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Background: Hepatocellular carcinoma (HCC) is one of the most common malignant
tumors, the pathogenesis of which remains unclear. Mediator complex subunit 19
(MED19), a subunit of the Mediator complex, is a multi-protein co-activator necessary
for DNA transcription factors to induce RNA polymerase II transcription. In the current
study, we aimed to study the role of MED19 in HCC and elucidate its mechanism.

Methods: MED19 expression in HCC tissues was determined. The relationship between
MED19 and the clinical prognosis was explored. The influence of MED19 on HCC cell
viability, migration, invasion, and apoptosis was studied. The expression of AKT/mTOR
pathway genes and proteins was detected by qRT-PCR and western blot. The correlation
between MED19 and immune infiltration was investigated.

Results:MED19was upregulated in HCC tissues compared with tumor-adjacent tissues,
and was associated with a poor prognosis. Furthermore, high MED19 expression was
correlated with race, gender, etc. Knockdown of MED19 inhibited cell proliferation,
migration, invasion, and promoted apoptosis. Knockdown of MED19 decreased p-AKT
and p-mTOR protein expression. Additionally, the downstream effectors of the AKT/
mTOR pathway, p70S6K1 and 4EBP1, were affected by MED19. Notably, MED19
expression was positively correlated with the infiltration levels of B cells, CD4+ T cells,
CD8+ T cells, macrophages, etc.

Conclusion: MED19 is significantly upregulated in HCC tissues and cells. MED19 may
promote the progression of HCC in vitro and may be related to immune infiltration.
Together, our data show that MED19 could be considered as a new possible biomarker
as well as a novel therapeutic target for HCC.

Keywords: hepatocellular carcinoma, MED19, AKT/mTOR signaling pathway, proliferation/migration/invasion,
tumor immune infiltration
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary
malignancy of hepatocytes and serves as the third leading cause
of cancer-related death worldwide (1).The treatment of HCC is
limited. At present, surgery is the main treatment strategy for
early HCC; however, following surgery recurrence and
metastasis are common. Patients with advanced HCC are
prescribed sorafenib, a specific molecular targeting drug, but
drug resistance and side effects have become serious problems (2,
3). Furthermore, the prognosis of HCC is very poor with the 5-
year survival rate reported at less than 5% (4). Therefore,
researchers and clinicians must elucidate the molecular
mechanisms of the occurrence, development, invasion, and
metastasis of HCC to find and develop new therapeutic targets.

Mediator is an evolutionarily conservedmulti-protein complex
(5, 6). As an important part of the transcription mechanism of
eukaryotes, the Mediator complex participates in gene expression
and mediates the interaction between different proteins (7–9). In
humans, mutations, or changes in the Mediator complex have a
wide-ranging impact on the occurrence and development of a
variety of diseases including cancer.

In 2003,MED19, or lung cancer metastasis-associated protein
1, was cloned from lung large carcinoma and found to be an
important part of the Mediator complex (10–12). MED19 is
mainly confined to the nuclear region of the cell (https://www.
proteinatlas.org/ENSG00000156603-MED19/cell). Further,
several studies have shown that MED19 plays a key role in
malignant tumor growth by regulating signals related to cell
growth, differentiation, cell cycle, and apoptosis (13–16). Zhang
et al. found that the expression ofMED19 in breast cancer tissues
was significantly higher than that in adjacent tissues (17, 18).
Further, MED19 promoted breast cancer cell proliferation
through the EGFR/MEK/ERK signaling pathway (19). In
addition, studies have reported that the expression of MED19
was positively correlated with the expression of bone
morphogenetic protein 2 (BMP2) in bladder urothelial
carcinoma bone metastasis and invasion (20). MED19
transcription can activate the expression of endogenous
Tspan8, and regulate the adhesion and invasion of melanoma
in a Tspan8-dependent manner (21). As a member of the
Mediator complex, MED19 plays a key role in the activation
and inhibition of tumor signal transduction and transcriptional
regulation and has a role in the induction of other developmental
diseases. Zou et al. (2011) reported that the inhibition ofMED19
reduced HCC cellular proliferation, induced cell-cycle arrest, and
suppressed tumor formation (22). However, the specific
mechanism explaining how MED19 affects the occurrence and
development of HCC is unclear. Therefore, an in-depth
understanding of the biological function of MED19 and its
mechanism of action in HCC might be helpful in the
identification of potential targets for clinical treatment.

