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ABSTRACT

Deletions in the 16.6 kb mitochondrial genome have
been implicated in numerous disorders that often dis-
play muscular and/or neurological symptoms due
to the high-energy demands of these tissues. We
describe a catalogue of 4489 putative mitochon-
drial DNA (mtDNA) deletions, including their fre-
quency and relative read rate, using a combinato-
rial approach of mitochondria-targeted PCR, next-
generation sequencing, bioinformatics, post-hoc fil-
tering, annotation, and validation steps. Our bioinfor-
matics pipeline uses MapSplice, an RNA-seq splice
junction detection algorithm, to detect and quan-
tify mtDNA deletion breakpoints rather than mRNA
splices. Analyses of 93 samples from postmortem
brain and blood found (i) the 4977 bp ‘common dele-
tion’ was neither the most frequent deletion nor
the most abundant; (ii) brain contained significantly
more deletions than blood; (iii) many high frequency
deletions were previously reported in MitoBreak,
suggesting they are present at low levels in metabol-
ically active tissues and are not exclusive to individ-

uals with diagnosed mitochondrial pathologies; (iv)
many individual deletions (and cumulative metrics)
had significant and positive correlations with age
and (v) the highest deletion burdens were observed
in major depressive disorder brain, at levels greater
than Kearns–Sayre Syndrome muscle. Collectively,
these data suggest the Splice-Break pipeline can de-
tect and quantify mtDNA deletions at a high level of
resolution.

INTRODUCTION

Large mitochondrial DNA (mtDNA) deletions causing hu-
man disease were first reported for ‘mitochondrial my-
opathies’ and Kearns–Sayre syndrome (KSS) roughly 30
years ago (1–3). Additional disorders that are now (at
least partially) attributed to large mtDNA deletions in-
clude Pearson syndrome (PS), chronic progressive exter-
nal ophthalmoplegia (CPEO), Leigh syndrome, and dia-
betes mellitus (4–11). Even in these ‘hallmark disorders’ of
mtDNA deletions, there are currently no perfect genotype-
phenotype correlations between a specific deletion and a
particular symptom (or its age of onset) because these phe-
notypes are highly influenced by deletion abundance (het-
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eroplasmy rate) and the type of tissue(s) affected, which can
vary dramatically between subjects (6–13). Heteroplasmy
rate, deletion size, and relative deletion position, however,
have been correlated with measures of disease severity and
age of onset (13). The clinical complexity observed in mi-
tochondrial pathologies has prompted a number of investi-
gations into whether mtDNA aberrations (including dele-
tions) may be responsible for other human disorders, espe-
cially in diseases that present with neurological or muscular
dysfunction, are progressive or degenerative, and/or affect
multiple tissues and organ systems (9–12). To date, >800
human mtDNA deletions have been described in the scien-
tific literature and have been curated in the MitoBreak on-
line database (14).

Mitochondria have the principal responsibility of gen-
erating ATP by oxidative phosphorylation to provide ev-
ery nucleated cell in the body with the energy it needs to
function properly. Mitochondria contain their own DNA,
a 16,659bp double-stranded circular genome that includes
13 protein-coding genes that make up the respiratory chain
complexes (I–V), along with 22 transfer RNAs and 2 ri-
bosomal RNAs essential for the translation of these im-
portant polypeptides (9–12). Although the mitochondrial
genome is relatively small and contains few genes compared
to any nuclear chromosome, its genomic evaluation is com-
plicated by the fact that mtDNA is a polyploid feature of
eukaryotic cells, with up to several thousand copies of the
mitochondrial genome per cell (9,10). Under normal con-
ditions, this polyploidy provides an excellent backup sys-
tem for ensuring the cellular energy demands of a partic-
ular tissue are met because even if a number of mitochon-
drial ‘energy generators’ are defective, the remaining pool of
functional mitochondria will prevent a total blackout. Thus
large mtDNA deletions will only lead to a disease pheno-
type if they supersede a ‘threshold’ where the proportion of
defective mitochondria cannot be functionally rescued by
the remaining healthy mitochondria (8–12).

Mitochondrial functions are under the genetic jurisdic-
tion of both the nuclear genome and the mitochondrial
genome. Interestingly, defects in at least 18 nuclear genes
(POLG, POLG2, TWNK, RNASEH1, MGME1, DNA2,
TK2, DGUOK, RRM2B, TYMP, SLC25A4, MPV17,
OPA1, MFN2, C10orf2, SAMHD1, SPG7 and AFG3L2)
have been associated with mtDNA deletions, suggesting
these nuclear-encoded proteins affect the mtDNA replica-
tion and repair machinery, nucleotide pool, or fusion pro-
cesses in such a way that the mitochondrial genome be-
comes more susceptible to deletion formation and/or ac-
cumulation (15–21). Single nucleotide variants (SNVs) in
mtDNA and structural variants such as large deletions
can be either maternally inherited or may occur de novo
(9,10,12,22). While pathogenic SNVs have been observed
in both homoplasmic and heteroplasmic states, large dele-
tions in the mitochondrial genome are exclusively het-
eroplasmic (9,11,12). Thus, the historical evaluation of
large mtDNA deletions in patient samples/affected tis-
sues has largely focused on relative heteroplasmy rate and
breakpoint identification.

The traditional methods utilized to assess mtDNA dele-
tion heteroplasmy rate include southern blot analysis and
quantitative PCR (qPCR). In the case of southern blotting,

two conditions must be met: (i) enough DNA can be di-
rectly isolated from the sample (PCR amplification is bi-
ased towards smaller products) and (ii) the deletion must
be present at a high enough rate for it to be detected (23–
25). The accumulation of a specific mtDNA deletion over
time (i.e. clonal expansion) may occur during development
and affect an entire tissue, or may occur within single cells,
so meeting these two conditions simultaneously may not al-
ways be possible. Alternatively, qPCR has been used to as-
sess heteroplasmy rates using several strategies. Previously
identified mtDNA deletions have been quantified and com-
pared to the wild type DNA molecules using primers specifi-
cally designed to target these molecules. However, this strat-
egy requires an a priori hypothesis about a specific deletion
and its corresponding set of breakpoints. The 4977 bp ‘com-
mon deletion’, for example, has been detected in muscle,
brain, skin, etc. as an effect of aging, UV exposure, doxoru-
bicin treatment, and in association with a number of disor-
ders (KSS, CPEO, patient’s with POLG mutations, Parkin-
son’s Disease, Alzheimer’s Disease, Huntington’s Disease,
diabetes mellitus; see Human ‘common deletion’ page on
MitoBreak website http://mitobreak.portugene.com for full
list of references) (14). Detection of the ‘common deletion’
in so many disorders, however, is more likely the result of de-
tection bias as this deletion is well known and easily quan-
tifiable by qPCR. In addition, several groups have utilized
methods that target the ND1 and ND4 genes by qPCR to
determine their relative abundance, based on the assump-
tion that the former is rarely deleted and the latter is com-
monly deleted across a wide-spectrum of mtDNA deletion
breakpoints, and that this relative ratio may be used as a
generic representation of deletion heteroplasmy rate (24–
27). There are, however, large mtDNA deletions that en-
compass the ND1 gene so using this gene as a control region
may not be the best approach for all cases (14,28).

