the different locations, i.e., anterior 
and posterior, directions, i.e., S11 and S22 , and protocols and 
Φ is the material parameter set for the strain energy function.

The dispersion parameter � was constrained according 
to � ∈ [0, 1∕3] , corresponding to fibers all aligned in one 
direction and an isotropic model. The relative size of the 
endocardium parameter � was constrained to fall between 
∈ [0.1, 0.9] to ensure that both endocardial and epicardial fib-
ers, that are known to be present in the atrium (Pashakhan-
loo et al. 2016), are included in the model. All other mate-
rial parameters were constrained to be positive. The fitted 
strain energy function parameters are a = 2.92 kPa , b = 5.6 , 
af = 11.84 kPa , bf = 17.95 and � = 0.17 . As the optimal fit-
ted value of � is 0.1, this suggests that a smaller value of � is 
possible. The fitted constitutive law is shown in Fig. 1. The 
sensitivity of the model results to the fitted values of a, af 
and � are included in our sensitivity analysis.

2.5.2  Passive biomechanics

The LA anatomy is recorded during diastasis when the ven-
tricle and atria are close to relaxed. However, there is still 
an atrial pressure that could be as high as 1 kPa (Stefanadis 
et al. 1998). As the atria are very thin, relative to the ventri-
cles, they will be more compliant and even this low pressure 
will cause the atria to deform. The thin walls make estimat-
ing the reference configuration using unloading techniques 
applied in the ventricles challenging as the atria are prone 
to buckling. For this reason, we used the measured anatomy 
as the reference configuration. This approximation results in 
the model operating at lower fiber strains where the mate-
rial properties are more compliant (Nikou et al. 2016). To 
account for this decreased stretch, we scaled the stiffness by 
a factor of 2. We have tested the dependence of the results 
to this parameter in the sensitivity analysis (see Sect. 3.3).

2.5.3  Active biomechanics

Since model parameters scale with organ phenotypes, the 
parameters for the active contraction model were manually 
scaled to achieve the desired ejection fraction, peak pres-
sure and contraction duration. The parameters were ini-
tialized to ventricular parameters (Niederer et al. 2011b). 
The final parameter set was td = 10.0ms , Tpeak = 50.0 kPa , 
�c = 40.0ms ,  �r = 110.0ms and tt = 300.0ms .  The 

(15)argmin
Φ

ΓN(Φ) =

n∑

i=1

(
Sdata − Smodel

)2
,
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membrane potential threshold for defining ta was set to 
Vm,Thresh = − 60.0mV . More advanced techniques to per-
sonalize the parameterization, such as gradient, Latin hyper 
cube or grid search-based simulations, were computationally 
intractable due to the high computational cost of simulating 
atrial mechanics (approximately 1000 to 10,000 CPU core 
hours per simulation).

2.5.4  Electrophysiology

Single cell stimulation on the standard Courtemanche model 
(Courtemanche et al. 1998) using 1000 beats with a basic 
cycle length of 1000 ms was performed prior to EM simula-
tions to obtain steady state conditions.

The conduction velocities in the LA were chosen as 1.20 
and 0.40 m/s in longitudinal and transverse direction, respec-
tively, leading to an anisotropy ratio of 3/1, well within the 
range of reported values for healthy patients (Dimitri et al. 
2012; Kneller et al. 2002). To match the reported conduc-
tion velocities in the EP simulations, the monodomain con-
ductivity tensor Dm was iteratively fitted using the method 
described in Mendonca Costa et al. (2013). The conductivity 
in the longitudinal ( D

�
 ) and transverse ( Dt ) directions were 

set to 0.74 Sm−1 and 0.08 Sm−1 , respectively. The membrane 
surface-to-volume ratio and the membrane capacity were set 
to standard values of �m = 1400 cm−1 and Cm = 1.0 μFcm−2 , 
respectively, for all simulations (Niederer et al. 2011a).

2.6  Boundary conditions

2.6.1  Electrophysiology

The atrial electrophysiology model was activated by a stimu-
lation applied on the epicardium in the vicinity of Bach-
mann’s Bundle for 2 ms with an amplitude of 500 μAcm−2 
to approximate the physiological activation from the right 
atrium (Markides et al. 2003).

2.6.2  Biomechanics

The atrial cardiac cycle can be separated into three phases: 
first as a reservoir, where the atria stores blood during ven-
tricular contraction. Second, as a conduit where the atria 
passively lets blood flow from the pulmonary veins to the 
ventricle. Thirdly as a pump, where the atria contracts to 
force blood into the ventricles.

Our simulations focus on the active contraction phase, 
when pressure and stress will be highest. The anatomy 
is derived from the cardiac CT images recorded during 
ventricular diastasis when the left atrium is in the conduit 
phase. We have taken this anatomy as an approximation 
of the reference anatomy.

The simulation was constrained by applying spring-
like boundary conditions (Land and Niederer 2018) at the 
PVs and the MV, respectively. We initialize the model by 
inflating the atria from a zero pressure up to a pressure 
of 10 mmHg that reflects the mid pressure reached dur-
ing atrial systole (Stefanadis et al. 1998; Ágoston et al. 

Fig. 1  Constitutive law fitting. 
Comparison of model (solid) 
and experimental (dashed) 
passive material properties 
Experimental data from Bellini 
et al. (2013) for different ten-
sion ratios (P) in the 1 and 2 
directions. S11 is the stress in 
direction 1, S22 is the stress in 
direction 2, E11 is the Green 
strain in direction 1 and E22 is 
the Green strain in direction 2
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2015). We have not implemented dynamic pressure vol-
ume boundary conditions for the pulmonary veins and the 
left ventricle.

The atrial mechanical boundary conditions are less 
sophisticated than the level expected in ventricular simu-
lations and the current challenges and required develop-
ments are discussed below in the limitations section.

2.7  Numerical framework

Left atrial electromechanics simulations were performed in 
CARP (Vigmond et al. 2003, 2008). CARP mechanics were 
previously verified against the cardiac mechanics N-version 
benchmark Land et al. (2015). The nonlinear mechanical 
problem was solved using Newton’s method until the mini-
mum of the relative and the absolute norm of the residual 
vector reduced to 𝜀 < 1e − 6 . For all linear subproblems, we 
used the generalized minimal residual (GMRES) method 
with algebraic multigrid (AMG) preconditioning and an 
error tolerance of 𝜀 < 1e − 8.