In the present study, we show that MED19 is upregulated in
HCC tissues and thatMED19 upregulation was closely correlated
with a poor prognosis. Furthermore, MED19 knockdown was
observed to modulate the migration, invasion, and apoptosis of
HCC cells, and may promote the occurrence and development of
Frontiers in Oncology | www.frontiersin.org 2
HCC through the AKT/mTOR pathway. Additionally, MED19
was correlated with tumor immune infiltration. Together, this
study shows that MED19 plays an important oncogenic role in
the occurrence and development of HCC, and could be
considered as a newpossible biomarker as well as a novel
therapeutic target for HCC.
MATERIALS AND METHODS

Public Datasets Analysis
Tumor Immune Estimation Resource (TIMER) 2.0 is a
comprehensive resource for the systematic assessment of diverse
cancer types. Using the TCGA database, TIMER 2.0 explores the
differential gene expression between tumors and normal tissues,
the correlation between gene expression and clinical results, and
the analysis of tumor immune infiltration (23). Gene Expression
Profiling InteractiveAnalysis (GEPIA) is a web server based on the
visual analysis of the TCGA database (24). It provides several key
interactive customization features, such as differential expression
analysis, patient survival analysis, and related gene detection, etc.
UALCAN is a comprehensive, user-friendly, and interactive web
resource for analyzing cancer data (25). LinkedOmics is a platform
that can access, analyze and compare cancer multi-omics data
within and across tumor types (26). In the current study, the
TIMER 2.0 database was used to analyze immune infiltration and
the expression profile of MED19 in different types of human
cancers. Additionally, using the GEPIA datasets, the survival
analysis of MED19 in HCC was evaluated. Using the UALCAN
dataset, factors related to MED19 transcription in HCC were
investigated. Using the LinkedOmics datasets, genes in HCC that
are related toMED19 were assessed and used to draw heat maps.
Finally, the relationship between MED19 and several key HCC
regulators, including AKT andmTOR was assessed.

Immunohistochemistry
Human HCC tissue specimens and adjacent non-tumor tissues
were obtained from patients who underwent surgical
hepatectomy. All patients were sourced from the Second
Affiliated Hospital of Guilin Medical University, China and
signed informed consent. Immunohistochemical staining
analyses were performed using formalin-fixed paraffin-
embedded tissue sections. The sections were deparaffinized,
rehydrated, and incubated in EDTA at 120°C for 5 minutes for
antigen repair. After incubating with 3% H2O2 at room
temperature for 15 minutes, the sections were sealed with fetal
bovine serum and incubated with primary antibody overnight.
Goat anti-rabbit antibody coupled with HRP was used for
immune detection. Finally, the immune complex was displayed
with chromogenic substrate, and the sections were re-stained
with hematoxylin. In order to reduce the non-specific binding of
antibody, titration was used to optimize the concentration. The
diagnosis of the liver cancer samples was verified by pathologists.

Cell Lines and Cell Culture
The human hepatocellular carcinoma cell lines HepG2 and Huh7
are generated by our laboratory. The HepG2 and Huh7 cells were
January 2022 | Volume 11 | Article 792285
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maintained in DMEM high glucose medium (Gibco; Thermo
Fisher Scientific) containing 10% serum (South American Fetal
Bovine, EXCELL).