Breakpoint identification has largely relied on Sanger se-
quencing, often using a PCR product that encompasses
an mtDNA deletion breakpoint. PCR amplification and
Sanger sequencing still remains an efficient strategy for
identifying breakpoints when a single deletion is enriched
throughout a patient’s cells/tissues. However, there are
many cases where multiple species of deletions (i.e. a variety
of unknown breakpoints) would be hypothesized to occur
in a tissue and thus would require a laborious workflow that
includes plasmid cloning and selection (and/or single-cell
isolation) in order to isolate and enrich each molecule suffi-
ciently for Sanger sequencing (23,26). There have also been
a few methods reported that use next-generation sequenc-
ing (NGS) data to identify mtDNA deletions; however, we
believe these methods either lack vigor in regard to dele-
tion quantification and breakpoint identification (29,30),
or have been insufficiently tested with real mtDNA break-
points and their associated repeat sequences (31). We have
compared our bioinformatics pipeline to the MitoDel tool
(31) using both DNA and RNA alignment algorithms in or-
der to assess the effects of read mapping strategy and down-
stream filtering approaches on mtDNA deletion detection.
Additional computational methods we have identified that
may warrant future comparisons with our pipeline include a
customized Perl script provided by Zambelli et al. (32), and

http://mitobreak.portugene.com
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the eKLIPse tool recently published by Goudenège et al.
(33).

The technical limitations described for both relative
quantification of mtDNA deletions and the identification
of deletion breakpoints motivated us to develop a pipeline
that would generate this information in a high-throughput,
high-resolution manner. To accomplish this, we developed
a combinatorial approach of mitochondria-targeted PCR,
next-generation sequencing (NGS), existent bioinformatics
tools, post-hoc filtering, annotation, and validation steps.
Our bioinformatics pipeline uses MapSplice, an RNA-seq
splice junction detection algorithm, which we have ex-
ploited to detect mtDNA deletion breakpoints rather than
mRNA splices (34). For simplicity, we refer to the entire
NGS and bioinformatics pipeline as Splice-Break, and de-
scribe the methodology in detail in this paper. In addi-
tion to assessing artificial data for sensitivity and specificity,
we also present the results of the first human study using
this pipeline where we evaluate 93 human samples of post-
mortem brain and blood from subjects with and without
psychiatric disorders and compare these results to ‘hallmark
disorders’ of mtDNA deletions, specifically KSS muscle and
PS blood.

MATERIALS AND METHODS

Subjects

This study included analyses of 93 samples obtained from
the Southwest Brain Bank (SBB) from the Department of
Psychiatry at Texas Tech University Health Sciences Cen-
ter and the University of California-Irvine (UCI) Pritzker
Brain Bank at the UCI School of Medicine. A summary of
the subjects’ sex, age, diagnosis (psychiatric disorder) and
the brain regions analyzed can be found in Supplemental
Table S1, and in the Gene Expression Omnibus (GEO):
GEO accession GSE118615. Detailed extraction proce-
dures can be found in the online Supplemental Methods.
In addition, DNA from two subjects with ‘hallmark dis-
orders’ of mtDNA deletions, specifically KSS muscle and
PS blood, were obtained from Dr Virginia Kimonis and
Dr Elizabeth C. Chao; these subjects were previously de-
termined to have large mtDNA deletions via a clinical di-
agnostic pipeline that utilized Southern Blot analysis (data
not shown).

Long-range mitochondrial PCR

Prior to NGS library preparation, the mtDNA was enriched
for each sample using a long-range (LR) PCR that uti-
lizes back-to-back primers that hybridize to the control re-
gion of the mitochondrial genome (35). Primer sequences
used were 5′-CCGCACAAGAGTGCTACTCTCCTC-3′
and 5′-GATATTGATTTCACGGAGGATGGTG-3′ (Inte-
grated DNA Technologies, Coralville, IA, USA), for the
forward and reverse primers, respectively. Each sample was
enriched for mtDNA in a 50 �l, 30-cycle LR PCR reaction;
5 �l of each PCR product was subsequently used for agarose
gel electrophoresis to confirm the PCR was successful (Sup-
plemental Figure S2). Detailed procedures for PCR condi-
tions and purification can be found in the online Supple-
mental Methods.

Library preparation and sequencing

Libraries were prepared using the TruSeq Nano DNA HT
Library Preparation Kit (Illumina, San Diego, CA, USA)
according to the manufacturer’s instructions. Libraries were
sequenced as 150-mer paired-end reads on a nonpatterned
flowcell using the Illumina HiSeq 2500 in ‘rapid mode’; the
UCI Genomics High Throughput Facility performed both
sequencing and demultiplexing of FASTQ files.

Bioinformatics

Pre-alignment. We removed PCR replicates and reads that
mapped to the TruSeq adapter sequence prior to align-
ment using the BBTools suite (BBMap v.35.14) (https://jgi.
doe.gov/data-and-tools/bbtools) (see Supplemental Meth-
ods for details).

Alignment and methods comparison. We used MapSplice
(v.2.1.18), an RNA-Seq splice junction algorithm from
Dr. Jinze Liu’s group at the University of Kentucky
(http://www.netlab.uky.edu/p/bioinfo/MapSplice2), for our
mtDNA alignment process (34). Details about our rationale
to use an RNA-Seq tool can be found in the online Supple-
mental Methods. We compared our process to an alterna-
tive mtDNA deletion detection method (MitoDel (31)) in
addition to several alignment algorithms- MapSplice (34),
TopHat (36), STAR (37) and BWA (38). The details of these
comparisons can be found in the Results and online Supple-
mental Methods.

MapSplice. Our finalized Splice-Break pipeline used
MapSplice (34) for alignment- a list of additional bioin-
formatics tools, command options, parameters and com-
putational resources used can be found in the Supple-
mental Methods. Two output files from the MapSplice al-
gorithm were used for further analysis: junctions.txt and
alignments.bam. To facilitate the use of this pipeline, we
provide a bash script called Splice-Break.sh (included in
Supplemental File S3) that will perform automated fil-
tering, normalization and annotation of mtDNA deletion
breakpoints using these two, aforementioned MapSplice
output files. A full description of our benchmark positions
used for normalization, generation of coverage plots and
normalization processing of ‘junctions’ can be found in the
online Supplemental Methods.