For more details on the preconditioned Krylov subspace 
methods see comprehensive research articles by Neic et al. 
(2012) and Augustin et al. (2016).

2.8  Post‑processing

2.8.1  Wall thickness calculation

Wall thickness in thin complex structures can be challenging 
to define Jones et al. (2000). For this reason, we previously 
applied the Laplace based wall thickness calculation method 
to the atria Bishop et al. (2016). This method was able to 
calculate wall thickness in the atria but is computationally 
expensive, especially when using very large meshes. Here, 
we use a faster method based in the eikonal equation. The 
eikonal equation was solved over the finite element meshes 
using a fast iterative method (Fu et al. 2013; Neic et al. 2017) 
where the wavefront was initiated on all nodes of the epi-
cardium simultaneously given a constant isotropic conduc-
tion velocity. Local wall thickness was then computed from 
wavefront arrival times at the endocardium. This fast and 
robust approach was verified against results from Bishop 
et al. (2016).

2.8.2  Wall curvature calculation

To calculate wall curvature, we used a 3D sphere fitting 
approach similar to Thomas and Chan (1989). The algo-
rithm is based on the minimization of the distance between 
the points of a endocardial surface patch and the radius of a 
fitted sphere in a least square sense. The local curvature is 
then defined as the inverse sphere radius. The endocardial 
surface patch was defined as a circular patch of elements of 

approximately 5 mm radius. Due to the fine, anatomically 
detailed FE meshes and the already very high complexity 
of the framework, curvature computations were based on 
the relatively simple but most widely applied Ji et al. (2015) 
approach using spheres. Note that more advanced geometric 
fittings using ellipses, hyperbolas, and parabolas, e.g., Ahn 
et al. (2001) and line integrals, e.g., Lin et al. (2010) are also 
proposed in the literature. However, these more sophisti-
cated algorithms will also introduce additional complexity 
and parameters. We demonstrated in Sect. 2.9 that the cor-
relations are robust to changes of the endocardial surface 
patch size. This suggests that the conclusions are not highly 
dependent on the curvature computation algorithm.

2.9  Sensitivity analysis

To test the dependence of model findings on model param-
eters, the Spearman-� coefficients between the wall thickness 
and curvature with wall stress were computed for different 
sets of parameters and compared to a control case (patient 
case 3). Simulations were run with the following parameters 
changed, where ± 25 % corresponds to an increase and a 
decrease of the respective parameter by 25 %:

1. Inflation pressure p ± 25 %;
2. Peak isometric tension Tpeak in Eq. (10) ± 25 %;
3. Isotropic material parameter a in Eq. (6) ± 25 %;
4. Anisotropic material parameter af in Eq. (7) ± 25 %;
5. Stiffness Scale factor (stiff.). Scaling a in Eq. (6) and af 

in Eq. (7) each by ± 25 %;
6. Dispersion material parameter � in Eq. (7) ± 25 %;
7. Isotropic model with � = 1∕3 in Eqs. (7) and (9);
8. Fully incompressible model with 1∕� = 0 in Eq. (5) and 

a block-system formulation;
9. Reduced penalty parameter � = 1000 kPa  and 

� = 500 kPa.

To calculate the sensitivity of the correlations with respect 
to the variables that were used to generate and analyze the 
model geometry, we calculate Spearman-� coefficients for 
simulations with:

1. Curvature patch size (Sect. 2.8.2) ± 25 %;
2. Noised model: Gaussian noise (mean � = 0 μm , standard 

deviation � = 100 μm ) was added to the initial geometry 
of patient case 3 and subsequently smoothed using Para-
View (Ayachit 2015);

3. Constant thickness model: a mesh with constant thick-
ness of 0.5 mm was generated based on the endocardial 
surface of patient case 3, using the software Gmsh (Geu-
zaine and Remacle 2009). Note, that the thickness 
related Spearman-� values for this model are deliber-
ately omitted.
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4. 0  % cutoff: the whole region including boundary 
domains is used for correlation computations

5. 50 % cutoff: only the inner 50 % of the domain, meas-
ured as distance from the pulmonary inlets and the 
mitral valve ring, is used for correlation computations

6. 5/25 % cutoff: 5 % of the domain close to the pulmonary 
outlets and 25 % of the domain close to the mitral valve 
is not considered for the computations

7. 25/5 % cutoff: 25 % of the domain close to the pulmo-
nary outlets and 5 % of the domain close to the mitral 
valve is not considered for the computations

8. �t : the deformed domain is used for curvature and wall 
thickness computations;

9. stim. Γendo : the whole endocardial surface is used for 
stimulation. Since cells are contracting simultane-
ously peak isometric tension Tpeak in Eq. (10) had to be 
reduced by 25 %.

To calculate the sensitivity of the correlations with respect 
to the definition of stress, we calculate Spearman-� coef-
ficients where stress is defined as:

1. Principal stresses: let �1 , �2 and �3 be the eigenvalues of 
the Cauchy stress tensor � . Then 

 are the principal stresses.
2. Fiber stress �f

= �0 ⋅ ��0

3. Stress magnitude |�| = (� ∶ �)
1∕2

�1st
= max{�1, �2, �3},

�3rd
= min{�1, �2, �3}, and

�2nd
= tr(�) − �1st

− �3rd

4. vo n  M i s e s  s t r e s s  �M
=

(
3∕2 ��

ij
��

ij

)1∕2

 a n d 
��

ij
= �ij − 1∕3 �ij�kk is the deviatoric stress.

Each of the above-mentioned stress measurements is com-
puted for the total ( �p + �a ), passive ( �p ) and active ( �a ) 
Cauchy stress as well as for the total second Piola-Kirch-
hoff stress ( Sp + Sa).