Plasmid Construction and
Cell Transfection
The MED19 knockdown plasmid was designed by Genechem,
Shanghai, China. The sh-MED19 sequence was as follows: sense
5’-CAGTACTCTTTCAATCCTAT-3’, irrelevant nucleotides not
targeting any annotated human genes were used as the negative
control (sh-NC): sense 5’-TTCTCCGAACGTGTCACGT-3’.
Cell transfection with plasmids was conducted using
Lipofectamine 2000 (Invitrogen, USA) in accordance with the
manufacturer’s instructions.

Cell Proliferation Analysis
Cell proliferation was measured by the MTT assay (Solarbio,
China). Briefly, the cells were transfected with the sh-MED19
plasmid or corresponding negative control and were then seeded
into 96- well plates (5×103 cells/well), and cultured at 37°C for 0 h,
24 h, 48 h, 72 h. After incubation, 20 ul of the MTT solution was
added to eachwell and incubated for 4 h at each time point at 37°C.
The MTT solution was aspirated and 200ul DMSO (Solarbio,
China) was added to each well to dissolve the formazan crystals.
Cellular proliferation in each well was quantified by measuring
optical density using an EPOCH 2 microplate spectrophotometer
at a wavelength of 490 nm. The transfected cells were used for cell
colony formation assay. Approximately, 100-1000 cells were
added per well in a six-well plate. The colonies were then fixed
with 4% paraformaldehyde, stained with crystal violet solution
and counted.

Cell Migration and Invasion Assay
Cell migratory ability was assessed using the scratch assay. After
transfection with the targeted plasmid, 106 cells were seeded in a
six-well plate with DMEM containing 2% serum. After adhering
to the well, the cells were scratched with a 10 ul pipette tip. The
migration distance was measured at 0 h, 24 h and 48 h, and the
migration capacity was calculated. Cell invasion was measured in
a 24-well plate and transwell chamber covered with Matrigel
(CORNING, USA). The transfected cells were resuspended in
serum-free media and counted. The upper chamber was
inoculated with 105 cells per well, and 10% serum media was
added to the lower chamber of the 24-well plate as an inducer to
trigger cell invasion. After 36 h, the bottom of the chamber was
fixed with 4% paraformaldehyde, stained with 1% crystal violet
and counted (100X).

Cell Apoptosis Assay
After cell transfection for 24 h, the 6-well plate was redigested to
observe the transfection efficiency. A sterile cover glass was
placed in the 6-well plate in advance. The cells were then
added to the 6 well-plate and cultured overnight to a density
of approximately 50-80%. Following the culture period, the cells
were fixed with 0.5 ml fixative solution for 10 min, stained with
0.5 ml Hoechst 33258 staining solution for 5 min, washed with
anti-fluorescence quenching solution, and observed under a
Frontiers in Oncology | www.frontiersin.org 3
fluorescence microscope. Normal cell nuclei appeared blue,
apoptotic nuclei were densely stained, or fragmented and
densely stained, and whitish.

Flow Cytometry for Apoptosis Detection
After 24 h of cell transfection to observe the transfection
efficiency, apoptosis was measured using the Annexin V-
Phycoerytirin (Annexin V-PE) cell apoptosis detection kit
(C1065, Beyotime Biotechnology, China). These data were
acquired by flow cytometry (Thermo Fisher, USA) and
analyzed by Flowjo software.

qRT-PCR
Total RNA was extracted using the TRIZOL. RNA was reverse
transcribed to cDNA using the qRT-PCR kit (Thermo Scientific,
USA) according to the manufacturer’s protocol. The PCR cycling
conditions were as follows: 40 cycles with pre-denaturation at
95°C for 15 min, denaturation at 95°C for 10 s, and annealing
and extension at 60°C for 32 s.