Artificial data. We generated artificial FASTA refer-
ence files that correspond to five single mtDNA dele-
tions detected in our un-filtered dataset, as well as
a complex artificial FASTA reference file that con-
tained 60 different deletions all mixed together. We used
DWGSIM (v.0.1.10) (https://github.com/nh13/DWGSIM/
wiki/Simulating-Reads-with-DWGSIM) to create artificial
paired-end FASTQ files of 150-mer read lengths with pre-
calculated proportions of wild type and deleted mitochon-
drial genomes while accounting for their differences in
genome size. These artificial datasets were used for analysis
of alignment method and options as well as for optimiza-
tion of filtering steps; this analysis is described further in
the online Supplemental Methods and Results.

https://jgi.doe.gov/data-and-tools/bbtools
http://www.netlab.uky.edu/p/bioinfo/MapSplice2
https://github.com/nh13/DWGSIM/wiki/Simulating-Reads-with-DWGSIM
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Filtering. We employed three filtering steps to prune and
prioritize our list of putative mtDNA deletion breakpoints
(Supplemental Figure S4). The first step removed any dele-
tion breakpoints that had a minimum read overhang length
<20 bp. The second filtering step was to remove any puta-
tive deletion call where either the 5′ breakpoint or 3′ break-
point fell within 500 bp of the 16 kb long-range PCR
primer start positions (NC 012920.1 356-15926; modified
NC 012920.1 16070-500). The third and last filtering step
was to remove any putative deletion breakpoint that was de-
tected in less than two independent samples (i.e., singleton
calls), with the exception that singleton deletions discovered
at a deletion read % of 5% or more would be retained pend-
ing they could be validated by Sanger sequencing. This last
filtering step is not incorporated into the Splice-Break.sh
script, but rather, was included here for a more conser-
vative approach to creating a catalogue of mtDNA dele-
tion breakpoints. Additional details are described in the
online Supplemental Methods and in the README file
that accompanies the Splice-Break.sh script (Supplemen-
tal File S3). Analysis scripts and code for the bioinformat-
ics portion of Splice-Break are also located on GitHub:
https://github.com/brookehjelm/Splice-Break/.

Quantitative PCR

Both the wild type mtDNA and the 4,977bp ‘common dele-
tion’ mtDNA were evaluated by quantitative PCR (qPCR).
Specifics regarding the qPCR conditions, methods and
analysis can be found in the online Supplemental Methods.

Sanger sequencing validation

Deletions. The Sanger sequence flanking each (targeted)
mtDNA deletion breakpoint, along with the primers used
for amplification of the deleted molecule and the Sanger
sequencing reactions are shown (Supplemental Figure S5).
Once ‘high frequency’ or ‘high impact’ deletions were iden-
tified, Sanger sequencing was performed on both the 16 kb
LR PCR product (that was used for library preparation)
and the corresponding genomic DNA to validate the dele-
tions. Specifics regarding primer design and PCR condi-
tions can be found in the online Supplemental Methods.

Cumulative deletion metrics

We calculated three cumulative deletion metrics that can be
used to investigate the pooled effect of all deletions. The first
was the cumulative deletion read %, which is the summa-
tion of the read %’s determined for all deletions detected in
that sample. The second was the # of deletions (per 10K
coverage), which was calculated by counting the number of
deletion species (unique sets of breakpoints) in that sam-
ple, then dividing by the benchmark coverage and multi-
plying by 10000×. The third cumulative deletion metric we
determined was % burden per deletion, which was calcu-
lated by taking the cumulative deletion read % divided by
the number of deletion species detected (raw data, not nor-
malized). Although the deletion read %’s are already nor-
malized to benchmark coverage, it is important to also in-
clude the benchmark coverage as a correction factor in any

statistical tests as all three of these cumulative deletion met-
rics will be dependent on the depth in that sample regardless
of normalization.

Statistical and graphical analysis

Details about all statistical and graphical analyses are pro-
vided in the online Supplemental Methods.

RESULTS AND DISCUSSION

Splice-Break pipeline

We developed a pipeline called Splice-Break that combines
LR (∼16.6 kb) PCR amplification of the mitochondrial
genome with NGS and existent bioinformatics tools to de-
tect mtDNA deletion breakpoints (Figure 1). We utilized
MapSplice, an RNA-seq splice junction detection algo-
rithm, for sequence alignment and discovery of putative
mtDNA deletion breakpoint ‘junctions’ (34). Our human
subject cohorts included 93 samples (from 41 subjects) ob-
tained from the SBB and UCI Brain Banks (Supplemental
Table S1). For all 93 samples full-length mitochondrial wild
type genomes were successfully amplified, as evidenced by
a ∼16.6 kb DNA band following the LR PCR. Three brain
samples (from two subjects) also displayed smaller DNA
bands (∼2–10 kb) following the PCR, suggesting these sam-
ples may harbor large mtDNA deletions (Supplemental
Figure S2). After MapSplice alignment of NGS reads (us-
ing libraries prepared from LR PCR products), we observed
average benchmark coverage of 19899 ± 12301× (mean ±
SD; range 2764–82596×) for all 93 human subject samples.
Coverage plots of all human samples, along with the average
benchmark coverage for each sample, are shown in Supple-
mental Figure S6. We have organized these plots by subject
for an easy visual comparison of paired samples (i.e. multi-
ple tissues or brain regions from the same donor), and have
included the SBB and UCI Brain Bank ID’s for each sample
that correspond to those shown in GEO (GSE118615).

We processed the MapSplice junctions.txt files, contain-
ing the putative mtDNA deletion breakpoints, through a
series of filtering steps that were devised to remove false-
positive and low-confidence calls. Overall, these three filter-
ing steps removed 90.32% of the initial junction calls, and
resulted in an average of 346 and 61 unique mtDNA dele-
tions for the postmortem brain and blood samples, respec-
tively (Supplemental Figure S4). Our finalized catalogue
contains 4489 putative mtDNA deletions, which is >5-fold
more than all the human mtDNA deletion breakpoints cur-
rently described in the MitoBreak database (14). This cat-
alogue is weighted to focus on mtDNA deletions that fall
within genes, and only includes those with breakpoints be-
tween positions 357–15925 (NC 012920.1).