2.10  Comparison to laplace estimates

To compare simulated stress calculations with the Law of 
Laplace, we consider an extension of the Laplace law (Mirsky 
and Parmley 1973) that takes into account the finite thickness 
of the wall and is based on the volume of the cavity after infla-
tion ( Vinfl ) and the volume of the wall ( Vwall)

for the inflation pressure pinfl = 10mmHg . For perfect 
spheres Eq. (16) is equivalent to the standard Laplace law for 
finite wall thickness, for more details see Gsell et al. (2018). 
Using Boyle–Mariotte’s law, we get for the cavity pressure 
at the fully contracted state pcont using the measured volume 
of the cavity after contraction ( Vcont),

and consequently

(16)
�La
infl

=
pinfl

(
Vinfl+Vwall

Vinfl

)2∕3

− 1

,

(17)pcont = pinflVinflV
−1
cont

,

(18)
�La
cont

=

pcont
(

Vcont+Vwall

Vcont

)2∕3

− 1

.

Fig. 2  Comparison to Laplace estimates. a Geometric setup with R 
the inner radius and T the thickness of the spheres. A pressure pinfl 
was applied to the inner surface Γendo . b Dirichlet boundary condi-
tions were enforced at the intersections of the Cartesian axes with the 

outer surface Γepi . Displacements at these points were restricted to be 
along the respective intersecting axes. c Transversely isotropic setup 
with one fiber family in the circumferential direction
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The inner radius of the spheres was varied from 
R ∈ {20, 25, 30} mm; the wall thickness was varied from 
T ∈ {0.5, 2.5, 5.0} mm. For the geometric setup and the 
mechanical boundary conditions, see Fig. 2. Passive infla-
tion and subsequent active contraction experiments were 
performed with the same simulation settings and parameters 
as described for the anatomical atria models. Three different 
fiber laws were applied to each of the spheres: isotropic with 
� = 1∕3 in Eqs. (7) and (9); transversely isotropic (tr. iso.) 
with one fiber family in the circumferential direction, see 
Fig. 2c; orthotropic (ortho.) with two fiber families; the first, 
�
1
0
 , in circumferential direction shown in Fig. 2c; the second, 

�
2
0
 , in circumferential direction normal to �1

0
 . The anisotropic 

response (7) is used for each fiber direction, i.e.,

and the active stress (9) for each fiber direction, i.e.,

Ψaniso(�, �
1
0
, �2

0
) =

1

2

(
Ψaniso(�, �

1
0
) + Ψaniso(�, �

2
0
)

)
,

This type of fiber setting preserves the spherical shape of the 
geometry in the contracted state. For the thinnest spheres, 
( T = 0.5mm ) a fully incompressible (incomp.) case with 
1∕� = 0 in Eq. (5) using locking-free finite elements and 
the orthotropic fiber law is also included.

3  Results

3.1  Reference anatomies and simulations

A summary of the patient characteristics is shown in Table 1. 
The reference model anatomies and the corresponding acti-
vation patterns are shown in Fig. 3 following the simulated 
sinus beat. The activation starts near Bachmann’s bundle on 
the anterior wall and spreads over the roof and around the 
mitral valve, with activation finishing in the appendage and 
posterior wall. The resulting distributions of curvature and 
thickness are shown in Fig. 4. The thickness pattern was 
distinct between patients, with patient III having a uniformly 
thinner atrium, compared to patients I and II. The curvature, 
as expected, was higher around the ostium of the pulmonary 
veins and appendage and lower curvature in general on the 
body of the LA. All models were inflated to a pressure of 

�a(�, �
1
0
, �2

0
) =

1

2

(
�a(�, �

1
0
) + �a(�, �

2
0
)

)
.

Fig. 3  Model anatomies and activation patterns. Anterior (top row) and posterior (bottom row) perspective of patients showing the local activa-
tion time for the universal electrophysiology reference simulations. Isochrones are provided in 10 ms intervals

Table 1  Summary attributes of patient attributes

M male, F female, HLD hyperlipidemia, PAF paroxysmal atrial fibril-
lation, SSS sick sinus syndrome

Index Sex Age Comorbidities

1 M 35 HLD
2 F 48
3 F 54 PAF, SSS
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pinfl =10 mmHg to approximate the mid atrial contraction 
pressure and contraction and activation were initiated to 
simulate atrial contraction under a fixed atrial pressure.  

The atrial anatomy and corresponding stress fields 
are shown in Fig. 5. Table 2 summarizes the changes in 
volume during the simulation. The wall thickness and 
endocardial wall curvature were calculated on the refer-
ence mesh. Median wall thickness is 1.07 ± 0.47  mm, 
0.86 ± 0.39  mm and 0.64 ±  0.15  mm and median cur-
vature is 0.167 ± 0.082mm−1 , 0.172 ± 0.077mm−1 and 
0.169 ± 0.078mm−1 in patient cases, 1, 2 and 3, respec-
tively, where ± values indicate the interquartile range.

3.2  Correlation of wall stress with local anatomy

In the Law of Laplace, wall stress is proportional to the 
radius of curvature (or the inverse of curvature) and 
inversely proportional to wall thickness. We calculate the 
principal wall stress following passive inflation and at the 
point of maximal contraction from Fig. 5 for each case. We 
have plotted these two stress fields against the reciprocal of 
curvature and the reciprocal of wall thickness. The normality 
of the curvature, stress and wall thickness distributions was 
tested using Kolmogorov–Smirnov tests. As all distributions 
were not normally distributed, which is also indicated by the 
histograms in Fig. 6, we made comparisons using a Spear-
man’s correlation coefficient. This represents a minimum 

test to demonstrate a monotonic relationship, consistent 
with the stress being dependent on the corresponding input 
parameter.

Correlations are calculated for each plot in Fig. 6. When 
comparing curvature and wall stress we find a weak but 
consistent correlation during inflation (0.20–0.25) and 
maximal contraction (0.16–0.34). A stronger correlation 
is found between wall thickness and stress during inflation 
(0.54–0.62), however, this also decreases with maximal con-
traction (0.38–0.44). As wall stress is proportional to the 
ratio of the radius of curvature and wall thickness in the Law 
of Laplace it seemed possible that the wall stress may have 
a higher correlation with the inverse product of wall thick-
ness and curvature. However, the correlation of the inverse 
of wall thickness and curvature was only slightly different 
from the correlation between wall stress and wall thickness 
during inflation (0.51–0.60) and contraction (0.40–0.42).