The primers used in this study were synthesized by Wuhan
Genecreate Biological Engineering Co., Ltd, and were as follows:
MED19-F: CTGACAGGCAGCACGAATCT, MED19-R: CTCC
TTCACCTTCTTCCCACA; AKT-F: TACTCTTTCCAGA
CCCACGAC, AKT-R: AGGTTCTCCAGCTTGAGGTC;
mTOR-F: CGCTGTCATCCCTTTATCGAC, mTOR-R: CAGA
GTCAAGTGGTCATAGTCCG; 4EBP1-F: CTCACCTG
TACCAAAACACC, 4EBP1-R: CCCGCTTATCTTCTG
GGCTA; p70S6K1-F: GTGCTGTGGATTGGTGGAGT,
p70S6K1-R: GAGGTAGGGAGGCAAATTGAG; GAPDH-F:
AGAAGGCTGGGGCTCATTTG, GAPDH-R: AGGGG
CCATCCACAGTCTTC. All samples were normalized to
internal controls and fold changes were calculated based on
relative quantification (2-DDCt).

Western Blot
48 h after cell transfection, the protein sampleswere extractedwith
high-efficiencyRIPAcell lysis buffer andprotease inhibitor (100:1).
Then, the protein samples were electrophoresed on 10% sodium
dodecyl sulfate-polyacrylamide (SDS-PAGE) gel, then transferred
to polyvinylidene fluoride (PVDF) membrane and blocked with
5% skimmed milk powder for 2 h. The samples were incubated
with the primary antibody overnight. All antibodies used in this
study are shown in Table 1. The membrane was washed three
times, incubated with the corresponding enzyme-labeled
secondary antibodies for 1 h, including horseradish peroxidase
(HRP) – conjugated anti-rabbit (cat. no. 111-035-003, 1:10000;
Jackson ImmunoResearch, USA), and horseradish peroxidase
(HRP) – conjugated anti-mouse (cat. no. 115-035-003, 1:10000;
Jackson ImmunoResearch, USA). The signals of the protein bands
were analyzed using ChemiDoc XRS+ biomolecular imaging
system (BIO-RAD, USA). Analysis using Image J software.

Statistical Analysis
All in vitro experiments were performed in triplicate. All
statistical calculations and analyses were performed using
GraphPad Prism 8.0.2 software (GraphPad Software, San
Diego, CA, USA). The data were presented as mean ± SD. The
January 2022 | Volume 11 | Article 792285
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comparison between the two groups was performed using by
unpaired Student’s t -test (for parametric data). P values <0.05
were considered statistically different.
RESULTS

MED19 Was Up-Regulated in
Hepatocellular Carcinoma
In this study, the carcinogenic effect ofMED19 during HCC was
investigated. First, we analyzed the expression patterns of
MED19 in different tumor and non-tumor tissues. Using
TIMER 2.0, MED19 was shown to be highly expressed for
bladder urothelial carcinoma (BLCA), breast cancer (BRCA),
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD) and other types in the TCGA project (Figure 1A).
Based on the GEPIA dataset, matching TCGA normal and GTEx
data, MED19 expression was found to be significantly higher in
HCC tissues relative to other non-tumor tissues (Figure 1B).
Based on the TCGA dataset, MED19 expression was highest in
stage III HCC tissues (Figure 1C). The high expression of
MED19 was associated with overall survival and disease-free
survival, suggesting a poor prognosis (Figures 1D, E). In
addition, within the clinical specimens collected, MED19 was
highly expressed in cancer tissues compared with paracancerous
tissues (Figure 1F). The level of MED19 transcription was
significantly higher in HCC patients relative to healthy subjects
in the subgroup analysis based on gender, age, race, tumor grade,
etc. (Figure 2). Therefore, the expression ofMED19may serve as
a potential diagnostic indicator in HCC.