Artificial data

We generated a series of artificial FASTA reference se-
quences that reflected the predicted sequence of mtDNA
molecules with large deletions, and combined deleted and
wild type sequences at different ratios in order to determine
method sensitivity and specificity (Figure 2). Analysis of the

https://github.com/brookehjelm/Splice-Break/
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Figure 1. Summary of the Splice-Break pipeline. This pipeline integrates long-range (LR) PCR of the mitochondrial genome with bead purification,
NGS library prep and multiplex sequencing to generate mitochondrial sequence data that contains mtDNA deletion breakpoints. Alignment and mtDNA
deletion breakpoint ‘junction’ calling were accomplished using MapSplice, an RNA-seq splice junction detection algorithm (34).

4977 bp ‘common deletion’ (MapSplice breakpoints 8471–
13449) demonstrated a drop in coverage between the dele-
tion breakpoints was visible at a deletion rate of 5% or more,
but deletions at a lower read rate (0.01–1%) are difficult (if
not impossible) to detect by visual inspection of a cover-
age plot alone (Figure 2A). The average test sensitivity for
the ‘common deletion’ was 70.25%, and displayed a high
level of consistency (R2 = 0.99998) across a wide range of
deletion rates (0.1–50% tested). However, no ‘common dele-
tion’ was detected when spiked-in at a heteroplasmy rate of
0.01%, which suggests deletions at or below this level might
be missed entirely (Figure 2B). Deletions with MapSplice
breakpoints of 6335–13999, 6329–13994, 7816–14707 and
1243–15340 were also evaluated. The coverage plots for all
of these deletions reflected a sharp drop in coverage that
corresponded to the breakpoints for that specific deletion
(Figure 2C), and similar to results of the ‘common deletion’
there was a high level of consistency (R2; range 0.99995–
0.99998) in the test sensitivity for each deletion across a
wide range of deletion rates (0.1%, 1%, 10% were tested).
Interestingly, however, the test sensitivity was different for
each of the five deletions tested (range 38.8–74.6%) (Figure
2D). We believe this variance in sensitivity is a reflection on

how MapSplice handles reads that contain the various re-
peat sequences associated with mtDNA deletions, and that
a fraction of reads (or read fragments) that actually span
a deletion junction will incorrectly map to the wild type
molecule due to an insufficient overhang length or capac-
ity to match perfectly with the incorporation of a SNV or
indel. In fact, we have observed false-positive, heteroplas-
mic SNV calls and indels around these repeat sequences in
samples that contain certain deletions (data not shown); as
such, we suggest that this pipeline be used only for analysis
of large mtDNA deletions and not for SNVs or small in-
dels. Likewise, this pipeline cannot be used for assessment
of mtDNA copy number or mtDNA depletion pathologies
because our LR PCR enrichment and NGS process (that
includes normalization of libraries) limits our ability to as-
sess nuclear DNA in an unbiased manner, which would be
necessary for mitochondrial copy number determination.

We additionally tested the specificity of the MapSplice al-
gorithm to call mtDNA deletions by examining the break-
point ‘junctions’ and determining the proportion of reads
that were called at the correct position. Prior to any filtering
steps, all five deletions were detected at a high level of speci-
ficity (92.7–96.1%); however, for deletions present at a rate
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Figure 2. Analysis of artificial data. (A) Overlaying coverage plots of the mtDNA ‘common deletion’ from mixed ratios (0.01–50%) of deleted and wild type
(undeleted) sequences, and (B) sensitivity analysis from this data and comparisons between Splice-Break (MapSplice (MS) alignment) and MitoDel (MS,
BWA or STAR alignment). (C) Coverage plots of five Sanger-validated mtDNA deletions from 1:1 ratios of deleted and wild type (undeleted) sequences
(50% each), and (D) sensitivity analysis for these deletions from a series of mixed ratios (1–50%) and comparisons between Splice-Break (MS alignment)
and MitoDel (MS, BWA or STAR alignment). (E) Scatter plots of all junction calls observed for these five deletions before and after filtering steps when
spiked-in at a heteroplasmy rate of 1%; arrows point to the actual breakpoint positions for that deletion. (F) Specificity (% true negative) assessed for
these five deletions before and after filtering steps using a series of mixed ratios (1–50%). (G) Analysis of complex artificial deletion dataset combining 60
mtDNA deletions each at a rate of 1% (total expected heteroplasmy rate of 60%) and comparisons between Splice-Break (MS alignment) and MitoDel
(MS, BWA or STAR alignment). Pie charts display detected sensitivity of cumulative deletion read %, and bar graphs display number of unique deletion
breakpoints observed with each approach.
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of 1% or less, the test specificity increased to 100% for all five
deletions when deletion calls with a read overhang <20 bp
were removed (Figure 2E and F). More than 99.7% of all
deletions discovered in our biological cohort of postmortem
brain (i.e. tissue homogenate) and blood samples were de-
termined to have a deletion read rate <1%, so this analysis
of artificial data suggests the vast majority of real mtDNA
deletions would be called with perfect specificity using this
method. We also evaluated wild type (non-deleted) consen-
sus sequence generated from each the 41 subjects evaluated
in this study, and likewise found that the filtering steps previ-
ously described removed all false-positive deletion calls that
were generated in different mitochondrial haplogroup back-
grounds (data not shown).

Finally, we generated a complex artificial FASTA file that
contained 60 unique mtDNA deletions, each at a hetero-
plasmy rate of 1%, for a combined deletion rate of 60%.
This complex artificial file is a better representation of what
we expect to observe in frozen brain tissue samples where
many deletion species are expected to be present. A list of
the 60 mtDNA deletions combined in this complex artifi-
cial FASTA fie can be found in Supplemental Figure S7.
Overall, we observed similar sensitivity to that of the ‘com-
mon deletion’, with a detection rate of 0.70 ± 0.22% for each
deletion spiked in at 1%, and a cumulative deletion rate of
42.7% in this file with an expected heteroplasmy rate of 60%
(sensitivity 71.2%) (Figure 2g).

Bioinformatic methods comparisons

To confirm that an RNA-Seq alignment tool must be able
to detect non-canonical splice sites in order to be repur-
posed as an mtDNA deletion detection tool, we first com-
pared MapSplice (34) to TopHat (36). TopHat junction call-
ing is restricted to canonical splice sites while MapSplice is
not (34,36,39). We evaluated six brain samples within a 1kb
window for both the 5′ (8–9 kb) and 3′ (13–14 kb) break-
points. This window was chosen for this comparison as it
would theoretically harbor deletion calls for the 4977 bp mi-
tochondrial ‘common deletion’, which we predicted would
be the most likely to occur in many/all samples, and because
additional mtDNA deletions have been previously identi-
fied in this region (14). Only MapSplice detected a deletion
breakpoint (junction call) in all six samples tested that fell
within the repeat regions of the 4977 bp ‘common deletion’
(Supplemental Figure S8).