The correlation statistics between the principal wall 
stress against wall thickness or curvatures are summarized 
in Table 3. To test if the correlations between wall thickness 
and curvature with wall stress were affected by a relationship 
between wall thickness and curvature, we calculated the cor-
relation of wall thickness and curvature and found no mean-
ingful correlation (− 0.027 to 0.12) in the reference domain.

Fig. 4  Curvature and thickness. Anterior perspective of analyzed patients showing the left atrial wall thickness in the first and curvature in the 
second row. Brighter colors correspond to larger thickness and curvature values
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3.3  Dependence of wall stress and local anatomy 
correlations on model parameters

All three patient cases had qualitatively similar correlations 
across all values tested. None of the correlations were higher 
than 0.62. To allow for a larger number of simulations, we 
preformed an extensive analysis on Case 3 to determine what 
model parameters play a role in the relationship between 
local anatomy, encoded in wall thickness and curvature, and 
wall stress, see Table 4.

To test if the degree of deformation affected the anatomi-
cal wall stress correlations, we recalculated the correlations 

in simulations with altered endocardial pressure and altered 
active contraction, that will alter deformation. Changes in 
deformation due to pressure and active contraction caused 
small (< 0.01) changes in the correlation of wall thickness 
or curvature with wall stress during inflation. During con-
traction, changes in deformation due to changes in pres-
sure and active contraction caused small ( < 0.03 ) changes 
in the correlation of curvature with wall stress, but caused 
larger ( > 0.1 ) changes in the correlation of wall thickness 
and wall stress. We then tested if the isotropic stiffness, 
anisotropic stiffness, stiffness scaling factor or degree of 
anisotropy affected the anatomical wall stress correlations. 
None of the correlations experienced large changes with the 
greatest change being from 0.44 to 0.47. We tested limit 
cases of fiber dispersion: active tension acting only in the 
fiber direction and isotropic fiber distribution. In the active 
contraction case, the isotropic fiber distribution acts as a 
hydro-static pressure, so there is limited deformation; this 
made wall thickness and wall curvature have the same cor-
relation with stress in the inflation and contraction cases 
and results in a limited ejection fraction. Active stress only 
acting in the fiber direction had no affect, as expected, on 
the inflation correlation and decreased the correlations in 
the contraction case. Changes in incompressibility caused 
minor changes in the inflation correlations but increasing the 

Fig. 5  Stress fields. Anterior perspective of analyzed patients show-
ing the reference geometry and the first principal total Cauchy stress 
( �p + �a ) for the biomechanics simulations at the inflated and maxi-

mally contracted state. To the right, the volume curve over time for 
the inflation to 10  mmHg, and subsequent active contraction and 
relaxation, for each patient

Table 2  Summary LA volume changes during simulated atrial con-
traction

i Case index; V0 reference volume; Vinfl volume after inflation, prior 
to atrial contraction; Vcont minimum atrial volume at contracted 
state; inflation fraction (IF) is Vinfl∕V0 ; and ejection fraction (EF) is 
( Vinfl − Vcont)∕Vinfl

i V
0
 (ml) V

infl
 (ml) V

cont
 (ml) IF (%) EF (%)

1 101.03 156.47 98.81 154.9 36.9
2 61.04 99.31 67.57 162.2 32.0
3 51.11 83.36 62.32 163.1 25.2
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Fig. 6  Hexbin plots of (i) total stress ( �p + �a ) vs. the inverse of cur-
vature, (ii) total stress versus the inverse of thickness and (iii) total 
stress versus the inverse of (curvature × thickness) for the inflated and 
the maximal contracted state, respectively. Thickness, curvature and 
the first principal stress were interpolated on the nodes of the finite 
element mesh and analyzed. Regions close to the pulmonary vein 

inlets and the mitral valve were excluded from the statistical analy-
sis and the plots since data there may be affected by the spring-type 
boundary conditions. Black lines show a linear regression model fit. 
Spearman’s � values and R2 values from the linear regression fit are 
given for each plot
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Table 3  Summary, Spearman’s 
correlations between the 
principle wall Cauchy stress and 
the curvature and wall thickness 
on the reference grid

���

∙
 are Spearman’s correlations between stress and inverse of wall thickness, ��

∙
 are Spearman’s correla-

tions between stress and inverses of curvature, ����

∙
 are Spearman’s correlations between stress and inverse 

of (curvature × thickness). The subscripts infl and cont denote the inflated and maximal contracted state, 
respectively. ���

C
 are Spearman’s correlations between wall thickness and curvature. p-values were < 0.001 

for all cases

i ���

infl
���

cont
��
infl

��
cont

����

infl
����

cont
���

C

1 0.556 0.437 0.227 0.186 0.525 0.412 0.005
2 0.615 0.384 0.199 0.162 0.603 0.402 −  0.027
3 0.536 0.438 0.248 0.343 0.506 0.424 0.117

Table 4  Sensitivity to parameter 
modifications

Shown are inflated volume Vinfl ; contracted volume Vcont ; time of maximal contraction tcont ; inflation frac-
tion (IF), ejection fraction (EF). Spearman-� values for correlation: inverse of wall thickness ( �� ), inverse 
of curvature ( � ), inverse of (thickness × curvature) ( ��� ) each versus stress at inflation ( �∙

infl
 ) and contrac-

tion ( �∙
cont

 ). For all models the initial volume was ≈ 51 mL since they are all based on the patient case 3 
from Table 1.