MED19 Knockdown Inhibited Proliferation
and Promoted Apoptosis of HCC Cell
In the current study, we used HepG2 and Huh7 cells as
knockdown models to explore the potential biological function
of MED19. shRNA was transfected into cells within a plasmid
vector. The transfection efficiency was evaluated by fluorescence
microscope and knockdown efficiency was evaluated by western
blot and qRT-PCR (Figures 3A, B). The proliferation ability of
Huh7 and HepG2 cells was detected by the MTT and colony
formation assays. The downregulation of MED19 significantly
inhibited cell proliferation (Figure 3C) and colony formation
Frontiers in Oncology | www.frontiersin.org 4
efficiency (Figure 3D). Due to a higher transfection efficiency of
HepG2 relative to Huh7, fewer HepG2 colonies were observed.
In addition, we found that the apoptotic ability of HCC cells
increased significantly after MED19 was knockdown by Hoechst
and flow cytometry (Figures 3E, F).

MED19 Knockdown Inhibited HCC Cell
Migration and Invasion
To explore the effect ofMED19 on cell migration and invasion, a
transwell experiment was performed. The number of cells that
crossed the chamber in the sh-MED19 group was significantly
lower than the sh-NC group (Figures 4A, D). The invasion
experiment was performed in a chamber containing Matrigel.
The knockdown of MED19 inhibited the invasion ability of
HepG2 and Huh7 cells (Figures 4B, E). Wound-healing
experiments further confirmed the influence of MED19
expression on the migration ability of HCC cells. The
migration rate of HCC cells in the sh-MED19 group was
markedly lower than that in the sh-NC group (Figures 4C, F).
Together, these data suggested that MED19 may act as an
oncogene and promotes migration and invasion in HCC.

MED19 Knockdown Inhibited the
Activation of the AKT/mTOR Signaling
Pathway In Vitro
To further explore the functional role of MED19 in cell
proliferation, migration, invasion, and apoptosis, we aimed to
identify the potential mechanism ofMED19 in HCC cells. Initially,
data from the TCGA database indicated that MED19 was
positively correlated with AKT and mTOR (Figures 5A-C). To
further explore the potential relationship between MED19 and
other genes related to the AKT/mTOR signaling pathway (AKT, p-
AKT, mTOR, p-mTOR, 4EBP1, p-4EBP1, p70S6K1, p-p70S6K1),
proteins expression was determined by western blot. Western blot
analysis revealed decreased p-AKT, p-mTOR, p-p70S6K1 protein
expression, and increased p-4EBP1 expression in MED19-
downregulated cells (Figures 5D, F). Together, these data
indicate that the activity of the AKT/mTOR pathway was
decreased in MED19-depleted HCC cells. However, after
treatment with noval AKT activator, SC79, the activation of the
AKT/mTOR signaling pathway in HCC was partially restored
(Figures 5E, G). This suggests that SC79 increased the
TABLE 1 | Western blot antibodies.

Antigens Molecular Weight Manufacturers Application

MED19 36kDa ab251866, Abcam, England 1:50 for IHC, 1:200 for WB
AKT1 55kDa A11016, Abclonal, China 1:500 for WB
p-AKT1-s473 55 kDa AP0098, Abclonal, China 1:500 for WB
mTOR 289 kDa A2445, Abclonal, China 1:500 for WB
p-mTOR(59.Ser2448) 220 kDa sc-293133, Santa Cruz, USA 1:200 for WB
eIF4EBP1 18kDa A19045 1:500 for WB
p-EIF4EBP1-S65 18kDa AP0032 1:500 for WB
p70S6K1 68kDa A4898 1:500 for WB
p-p70S6K1 68kDa AP0482 1:500 for WB
LC3BI/II 14/16 kDa A19665, Abclonal, China 1:500 for WB
b-actin 43 kDa BF0198, Affinity Biosciences, USA 1:5000 for WB
GAPDH 37 kDa AF7021, Affinity Biosciences, USA 1:3000 for WB
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phosphorylation of AKT and mTOR in MED19 knocked down
HCC cells, thus further supporting the hypothesis that the AKT/
mTOR pathway is the molecular target of MED19 in HCC cells.