We also tested a mtDNA deletion detection tool (Mi-
toDel) in conjunction with two RNA-Seq alignment meth-
ods (MapSplice and STAR), as well as with the suggested
DNA aligner (BWA), and compared these results to the
sensitivities described above for our Splice-Break pipeline
(31,34,36–38). Our assessment of the ‘common deletion’
demonstrated a robust effect of alignment method, with
the poorest detection sensitivity (3–4%) resulting from Mi-
toDel after BWA alignment (i.e. BWA mem with default
settings) (Figure 2B). This is not particularly surprising
given that DNA alignment methods often assume reads will
align perfectly and contiguously across the genome with
only small gaps being allowed for SNP and indel incor-
poration, and are not necessarily designed to handle large
read splits of several kilobases like an RNA-Seq aligner

must due to splicing. As such, MitoDel performed consid-
erably better when used in conjunction with MapSplice or
STAR; however, the detection sensitivity was still poorer for
these approaches than it was for our Splice-Break pipeline
that uses MapSplice (Figure 2B). Assessment of five dif-
ferent sets of mtDNA breakpoints also demonstrated that
only Splice-Break was able to consistently call each dele-
tion when present at a rate of 0.1% (Figure 2D). This ef-
fect is most likely due to the requirement of the MitoDel
tool to observe a certain number of split reads in order for
a deletion to pass its filtering process, which is not a require-
ment of Splice-Break; this makes the Splice-Break pipeline
a particularly useful approach for assessing mtDNA dele-
tion breakpoints in homogenate tissue where many dele-
tions would be expected to occur in parallel at a low rate.

Lastly, assessment of our complex artificial FASTA file
that contained 60 different deletions each at 1% hetero-
plasmy also demonstrated our Splice-Break bioinformat-
ics process had the highest detection sensitivity when com-
pared to MitoDel (with any alignment algorithm), and our
attempts to use similar filtering approaches following STAR
alignment were unsuccessful as many more deletion posi-
tions were detected than the 60 that were expected (i.e. calls
within a repeat from a single mtDNA deletion would be an-
notated across multiple positions rather than collapsing to a
single set of breakpoints) (Figure 2G). These results support
our suggestion to use the Splice-Break pipeline for samples
that may contain a large number of mtDNA deletions at
low rates (e.g. homogenate brain/muscle tissue, previously
extracted DNA, etc.), but also suggest that the MitoDel
tool approach was sufficient to detect deletion breakpoints
if (a) only 1 (or a small number) of deletions are expected
to occur at a high heteroplasmy rate (e.g. ‘single deletion’
subjects with deletion pathologies, or DNA obtained after
single-cell isolation) and (b) an RNA-Seq alignment tool
is utilized. We also processed all 93 postmortem samples
in this study with MitoDel following MapSplice alignment,
in order to further compare our Splice-Break filtering pro-
cess to MitoDel without the influence of alignment algo-
rithm. Box-and-whisker plots of each sample’s deletion %’s
demonstrates that Splice-Break detected many deletions at
a low rate (<1%), but that the deletions at higher hetero-
plasmy rates were detected by both approaches; this also
had influence on the number of deletion species detected
(Supplemental Figure S9). Later, we describe if and how this
tool would have affected our biological conclusions of tis-
sue, age, and paired samples, and which method correlates
most closely to qPCR results of the ‘common deletion’.

Exome comparisons

In addition to our assessment of bioinformatic methods, we
also evaluated how mtDNA deletion discovery was influ-
enced by our sequencing strategy. For this, we compared 10
dorsolateral prefrontal cortex (DLPFC) samples that were
sequenced by exome sequencing to matched samples pre-
pared with our pipeline that enriches the mtDNA molecules
by LR PCR followed by NGS library preparation; both se-
quence files were processed through the same bioinformat-
ics pipeline described for Splice-Break. We detected signifi-
cantly more mtDNA deletions at a much higher rate with
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our LR PCR approach than we did with exome capture
(Supplemental Figure S10). Specifically, the most common
mtDNA deletion that we identified (and Sanger validated)
in our cohort (6335–13999) was detected in all 10 brain
samples, with a range of 1–183 reads showing this deletion
per sample (deletion read % range ∼0.01–1.75%) using the
LR PCR approach. Contrarily, this deletion was only de-
tected in one sample following exome capture, and this sam-
ple only had a single read supporting the deletion. Simi-
lar results between enrichment methods were also observed
for our second and third most common mtDNA deletions
(7816–14807 and 8471–13449 ‘common deletion’) (Supple-
mental Figure S10). Moreover, our Splice-Break pipeline
with LR PCR detected an average of 159 unique deletions
per sample with an average cumulative deletion read rate of
21.35%, while exome capture detected only an average of
0.7 unique deletions per sample (i.e. 7 total deletions in 10
samples) with an average cumulative deletion read rate of
0.098% (Supplemental Figure S10). These results are per-
haps not surprising given that the traditional probes used
for exome capture will not, by design, encompass a deletion
breakpoint and thus reads that flank these breakpoints will
be less likely to compete with wild type molecules during the
enrichment process. However, we do believe that LR PCR
is not the only worthwhile approach to enriching the mi-
tochondrial genome relative to the nuclear molecules, and
other strategies aimed at selective digestion of the linear nu-
clear chromosomes or targeted isolation of the mitochon-
drial organelle may also provide cost-effective solutions.
Moreover, exome capture strategies may be inefficient as is,
given the current probe designs, but catalogues of mtDNA
deletion breakpoints such as the one we describe here may
be used as a template for designing additional probes and
assays that will capture these split-read molecules.

Quantitative PCR comparisons

We compared our deletion read % obtained from Splice-
Break (and following benchmark normalization) to hetero-
plasmy rates of the 4977 bp ‘common deletion’ obtained
by qPCR across 61 samples (DLPFC and ACC pairs) in
the SBB cohort (Supplemental Figure S11). We also com-
pared both the qPCR results, and our Splice-Break values,
to the deletion results obtained from the MitoDel tool fol-
lowing MapSplice alignment (Supplemental Figure S11).
The qPCR results demonstrated these 61 brain samples had
a ‘common deletion’ heteroplasmy rate of 0.12 ± 0.11%
(mean ± SD; range 0.01–0.50%), while the Splice-Break re-
sults displayed a deletion read % of 0.40 ± 0.30% (mean ±
SD; range 0.01–1.24%) and the MitoDel results displayed a
deletion read % of 0.26 ± 0.26% (mean ± SD; range 0.00–
0.93%). For this deletion specifically, our Splice-Break dele-
tion % results were ∼4 ± 2-fold greater than the hetero-
plasmy rates obtained by qPCR, which we believe reflects
an amplification bias toward smaller (deleted) molecules
during the 16 kb LR PCR performed prior to NGS li-
brary preparation. Most importantly, however, is that we
observed a very high correlation (Pearson’s correlation: r
= 0.8384, P = 3.43e−17) between our Splice-Break pipeline
(MapSplice) results and this gold standard qPCR assay
(Supplemental Figure S11); we obtained a similar (albeit