Parameter V
infl

 (mL) V
cont

 (mL) t
cont

 (s) IF (%) EF (%) ���

infl
���

cont
��
infl

��
cont

����

infl
����

cont

Control 83.4 62.3 142 163.1 25.2 0.536 0.438 0.248 0.343 0.506 0.522
pinfl + 25% 85.7 69.7 144 167.6 18.6 0.540 0.488 0.250 0.346 0.510 0.553
pinfl − 25% 80.4 52.9 141 157.3 34.2 0.528 0.337 0.243 0.320 0.498 0.446
Tpeak + 25% 83.4 54.6 140 163.1 34.4 0.536 0.372 0.248 0.334 0.506 0.477
Tpeak − 25% 83.4 69.8 144 163.1 16.2 0.536 0.486 0.248 0.333 0.506 0.542
a + 25% 81.9 61.6 141 160.3 24.8 0.541 0.440 0.245 0.342 0.506 0.523
a − 25% 85.1 63.3 142 166.5 25.7 0.530 0.436 0.251 0.343 0.505 0.521
af + 25% 82.6 62.3 142 161.6 24.6 0.535 0.436 0.252 0.342 0.508 0.520
af − 25% 84.3 62.4 141 164.9 26.0 0.538 0.441 0.243 0.343 0.504 0.523
stiff. +25% 81.2 61.6 142 158.9 24.2 0.539 0.438 0.248 0.342 0.508 0.521
stiff. −25% 86.1 63.4 141 168.5 26.4 0.531 0.438 0.247 0.343 0.503 0.522
� + 25% 85.7 67.0 143 167.7 21.8 0.547 0.474 0.232 0.339 0.501 0.540
� − 25% 81.3 59.8 141 159.2 26.5 0.525 0.408 0.261 0.341 0.510 0.502
� = 0 for �a 83.4 52.4 140 163.1 37.2 0.537 0.346 0.248 0.327 0.507 0.457
� = 1∕3 90.4 89.1 144 176.8 1.4 0.560 0.560 0.203 0.201 0.487 0.486
1∕� = 0 83.5 62.5 142 163.3 25.1 0.553 0.457 0.251 0.348 0.519 0.538
� = 1000 83.9 62.3 142 164.1 25.8 0.558 0.475 0.258 0.375 0.526 0.569
� = 500 84.5 62.1 142 165.3 26.5 0.562 0.482 0.261 0.382 0.530 0.579

Table 5  Sensitivity to 
geometrical modifications

Shown are inflated volume Vinfl ; contracted volume Vcont ; time of maximal contraction tcont ; inflation frac-
tion (IF), ejection fraction (EF). Spearman-� values for correlation: inverse of wall thickness ( �� ), inverse 
of curvature ( � ), inverse of (thickness × curvature) ( ��� ) each versus stress at inflation ( �∙

infl
 ) and contrac-

tion ( �∙
cont

)

Parameter V
infl

 (mL) V
cont

 (mL) t
cont

 (s) IF (%) EF (%) ���

infl
���

cont
��
infl

��
cont

����

infl
����

cont

Control 83.4 62.3 142 163.1 25.2 0.536 0.438 0.248 0.343 0.506 0.522
Patch +25% 83.4 62.3 142 163.1 25.2 0.536 0.439 0.248 0.352 0.522 0.535
Patch −25% 83.4 62.3 142 163.1 25.2 0.536 0.438 0.250 0.339 0.491 0.511
Noised 80.6 60.9 141 157.7 24.5 0.512 0.432 0.293 0.380 0.481 0.510
Constant 82.7 68.4 145 161.8 17.3 – – 0.343 0.467 – –
0% cutoff 83.4 62.3 142 163.1 25.2 0.495 0.410 0.202 0.330 0.464 0.505
50% cutoff 83.4 62.3 142 163.1 25.2 0.582 0.523 0.344 0.400 0.584 0.587
25/5% cutoff 83.4 62.3 142 163.1 25.2 0.510 0.453 0.312 0.345 0.541 0.530
5/25% cutoff 83.4 62.3 142 163.1 25.2 0.606 0.506 0.260 0.369 0.536 0.565
�t(�) 83.4 62.315 142 163.1 25.2 0.561 0.518 0.390 0.446 0.525 0.600
stim. Γendo 83.358 72.176 162 163.1 13.4 0.536 0.498 0.238 0.326 0.506 0.544



1027The impact of wall thickness and curvature on wall stress in patient‑specific electromechanical…

1 3

degree of incompressibility caused a decrease in the contrac-
tion correlations.

3.4  Dependence of wall stress and local anatomy 
correlations on model creation and analysis 
parameters

In addition to the model parameters, additional variables 
were set to create and analyze the model geometry. We 
tested if these factors play a role in determining the local 
anatomical - wall stress correlations, see Table 5. The curva-
ture at each mesh vertex is calculated from a local region of 
elements defined by a patch. Increasing and decreasing the 
size of this patch caused minor (<0.05) change in the cor-
relations. Introducing noise into the mesh to see if the spe-
cific anatomy was important caused minor (<0.05) changes 
in the correlations. Removing the effects of wall thickness 
by setting wall thickness to be constant caused an increase 
from 0.248 to 0.343 and 0.343 to 0.467 in the correlation of 
curvature with wall stress during inflation and contraction, 
respectively.

In the analysis presented above, we have excluded regions 
where we applied boundary constraints; when these are 
included the correlations all decrease. To test if boundary 
conditions play a role in the correlations, we only considered 
the middle 50% of the anatomy that is remote from regions 
where boundary conditions are applied (pulmonary veins 
and mitral valve). The local wall thickness and curvature to 
wall stress correlations in these regions were all higher than 
correlations measured across the whole atria, suggesting 
boundary conditions decrease the correlations between local 
anatomy and wall stress. Excluding tissue preferentially near 
the mitral valve or the pulmonary veins shows that the mitral 
valve has the greater impact on the correlation. We find that 
using the deformed, as opposed to the reference, anatomy 
for calculating wall thickness and curvature improves all 
correlations. Finally, we demonstrated that the activation 
pattern did not play a large role in the correlations. Stimulat-
ing the entire endocardium causes the correlations to change 
by − 0.01 to 0.06.