Previous studies have reported that abnormal AKT/mTOR
signals were closely related to autophagy (27, 28). Based on this,
we speculate that MED19 may reduce autophagy in HCC cells.
Therefore, WB was used to determine the expression level of key
autophagy-related proteins, LC3B-I and LC3B-II. The protein level
of LC3B-II in the MED19 knockdown group was higher than the
corresponding control group (Figures 5D, F). In general, the
downregulation of MED19 inhibited the proliferation, migration,
invasion, and apoptosis of HCC cells through the AKT/mTOR
signaling pathway and may be related to autophagy. In addition,
using the LinkedOmics database, we found that MED19 in HCC
Frontiers in Oncology | www.frontiersin.org 5
was related to many genes. In Figure 6, we highlight genes that are
positively andnegatively related toMED19 inHCC(Figures6A-C).

Correlation Between MED19 Expression
and Immune Cells Infiltration and Markers
of Different Subsets in HCC
In the process of tumor invasion, immune cells, as an important
part of the tumor microenvironment (TME), are closely related
to the occurrence and development of cancer (29–31). Cancer
immunotherapy utilizes engineered auto-immune cells to
eliminate tumor cells. Therefore, understanding the infiltrating
immune cells in the TME is essential for deciphering the
mechanism of immunotherapy, defining predictive biomarkers,
and identifying new therapeutic targets. It is reported that
A

B

F

C D E

FIGURE 1 | MED19 is highly expressed in HCC. (A) Expression of MED19 gene in different cancers or specific cancer subtypes. (B) MED19 was upregulated in
LIHC samples compared with normal tissues. (C) Based on the TCGA data, the expression of the MED19 at different pathological stages of LIHC. (D, E) The higher
expression of MED19 was associated with a shorter overall survival time and disease-free survival time of HCC. (F) IHC images of HCC tissues showed that the
expression of MED19 in HCC tissues was higher than that in adjacent non-tumor tissues. *P < 0.05; ***P < 0.001.
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cancer-associated fibroblasts in the tumor microenvironment
matrix are involved in regulating the function of various
tumor-infiltrating immune cells (32, 33). Studies have found
that the expression of tumor-related genes is related to the
infiltration level of CD4+ T cells, CD8+ T cells, macrophages,
etc. (29, 34–40). The immune cells analyzed in HCC tissues
included CD8+ T cells, B cells, tumor-associated macrophages
(TAMs), monocytes, M1 and M2 macrophages, neutrophils, and
natural killer (NK) cells. To explore the role of MED19 in
immune responses within the HCC microenvironment, TIMER
2.0 was used to assess the potential relationship between the
Frontiers in Oncology | www.frontiersin.org 6
infiltration level of different immune cells and the expression of
the MED19 gene in HCC. Because tumor purity affects the
analysis of immune cell infiltration, the correlation analysis of
tumor purity has been adjusted. These results indicate that the
expression of MED19 in HCC was significantly correlated with
the increased expression of marker genes in B cells, CD8+, CD4+,
myeloid dendritic cells, macrophage, and neutrophils (Figure 7).
Together, these data indicate that high MED19 expression
creates an immunosuppressive microenvironment supports
HCC progression. Therefore, as a potential target of HCC,
MED19 may be beneficial for future immunotherapy.
A B