not as good) correlation between the MitoDel data and
qPCR (Pearson’s correlation: r = 0.7976, P = 1.44e−14).
This high level of reproducibility between bioinformatics
approaches can also be observed in correlation analysis
of Splice-Break versus MitoDel (with MapSplice align-
ment) in these biological samples (Pearson’s correlation: r
= 0.9554, P = 5.86e−33) (Supplemental Figure S11). In ad-
dition, the log2 fold differences for the ‘common deletion’
between samples were largely retained using both Splice-
Break and qPCR methods (Supplemental Figure S11). Col-
lectively, these results demonstrate that our Splice-Break
pipeline can quantify the relative levels of mtDNA dele-
tions with high confidence; however, our deletion read %
described should not be interpreted as heteroplasmy rate di-
rectly due to PCR amplification bias and deletion-specific
differences in test sensitivity.

The ∼4500 putative mitochondrial DNA deletions

We detected 4489 putative mtDNA deletions that met our
filtering criteria. As a reminder, this only includes those with
breakpoints between positions 357–15925 (NC 012920.1)
of the mitochondrial genome as we filtered out the major-
ity of the control region in this analysis. The gene posi-
tions of all 4489 deletion breakpoints, the distribution of
deletion sizes, and the redundancy in breakpoint usage are
shown in Figure 3. This analysis is specific to the number
and positions of all the putative mtDNA deletion break-
points and is not weighted based on relative deletion read
% (i.e. all deletions shown are considered equal in this view).
5′ breakpoints were identified in every protein-coding gene
and both ribosomal RNA coding regions, with the highest
number of 5′ breakpoint found in COX1 (n = 665), ND1
(n = 657), ND2 (n = 639), and the gene cluster of ATP8-
ATP6-COX3 (n = 551) (Figure 3A and B). 3′ breakpoints
were also identified in every protein-coding gene and both
ribosomal RNAs, with the highest number of 3′ breakpoints
found in ND5 (n = 1418), CYB (n = 1243), ND6 (n = 936)
and ND4/ND4L (n = 479) (Figure 3A and C). The fact that
genes with the most 5′ breakpoints are not the same genes
with the most 3′ breakpoints reflects our observation that
most of the deletions we detected were large, and multigenic
in nature. A histogram plot of all 4489 putative deletions by
size likewise demonstrated a preponderance of large dele-
tions, with the greatest number of deletions ranging in size
of 7–8 kb (n = 513) (Figure 3D). In contrast, only 127 dele-
tions were identified within our smallest two bins, ranging
from 50 bp (the minimal ‘intron’ size used during Map-
Splice alignment) to 1 kb in size. This histogram of deletion
sizes displayed a semblance of a normal distribution; how-
ever, this distribution did not meet the criteria of normal-
ity when evaluated by visual inspection of Q–Q plots (data
not shown) or statistical analysis by Shapiro–Wilk test (P
= 1.5e−20). Finally, our analysis of the 4489 putative dele-
tions demonstrated a redundancy in the usage of 5′ and 3′
breakpoint positions (i.e. a given 5′ breakpoint is often used
in conjunction with a number of 3′ breakpoints (and vice
versa) to generate a spectra of unique deletions) (Figure 3E
and F). The five most common 5′ breakpoints (and num-
ber of deletions they were utilized in include positions 5368
(n = 56), 5336 (n = 48), 4167 (n = 48), 591 (n = 47) and
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Figure 3. Global analysis of 4489 mtDNA deletions. (A) Chord diagrams display gene involvement across 4489 mtDNA deletions. Gene regions shown
are not to scale with mitochondrial coordinates; the size of the gene shown represents the total number of deletion events (5′ breakpoints + 3′ breakpoints)
within that gene. Ribbons are colored based on which gene contained the 5′ breakpoint. Gene locations for all (B) 5′ breakpoints and (C) 3′ breakpoints
used in the 4489 mtDNA deletions; regions between protein-coding genes (that may contain several tRNAs) are referred to as gap1, gap2, etc. for simplicity.
(D) Histogram of deletion sizes for all 4489 mtDNA deletions. Redundant usage of (E) 5′ and (F) 3′ breakpoints in multiple deletion species; arrows point
to the 5′ and 3′ breakpoints for the 4977 bp ‘common deletion’, which were used in 31 and 52 deletions, respectively.

1698 (n = 45). The five most common 3′ breakpoints (and
number of deletions they were utilized in) include positions
14529 (n = 109), 14807 (n = 82), 15335 (n = 74), 15382 (n
= 73) and 14377 (n = 73). In addition to this global anal-
ysis (Figure 3), we also provide a supplemental table (Sup-
plemental Data S12) that includes the 5′ and 3′ breakpoint
positions of all 4489 mtDNA deletions, the deletion sizes,
biological sample frequency, and several metrics of deletion
read % (i.e. mean, median, standard deviation, minimum
and maximum levels).

The top 30 most frequent deletions

We ranked our list of putative mtDNA deletions by the
number of biological samples the deletion was detected in,
and performed Sanger sequencing to validate the break-
points for the 30 most frequent deletions (Supplemental
Figure S5). All 30 of these deletions had breakpoints asso-
ciated with perfect repeat sequences, often part of a larger,
imperfect repeat (Table 1). We attempted to Sanger validate
these deletions using both the bead-purified 16 kb LR mi-
tochondrial PCR product and non-amplified, total genomic
DNA; all 30 deletions were successfully validated by Sanger
sequencing using the PCR product, and 14/30 of these dele-
tions were additionally validated using the genomic DNA
as well. The breakpoints identified by the MapSplice algo-
rithm often fall within the direct repeat sequence, while the

annotation of mtDNA deletion breakpoints is most com-
monly positioned to the last base of the 5′ repeat and the
first distinguishable (non-repeat) base at the 3′ position; as
such, we also provide the adjusted positions for these 30
deletions, which were used for overlap analysis and deletion
submission in the MitoBreak database (14). Interestingly,
12/30 of the most frequent deletions were previously de-
scribed in MitoBreak, with clinical features ranging from
KSS, CPEO, POLG mutations, multisystemic mitochon-
drial disorders, aged tissues, and more (Table 1). This data
suggests these common deletions are present at low levels in
metabolically active tissues and are not exclusive to individ-
uals with diagnosed mitochondrial pathologies.