Table 6  Sensitivity to stress 
measurements

Shown is total Cauchy stress ( �p + �a ), passive Cauchy stress ( �p ), active Cauchy stress ( �a ), and total sec-
ond Piola-Kirchhoff stress ( Sp + Sa ). For each the stress magnitude, first, second, and third principal stress, 
fiber stress, and von Mises stress is computed. Spearman-� values for correlation: inverse of wall thickness 
( �� ), inverse of curvature ( � ), inverse of (thickness × curvature) ( ��� ) each versus stress at inflation ( �∙

infl
 ) 

and contraction ( �∙
cont

 ). Active stress is 0 at the point of inflation, hence, results are omitted

Stress type Stress part ���

infl
���

cont
��
infl

��
cont

����

infl
����

cont

1st principal stress �p + �a 0.536 0.438 0.248 0.343 0.506 0.522
2nd principal stress �p + �a 0.415 0.290 0.323 0.320 0.495 0.419
3rd principal stress �p + �a 0.041 0.089 0.192 0.178 0.170 0.186
fiber stress �p + �a 0.522 0.410 0.252 0.366 0.492 0.517
Stress magnitude �p + �a 0.578 0.480 0.266 0.370 0.547 0.574
Von Mises stress �p + �a 0.552 0.448 0.207 0.290 0.483 0.484
1st principal stress �p 0.536 0.310 0.248 0.307 0.506 0.424
2nd principal stress �p 0.415 0.288 0.323 0.251 0.495 0.352
3rd principal stress �p 0.041 0.273 0.192 0.266 0.170 0.378
Fiber stress �p 0.522 0.402 0.252 0.299 0.492 0.471
Stress magnitude �p 0.578 − 0.244 0.266 − 0.206 0.547 − 0.322
Von Mises stress �p 0.552 0.126 0.207 0.135 0.483 0.171
1st principal stress �a – 0.222 – 0.172 – 0.259
2nd principal stress �a – 0.086 – 0.063 – 0.077
3rd principal stress �a – − 0.096 – − 0.034 – −0.067
Fiber stress �a – 0.214 – 0.269 – 0.314
Stress magnitude �a – 0.401 – 0.317 – 0.462
Von Mises stress �a – 0.285 – 0.206 – 0.318
1st principal stress Sp + Sa 0.553 0.374 0.249 0.333 0.517 0.483
2nd principal stress Sp + Sa 0.388 0.315 0.308 0.280 0.469 0.399
3rd principal stress Sp + Sa 0.041 0.145 0.149 0.266 0.133 0.289
Fiber stress Sp + Sa 0.532 0.390 0.272 0.358 0.515 0.504
Stress magnitude Sp + Sa 0.595 0.456 0.282 0.393 0.569 0.578
Von Mises stress Sp + Sa 0.576 0.375 0.174 0.185 0.474 0.365



1028 C. M. Augustin et al.

1 3

3.5  Dependence of wall stress and local anatomy 
correlations on stress definition

In this study we defined wall stress as the first principal 
component of the combined active and passive stress, as this 
provides a general coordinate free measure of local stress. 
To test the role of the stress definition used in the anatomi-
cal wall stress correlations we observed, we recalculated 
the correlations using the total, active or passive stress in 
the fiber direction, the stress magnitude and the von Mises 
stress, see Table 6. The correlations for the total stress show 
minimal differences for the different stress definitions. In 
the case of the active and passive stress there was limited 
change in the correlation between wall thickness and curva-
ture with any of the stress definitions during inflation. The 
stress magnitude and von Mises stress had lower and higher 
correlations with the passive and active stress, respectively 
during contraction.

3.6  Testing the impact of geometric complexity 
on the correlation of wall stress with local 
anatomy

We have shown that degree of deformation, heterogeneous 
wall thickness, boundary conditions and choice of reference 
frame can all affect anatomical wall stress correlations. To 
confirm that these findings are not an artifact of the simula-
tion code, we verified that the simulation code can replicate 
the Law of Laplace in idealized models. Using the same 
models, we tested if the fiber material model plays a role in 
the relationship between curvature and wall thickness. We 
performed simulations in an idealized sphere model of the 
atria with isotropic transversely isotropic and anisotropic 
fibers in a compressible and incompressible model with 
different wall thicknesses and curvature. In the case of the 
isotropic material, contraction is inhibited as the increase in 
active tension in all directions is equivalent to an increase 
in hydro-static pressure. Hence, the very low ejection frac-
tions ( < 2% ) for the isotropic cases are to be expected. With 
the exception of the transversely isotropic case, passive cir-
cular stress results of the FE simulations �circ

infl
 match well 

with the Laplace estimates �La
infl

 , (see Bold value’s columns 
in Table 7), especially for the thinnest spheres. As in these 
cases the Laplace laws are known to be almost exact, this 
serves as a code verification of the FE implementation. For 
the transversely isotropic case, the sphere is less resistant 
to strain in z-axis direction, see Fig. 2c. This results in a 
ellipsoidal shape after inflation and at contracted state and 
as a consequence Laplace estimates are less accurate. While 
the Laplace law is relatively precise in predicting passive 
stresses at inflation, consistent with the complex anatomi-
cal models, the estimates compare poorly in the active con-
tracted state, in particular for anisotropic materials.

3.7  Testing if the Law of Laplace can be used 
to estimate mean wall stress in the left atria

To test if the Law of Laplace can be used for estimating wall 
stress in the LA, we first calculated the stress distribution 
in the LA for all three cases, using the reference simula-
tions (Fig. 7) and compared these distributions to the mean 
wall stress estimated using the Law of Laplace (Table 8). 
This shows that the Law of Laplace underestimates mean 
wall stress by 14–16% during passive inflation and 22–38% 
during active contraction. There is also a high degree of 
variation in the wall stress, under all conditions, that is not 
captured in the Law of Laplace wall stress estimate. Sec-
ondly, we calculated the maximum correlation achievable 
under ideal conditions in all three patient cases, where the 
factors identified in Case 3 that caused the greatest increase 
in correlations between wall stress and local anatomy were 
applied. Table 9, shows the correlations calculated where 
we quantified local anatomy in the deformed anatomy, 
with increased endocardial pressure, with decreased active 
tension and only considering the middle 50% of the atria. 
These factors are cumulative and cause an increase in cor-
relations in all three cases, suggesting that these findings 
are not specific to Case 3. In particular, we note higher 
correlation with the inverse product of wall thickness and 
curvature: 0.61–0.68 for the inflated and 0.64–0.70 for the 
fully contracted case. The conditions imposed to maximize 
correlations, all increase the cavity volume and reduce the 
effect of boundary conditions; thus, higher correlations are 
to be expected as this setting is suited better to the Law of 
Laplace.