F

C

D E

IG H

FIGURE 2 | MED19 transcription in subgroups of patients with hepatocellular carcinoma stratified based on gender, age, and other criteria. (A) Boxplot showing
relative expression of MED19 in healthy and LIHC samples. (B) Boxplot showing relative expression of MED19 in healthy individuals of any ethnicity or LIHC patients
of Caucasian, African-American or Asian ethnicity. (C) Boxplot showing relative expression of MED19 in healthy individuals of either gender or male or female LIHC
patients. (D) Boxplot showing relative expression of MED19 in healthy individuals of any age or LIHC patients aged 21-40, 40-60, 61-80, or 81-100 yr. (E) Boxplot
showing relative expression of MED19 in healthy individuals of any weight or LIHC patients weighted normal, extreme, obese, or extreme obese. (F) Boxplot showing
relative expression of MED19 in healthy individuals or LIHC patients with grade 1, 2, 3 or 4 tumors. (G) Boxplot showing relative expression of MED19 in healthy
individuals or LIHC patients of hepatocellular carcinoma, fibrolamellar carcinoma, or hepatocholangio carcinoma (mixed). (H) Boxplot showing relative expression of
MED19 in healthy individuals or LIHC patients with TP53-mutant or TP53- nonmutant. (I) Boxplot showing relative expression of MED19 in healthy individuals or
LIHC patients with no regional lymph node metastasis or metastases in 1 to 3 axillary lymph nodes. *P < 0.05; **P < 0.01; ***P < 0.001; NS, nonsignificant.
January 2022 | Volume 11 | Article 792285

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. MED19 Promotes HCC Development
DISCUSSION

MED19 is crucial in stabilizing Mediator’s complex ’s
transcriptional regulation processes (41–43). Numerous studies
have shown thatMED19 plays a role in tumor growth, migration,
invasion, and apoptosis of various cancer types. In this study, we
observed that the expression of MED19 in HCC tissue was
increased compared with normal liver tissue, which was
confirmed by IHC.

The high expression of MED19 in HCC patients indicates a
poor prognosis, suggesting that the expression of MED19 may
Frontiers in Oncology | www.frontiersin.org 7
play an important role in HCC metastasis. Cui et al. found that
inhibiting the expression of MED19 inhibited the proliferation
and tumorigenesis of human prostate cancer cells (44, 45), and
also inhibited tumor growth and metastasis in colorectal cancer
(46). MED19 knockdown inhibited the proliferation and
migration of bladder cancer cells by down-regulating the
WNT/b-catenin signaling pathway (47). Given these results,
through a series of experiments, we found that knocking down
MED19 significantly reduced the ability of migration, invasion,
proliferation, and colony-formation of HCC cells. In addition,
MED19 knockdown significantly increased the proportion of
A B

F

C

D E

FIGURE 3 | MED19 knockdown inhibited HCC cell proliferation and promoted cell apoptosis. (A, B) Relative MED19 RNA and protein levels in HepG2 and Huh7 cells
after transfection with sh-MED19 or sh-NC plasmid. (C) The viability of HepG2 and Huh7 cells in the sh-MED19 and sh-NC group. (D) Influence of MED19 knockdown
on clone formation of HepG2 and Huh7 cells. (E) The apoptosis situation of HepG2 and Huh7 cells induced by Hoechst 33258. (F) The apoptosis situation of HepG2
and Huh7 cells by flow cytometry. *P < 0.05; **P < 0.01; ***P < 0.001. Perform three independent replicates. Statistical analysis is performed using an unpaired t -test.
All results are expressed as mean ± SD.
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apoptotic HCC cells. Together, our data showed thatMED19 was
related to the tumorigenesis and development of HCC, which
may be a related oncogene of HCC.

Tumor immunotherapy based on immune infiltration is a
current research hotspot and which still requires more
investigation and optimization. Immune cells influence the
tumor microenvironment and affect tumor progression and
metastasis (18, 37, 48, 49). Based on many findings, we
evaluated the correlation between the abnormal expression of
MED19 in HCC and immune infiltrating cells. The results
showed that the expression of MED19 was significantly
correlated with the expression of B cells, CD8+, CD4+ and
other cell-related genes.

Finally, based on the role of MED19 in the proliferation,
migration, and invasion of HCC, we explored the mechanism
of MED19 in the AKT/mTOR signaling pathway. The AKT/
mTOR signaling pathway plays an active role in promoting
tumor invasion and metastasis (50–53). Here, we show that
MED19 knockdown reduced the expression of p-AKT, p-mTOR
and p-P70S6K1, but increased the expression of p-4EBP1.
Additionally, SC79, an AKT agonist, partially restored the
expression of p-AKT, p-mTOR, p-p70S6K1, and p-4EBP1. In
summary, MED19 knockdown inhibited the proliferation,
Frontiers in Oncology | www.frontiersin.org 8
migration, and invasion of HCC through the AKT/mTOR
signaling pathway.