Although these deletions were detected in a large pro-
portion of our biological (mostly brain) samples, they were
most often still detected at very low read rates (Supple-
mental Data S12). The most frequent deletion (MapSplice
6335–13999; adjusted 6341–14005) was detected in 92/93
biological samples at a deletion read % of 0.65 ± 0.57%
(mean ± SD; range 0.002–2.73%). For reference, a deletion
read % of 0.65% correlates with a mean detection of 130
reads for a sample with a benchmark coverage of 20000×.
The 4977 bp ‘common deletion’ (MapSplice 8471–13449;
adjusted 8482–13460) was detected in 85/93 biological sam-
ples at a deletion read % of 0.37 ± 0.32% (mean ± SD; range
0.011–1.47%). Many of the other 30 most frequent dele-
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Table 1. The 30 most frequent mtDNA deletions. The position (5′-3′ breakpoints and gene), repeat sequences, sample frequencies, Sanger sequencing
validation results, and overlap analysis with the MitoBreak database are shown (14). Deletions are sorted based on the number of samples they were detected
in. ‘MapSplice Breakpoints’ displays the breakpoint positions called by the MapSplice algorithm, while ‘Position adj.’ shows the adjusted breakpoints based
on how mtDNA deletions are typically annotated with regards to the repeat sequence. The bases called as MapSplice breakpoints are shown in red. Sanger
sequence flanking each breakpoint and primers used for deletion validation are shown in Supplemental Figure S5
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tions described here were detected at a deletion read % even
lower than these two deletions (Supplemental Data S12).
These data suggest the majority of our biological samples
harbor many of the same mtDNA deletions, but each dele-
tion is present at varying, unpredictable (and usually low)
levels––these observations further support our motivation
to perform cumulative analyses that factor in all detected
deletions and/or their additive deletion read %’s (described
later).

The gene positions of the breakpoints associated with
these 30 frequent deletions, the distribution of deletion
sizes, the proportion of each base (A,T,G,C) used in the as-
sociated imperfect repeats, and the correlations between all
these deletions, age, pH and PMI are shown in Figure 4. The
5′ breakpoints of these 30 deletions were identified in the
first 6 protein-coding genes of the mitochondrial genome
sequence (ND1, ND2, COX1, COX2, ATP8 and ATP6),
one transfer RNA (TRNS1) that resides between COX1
and COX2, and both ribosomal RNAs (RNR1 and RNR2),
with the highest number of 5′ breakpoints found in COX1 (n
= 9), followed by COX2 (n = 6) (Figure 4A and D). The 3′
breakpoints of these 30 deletions were identified in the last
four protein-coding genes of the mitochondrial genome se-
quence (ND4, ND5, ND6 and CYB) with the highest num-
ber of 3′ breakpoints found in ND5 (n = 16), followed by
CYB (n = 9) (Figure 4A and D). We provide an artificial
bed file (Supplemental Data S13) with the adjusted break-
points of these 30 deletions for easy visualization of their
genomic coordinates using a tool like the Integrative Ge-
nomics Viewer (IGV) (40) (Figure 4D).

A histogram plot of the 30 most frequent deletions by size
shows that all of these deletions were large, ranging from
∼4–14 kb in size (Figure 4B). We additionally evaluated the
imperfect repeat sequences (shown in Table 1) for these 30
deletions and compared the prevalence of each base in these
repeats to the proportion used in the entire mitochondrial
genome (Figure 4C). We detected a significant difference in
proportion in all four bases, and show the base proportions
and statistics for both the light (coding) and heavy strands
of the mitochondrial genome (Figure 4C). Specifically in re-
gards to the heavy strand, there was a decrease in the pro-
portion of A, T and C bases within these imperfect repeats
compared to what would be expected from the whole mi-
tochondrial genome sequence, with the most abundant and
significant decrease (P < 1e−5) being observed from a loss of
C bases within the imperfect repeats. These results were in-
versely related to the significant increase in the proportion
of G bases (P < 1e−16) within these imperfect repeats on
the heavy strand. This significant enrichment of guanine (G)
bases in the repeat sequences of our 30 most frequent dele-
tions detected supports previous observations that mtDNA
deletion breakpoints are associated with sequences with G-
quadruplex forming potential (QFP) (41).

Lastly, we performed a Pearson’s correlation test to eval-
uate the relationship between these 30 deletions, and pH,
PMI, and donor age (Figure 4E and F). Only data from
our DLPFC samples were used for this analysis (n = 41).
Both a matrix of these correlation levels (Figure 4E) and a
network plot of the significant correlations (Figure 4F) sug-
gested the deletions we analyzed could be separated into
two groups. The majority (23/30) of these frequent dele-

tions had significant and positive correlations with one an-
other (with few exceptions) and 18 of these 23 deletions also
had a significant and positive correlation with age. The mi-
nority group (7/30) of these deletions also displayed a sig-
nificant and positive correlation with one another (with few
exceptions), but only 1 of these 7 deletions had a significant
and positive correlation with age (Figure 4E and F). Upon
examination of the 5′ and 3′ breakpoints of these two groups
of deletions, we discovered that the majority group (23/30;
76.7%) of deletions would have retained the lagging strand
origin-of-replication (OL) in the deleted molecule, while the
minority group (7/30; 23.3%) of deletions that mostly did
not correlate with age had the OL removed (Figure 4F).
This latter result supports a previously published observa-
tion that ∼21.9% of mtDNA deletions detected in healthy
or aged tissues have the OL removed (7). In addition, we
observed almost no correlations with pH and PMI, with
the exception that there was a negative correlation between
them (as would be expected) and one deletion (MapSplice
1105–13846, adjusted 1102–13843) had a negative correla-
tion with PMI suggesting this deleted molecule may be more
susceptible to degradation. We observed no significant cor-
relations between any of the top 30 deletions and the pH
measures taken from the cerebellum of the same subject
(Figure 4E and F).