4  Discussion

We have developed a modeling framework for simulating 
left atrium contraction. We have simulated passive inflation 
and active contraction of the atria. We have shown that, con-
sistent with the Law of Laplace, the principal wall stress is 
dependent on LA wall thickness and curvature under condi-
tions of passive inflation, with a higher dependence on wall 
thickness. Under conditions of active contraction we find a 
smaller correlation between wall stress and curvature or wall 
thickness. This finding is replicated in both idealized and 
complex geometries. A sensitivity analysis demonstrated 
that the correlations are robust to many model simulation 
parameters, model creation and analysis parameters and the 
definition of stress (Tables 4, 5, 6). To maximize the correla-
tion of wall stress and local anatomy required calculations 
of wall thickness and curvature on the deformed geometry, 
only consider tissue that is remote from boundary conditions 
and when deformations are reduced.
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In the model, we predicted maximal LA volumes of 
83–156 mL following passive inflation. The final pressure 
was higher than expected under physiological conditions 
leading to higher volumes but close to reported values of 
80 ± 30 mL in controls and 115 ± 33 mL in AF patients 
(Stojanovska et al. 2014). The ejection fractions predicted 

by the model were 25–37%, which are consistent with 
measurements of ≈ 30% (Rodevand et al. 1999; Stefanadis 
et al. 1998). This shows that the model is capable of oper-
ating within a physiological range consistent with clinical 
observations.

A correlation was found between wall stress and both wall 
thickness and curvature during passive inflation (Fig. 6). 
This shows that both anatomical attributes are important. 
Wall thickness does have a stronger correlation (0.54–0.62) 
than curvature (0.20 to 0.25) emphasizing the importance of 
accounting for atrial wall thickness in personalized calcula-
tions of local wall stress. This may be particularly important 
when studying how local wall stress is correlated with local 
tissue remodeling.

In the Law of Laplace, wall stress is proportional to the 
ratio of the radius of curvature (the inverse of curvature) 
and the wall thickness. To test if this ratio had a stronger 
correlation with wall stress than wall thickness or cur-
vature independently, we plotted the inverse product of 
wall thickness and curvature. This resulted in negligible 
improvement in the correlation (Fig. 6).

In the ventricles, myocardial wall stress plays a role 
in regulating growth and oxygen demand (Yin 1981) and 
was first associated with cardiac shape by Woods (1892). 
However, these relationships have not been evaluated in 
the atrium, where measuring wall thickness across the 
entire atria has only recently become possible (Bishop 
et al. 2016). We found that wall thickness had a greater 

Fig. 7  Statistical distribution of stress for all three patient cases. Box-
plots show the distribution of the 1st principal Cauchy stress: in gray 
stresses at inflated ( �1st

infl
 ), in white stresses at contracted state ( �1st

cont
 ). 

The box represents the interquartile range (IQR) between lower quar-
tile (25 %) and upper quartile (75 %); horizontal black line represents 
the median value; whisker ends represent the lowest and highest data 
points still within 1.5 IQR of the lower and upper quartiles, respec-
tively

Table 8  Laplace law

Patient cases. Comparison of FE-based mean principal stresses (minimal, maximal, mean, and standard 
deviation) with Laplace estimations ( �La ), see Eqs. (16)–(18), for the inflated (infl.) and the fully contracted 
(cont.) state

Value Unit Patient 1 Patient 2 Patient 3

infl. cont. infl. cont. infl. cont.

Min (kPa) − 573.01 − 336.46 − 515.86 − 635.81 − 416.53 − 381.09
Max (kPa) 2304.60 422.54 869.39 749.39 389.49 357.67
Mean (kPa) 21.01 25.51 19.92 28.16 30.93 33.69
SD (kPa) 20.51 17.02 24.47 19.92 25.21 20.01
�La (kPa) 17.67 17.85 17.19 17.34 26.30 26.40

Table 9  Summary, Spearman’s correlations between the principle 
wall Cauchy stress and the curvature and wall thickness where we 
quantified local anatomy in the deformed anatomy, increased endo-

cardial pressure, decreased active tension and only considered the 
middle 50% of the atria

Abbreviations: ���

∙
 are Spearman’s correlations between stress and inverse of wall thickness, ��

∙
 are Spearman’s correlations between stress and 

inverses of curvature, ����

∙
 are Spearman’s correlations between stress and inverse of (curvature × thickness). The subscripts infl and cont denote 

the inflated and maximal contracted state, respectively. p-values were < 0.001 for all cases

i ���

infl
���

cont
��
infl

��
cont

����

infl
����

cont

1 0.550 0.636 0.402 0.407 0.642 0.669
2 0.600 0.616 0.411 0.406 0.682 0.639
3 0.598 0.644 0.367 0.480 0.608 0.699
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impact on determining wall stress than curvature in the 
three patients cases studied. These three cases span a range 
of atrial pathologies from hyperlipidemia, which is associ-
ated with elevated blood pressure, atrial fibrillation, which 
is associated with a decrease in atrial mechanical function 
and a healthy control.

Increased left ventricle pressure is hypothesized to 
cause cellular hypertrophy and increased wall thickness 
to bring wall stress back to normal levels (Grossman et al. 
1975). This is the first study to show that in the atria wall 
thickness correlates with local principal wall stress and 
similar regulatory pathways, that are hypothesized in the 
ventricle, may be present in the atria. Previous studies 
have also found that atrial wall stress is correlated with 
remodeling, in the form of fibrosis (Hunter et al. 2012), 
although this study was performed with homogeneous wall 
thickness and may need to be confirmed in models that 
account for varying wall thickness across the atrial body.

The potential link between curvature, wall thickness, 
wall stress, growth and fibrosis may have important, albeit 
complex, interactions with atrial electrophysiology. This 
becomes particularly important if remodeling in the atria 
are regulated by wall stress, as proposed in the ventricle 
(Grossman et al. 1975), and provides a possible link between 
increased arrhythmia risk and pathological changes in atrial 
loading. Previous studies have found atrial wall thickness 
and curvature impact the conduction velocity (Rossi et al. 
2018), gradients in thickness are associated with stabiliz-
ing re-entrant activation patterns (Yamazaki et al. 2012) and 
patients with thicker atria are at higher risk of developing 
arrhythmias (Whitaker et al. 2016). Studying the interaction 
between wall stress, anatomy and atrial arrhythmias using 
computational simulations will require large highly detailed 
complex models and motivates further investment in multi-
physics simulators and simulation speed.