In obesity studies, adipose tissue inflammation is a key
process that promotes cancer (54, 55). The tumor-promoting
effect of obesity alters the level of the microenvironment and
inflammatory Mediators and affects the level and function of
immune infiltrating cells. Dean et al. found thatMED19 regulates
adipogenesis and participates in the process of fat metabolism by
mediating PPAR-g (56). In addition, MED19 binds to GATA
transcription factors and regulates GATA-driven genes together
with MED1 (57).

Our study showed that MED19 affects HCC oncogenesis
through the AKT/mTOR pathway and may be related to
autophagy. Based on this result, further experiments to
determine other factors in this possible pathway are urgently
needed. Primarily, these studies should aim to further determine
the correlation betweenMED19 and autophagy. Secondly, the effect
of MED19 supplementation on HCC cyclin protein Cyclin D1/B1
and apoptosis protein Bax, Bcl-2, etc. should be further elucidated.
Thirdly, in vivo tumor formation experiments should be elaborated
upon and the effect ofMED19 supplementation on HCC should be
well defined in vivo and in vitro. Lastly, future work should explore
the role and mechanism of the MED19-gene(s) axis in HCC.
A B

F

C

D

E

FIGURE 4 | MED19 knockdown inhibited the migration and invasion of HCC cells in vitro. (A, D) Transwell assay was used to detect the migration of HCC cells
between the sh-NC and the sh-MED19 group. (B, E) Transwell assay was used to detect the invasion of HCC cells between the sh-NC and sh-MED19 groups.
(C, F) Wound-healing was utilized to evaluate the effect of MED19 knockdown on the migration of HCC cells. *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001.
Perform three independent replicates. Statistical analysis is performed using an unpaired t -test. All results are expressed as mean ± SD.
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FIGURE 5 | MED19 knockdown inhibited AKT/mTOR signaling pathway. (A, B) Pathway enrichment analysis of MED19 in HCC. (C) Co-expression analysis of MED19
and AKT/mTOR pathway genes. (D, F) The protein expression of AKT, p-AKT, mTOR, p-mTOR, p70S6K1, p-p70S6K1, 4EBP1, p-4EBP1, and LC3B I/II in HepG2 and
Huh7 cells from the sh-MED19 and sh-NC groups. (E, G) SC79 enhances the expression of p-AKT, p-mTOR, and p-p70S6K1 but inhibits the expression of p-4EBP1.
*P < 0.05; **P < 0.01. Perform three independent replicates. Statistical analysis is performed using an unpaired t -test. All results are expressed as mean ± SD.
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A
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FIGURE 6 | Genes differentially expressed in correlation with MED19 in hepatocellular carcinoma. (A) A Pearson test was used to analyze correlations between
MED19 and genes differentially expressed in HCC. In the volcano map, red indicates positively correlated genes and green indicates negatively correlated genes.
(B, C) Heat maps showing genes positively and negatively correlated with MED19 in HCC (TOP 50).
FIGURE 7 | Correlation analysis between the expression of MED19 and the level of immune cells infiltration in HCC. After tumor purity adjustment, MED19
expression in HCC was positively correlated with infiltration levels of B cells, CD4+ T cells, CD8+ T cells, myeloid dendritic cells, macrophages, and neutrophils.
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CONCLUSION

In summary, the data provided in this article show that MED19,
as an oncogene, plays an important role in the proliferation,
migration, and invasion of HCC cells through the AKT/mTOR
signaling pathway, and may be related to autophagy. Therefore,
MED19, as a potential biomarker for HCC diagnosis, may
represent a potential therapeutic target for HCC treatment.
Further efforts and investigations are needed to clarify the
tumor-promoting mechanism of MED19.
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