To identify the factors that are important in determining 
the correlation between wall stress with wall thickness or 
curvature we preformed three sensitivity studies investigat-
ing model parameters, variables for creating and analyzing 
the model geometry and the definition of stress. For the vast 
majority of model perturbations, there was no to limited 
changes in the correlations suggesting that these are robust 
to model assumptions. We identified the choice of reference 
frame, degree of incompressibility, amount of deformation 
and boundary conditions as confounding factors in the cor-
relation of local anatomy with wall stress. However, when 
including all of these factors in the model the maximum 
correlation was only 0.6–0.7, showing that in complex atrial 
anatomy it is unlikely that a simple anatomical-based law 
can be used to estimate local wall stress.

4.1  Limitations

This is the first study of atrial mechanics to account for vary-
ing wall thickness derived from clinical images. We have 
applied our modeling framework to three patient cases, 
demonstrating that the techniques are applicable beyond a 
single case study. However, in contrast to work in the ventri-
cles (Nordsletten et al. 2011; Augustin et al. 2016) we have 
applied a simple active contraction model, static boundary 
conditions and we have not unloaded the geometry.

The model of active contraction is driven by a phenom-
enological model of tension development to estimate atrial 
cellular contraction. We have used a simplified contrac-
tion model that would benefit from increased physiological 
detail. Previous attempts at modeling atrial contraction in 
organ scale models have adapted human ventricular mod-
els (Land and Niederer 2018) or used models initially fitted 
to rat ventricular data (Moyer et al. 2015; Adeniran et al. 
2015). To improve simulations of atrial contraction will 
require the development of a model of human atrial contrac-
tion from detailed human atrial experimental measurements.

The passive mechanics parameters used in the simulations 
were dependent on two modeling decisions. First, in fitting 
the passive material properties the value of � was fixed to 
fall within 0.1 and 0.9, to ensure that the model included 
both an endocardium and epicardium layer. The final fitted 
value was 0.1, suggesting that the optimal � value could fall 
between 0 and 0.1. This constraint may have affected the 
fitted passive stiffness parameters. Second, the atria was not 
unloaded at the time point when the reference anatomy was 
created. As the atria exhibit nonlinear constitutive proper-
ties, the loaded reference geometry will results in smaller 
calculated strains. To compensate for these effects, we scaled 
the passive mechanics model by a factor of 2. To test if these 
decisions impacted the calculated correlations we altered 
the isotropic, fiber or combined stiffness (Table 4). None of 
these changes caused large differences in the correlations 
suggesting these model assumptions do not affect the study 
conclusions.

In the performed simulations, a biophysical cell model 
was used that simulates the full action potential and calcium 
dynamics. These models are more complex than may be nec-
essary for our simulations. However, the relatively small cost 
of using a full cell model allows us to better capture the 
effects, if any, of wave curvature and activation speed. As 
electrophysiology was not the focus of the study, we did not 
investigate what effect the use of a biophysical cell model 
had on simulation results.

We have simulated a single phase of the atrial cardiac 
cycle against a fixed pressure boundary condition. To 
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capture wall thickness in our model, we derived the model 
anatomy from cardiac CT images. While CT gives excel-
lent resolution, to capture motion with cardiac CT requires 
a higher radiation dose and was not available for our patient 
cases. This meant that we did not have information on vol-
ume transients nor did we have information on mitral valve 
ring motion. Further, we did not have access to invasive 
pressure measurements or echocardiogram Doppler flow 
measurements to allow us to estimate atrial pressure. As 
a result, we were unable to simulate the reservoir phase of 
the atrial cycle that is driven by ventricular motion and we 
were unable to personalize dynamic boundary conditions so 
used literature values to define the fixed pressure boundary 
conditions.

Large deformation mechanics models are initiated 
from a reference unloaded geometry. The heart is never 
in an unloaded state as it always has a cavity pressure. To 
account for the cavity pressure, when the heart is imaged 
in patient-specific ventricular models, the meshes are 
unloaded to estimate the reference configuration based 
on the boundary conditions and the imaged deformed 
anatomy. This results in the myocardium being under 
strain when the heart is re-inflated back to the imaged 
volume. Due to the thin shell of the atria, unloading the 
atria risks buckling that would lead to an unstable simu-
lation. The unloading of the atria may require specific 
numerical techniques to allow for a stable simulation. 
The absence of unloading would make the atria more 
compliant as it would operate at lower strains. To account 
for this potential underestimation of atrial stiffness, we 
increased the stiffness in our simulations. Accounting for 
atrial unloading will be important to enable the mapping 
of detailed-ex-vivo measurements into simulations of the 
atria in-vivo.

This study used publicly available patient-specific 
anatomies for three cases. This small sample does not 
represent the full variation in atria anatomies and limits 
the ability to generalize these findings to other patients. 
However, the correlations that we identified were quali-
tatively similar across all three cases in the reference 
simulations and all three cases saw similar increases in 
correlations under idealized conditions (Table 9). In addi-
tion, we were able to replicate the decreased correlation 
between local anatomy with wall stress during contrac-
tion in a sphere model (Table 7) observed in the reference 
models (Table 3). Two of the patients had known patholo-
gies and were likely taking corresponding medication that 
have the potential to alter atrial electrophysiology and/or 
contraction. As models were generated from anonymized 
data, the drug history of each patient was not available 
for this study.

5  Conclusion

We have created the first cohort of atrial mechanics models 
personalized to patients anatomy, including wall thickness. 
We found that the principal wall stress was determined more 
by the wall thickness than the curvature, necessitating per-
sonalized wall thickness measurements for calculating local 
wall stress. For the conditions considered here, the Law of 
Laplace provides a poor estimate of local wall stress in the 
left atrium. The choice of reference frame, degree of incom-
pressibility, amount of deformation and boundary conditions 
were the main confounding factors, but did not fully explain 
the difference between the simulated wall stress and the Law 
of Laplace. This simulation framework provides a platform 
for studying the link between local anatomy, mechanics and 
electrophysiology.
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