High impact deletions

In addition to the top 30 most frequent deletions, we also
characterized all of the ‘high impact’ deletions that oc-
curred at a deletion read rate of 5% or more, which sug-
gests the deletion was clonally expanded and may have a
developmental origin. The 13 ‘high impact’ deletions we
describe were only detected at high levels in postmortem
brain samples, and not in blood, and were identified in
14 brain tissue samples from 9 subjects with various psy-
chiatric diagnoses (Table 2). These deletions were almost
exclusively associated with perfect (and imperfect) repeat
sequences, with the exception of one deletion (MapSplice
2973–15573) that had no identifiable repeat sequence flank-
ing the breakpoint. Also interesting, one deletion (Map-
Splice 1148–15607) incorporated two tandem copies of a 6-
mer repeat (CTACGA), which suggests neither the 5′ nor 3′
repeat was completely lost during deletion formation (Table
2). All 13 of these deletions were successfully validated by
Sanger sequencing, including the two deletions mentioned
above that did not have ‘traditional’ repeat breakpoints
(Supplemental Figure S5). Together, these 13 ‘high impact’
deletions were composed of both rare deletions (that were
discovered in only one or few samples) and common dele-
tions (that were detected in many samples); this data re-
flects similar results that have been observed in the Mito-
Break database where some patients’ deletions are novel
and have not been previously described while other patients’
deletions have been identified previously in several studies
(14). Two of our ‘high impact’ deletions were previously de-
scribed in the MitoBreak database; these were the two most
common deletions identified on this list, which further sup-
ports our decision to rank and prioritize deletions based on
sample frequency.
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Figure 4. Characterization of the 30 most frequent mtDNA deletions. (A) Chord diagrams display gene involvement for the 30 most frequent mtDNA
deletions. Gene regions shown are not to scale with mitochondrial coordinates; the size of the gene shown represents the total number of deletion events
(5′ breakpoints + 3′ breakpoints) within that gene. Ribbons are colored based on which gene contained the 5′ breakpoint. (B) Histogram of deletion
sizes for the 30 most frequent mtDNA deletions. (C) The proportion of each based used in the imperfect repeat sequences associated with the 30 deletion
breakpoints compared to the entire mitochondrial genome, and results of Z score tests on proportions. (D) Condensed view of the artificial junctions.bed
file generated for the 30 most frequent deletions (Supplemental Data S13) using the Integrative Genomics Viewer (IGV). (E) Pearson’s correlation and (F)
network analysis of significant correlations between the 30 most frequent deletions, and pH, PMI and donor age. OL (lagging strand origin-of-replication).

Tissue, age and paired analyses

We identified a significant difference in cumulative deletion
read % for the different tissue types evaluated after cor-
recting for benchmark coverage and age (Figure 5A). Pe-
ripheral samples of whole blood (BLOOD; n = 9) had the
lowest cumulative deletion read % of 0.84 ± 0.84% (mean
± SD; range 0.15–2.56%), followed by the buccal epithe-
lial cells (SALIVA; n = 5) at 2.79 ± 1.74% (mean ± SD;
range 1.59–5.84%). All the brain samples examined had
higher cumulative deletion read %’s than these peripheral

samples: the putamen (PUT; n = 3) at 12.60 ± 2.47% (mean
± SD; range 11.11–15.45%), the dorsolateral prefrontal cor-
tex (DLPFC; n = 41) at 21.01 ± 16.55% (mean ± SD; range
2.59–93.10%), the anterior cingulate cortex (ACC; n = 35)
at 22.57 ± 15.68% (mean ± SD; range 4.54–90.94%), the
hippocampus (HIPP; n = 3) at 34.22 ± 2.43% (mean ±
SD; range 31.56–36.33%), and finally the caudate nucleus
(CAUN; n = 2) at 61.21 ± 56.92% (mean ± SD; range
20.96–101.47%). The CAUN, however, only included two
samples, one of which was a significant outlier with a very
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Table 2. The 13 ‘high impact’ mtDNA deletions. The position (5′-3′ breakpoints and gene), repeat sequences, sample frequencies, Sanger sequencing
validation results, deletion read % and disease the deletion was detected in are shown (14). Deletions are sorted based deletion read %. All ‘high impact’
deletions (i.e., those with a deletion read rate ≥ 5%) detected in this study are shown. ACC (anterior cingulate cortex); DLPFC (dorsolateral prefrontal
cortex); CAUN (caudate nucleus); ADO (alcohol/drug abuse/other psychiatric symptoms); BD (bipolar disorder); SZ (schizophrenia/schizoaffective
disorder); MDD (major depressive disorder). Sanger sequence flanking each breakpoint and primers used for deletion validation are shown in Supplemental
Figure S5

Mitochondrial Deletion Relative Read Rate
MapSplice Breakpoint Total Brain Blood PCR prod gDNA Database Position (adj.)

5' - 3' perfect repeat MapSplice break n=93 n=84 n=9 yes / no yes / no yes / no 5'- 3'
Deletion Read %,                

Diagnosis, Brain Region

1 1243 - 15340          
(RNR1 - CYB)

CCACCTCCTT 
6 6 0 yes yes no

No.
Repeats and Breakpoints No. Samples Sanger Validation MitoBreak Database
imperfect repeats shown

1243 -15340
90.1% and 85.0%                

for 1x MDD subject's             
DLPFC and ACC, respectivelyCCACCTCCTA

2 7863 - 15617          
(COX2 - CYB)

CCTCCCTTACC
3 3 0 yes yes no 7867 - 15621 52.4%                         

for 1x MDD subject's CAUNCGTCC   TTGCC

3 2973 - 15573          
(RNR2 - CYB)

 CAACAAT no repeat   
1 1

2 yes yes yes 7814 - 14805 26.5%                         
for 1x MDD subject's CAUN

                   no repeat  TCGCCTA  

4 7816 - 14807          
(COX2 - CYB)

TCATCGCCCTCCCATCCC
86 84

TCATCGACCTCCCCACCC

0 yes yes no 2973 - 15573 31.8%                         
for 1x SZ subject's DLPFC

yes yes no 5897 - 15840 23.0%                         
for 1x BD subject's DLPFCCCT AA T CC T

5 5897 - 15840 
(TRNY/COX1* - CYB)

CCTCA CCCC
1 1 0

yes yes no 1148 - 15607 16.8%                         
for 1x SZ subject's DLPFCAACAAACTAGGAG

6 1148 - 15607          
(RNR1 - CYB)

AACA     CTACGAG
1 1 0

yes yes no 870 - 14774 10.2%                         
for 1x MDD  subject's CAUNACTAACCCCC

7 870 - 14774           
(RNR1 - CYB)

ACTAACCCCA
8 8 0

yes yes yes 6468 - 15600 8.5%                          
for 1x MDD subject's CAUNGATCCGTCCCTAA

8 6468 - 15600          
(COX1 - CYB)

GATCCGTCC   TAA
50 50 0

yes yes no 571 - 15662 7.2%                          
for 1x ADO subject's DLPFCCCCCATC

9 571 - 15662           
(D-LOOP - CYB)

CCCCCCA
1 1 0

yes yes no 1923 - 15783 6.8%                          
for 1x ADO subject's ACCAACCAGTA    AGCTACC

10 1922 - 15782          
(RNR2 - CYB)

AACCAGACGAGCTACC
45 45 0

yes no no 560 - 15530 6.0%                          
for 1x ADO subject's ACCCC  AACCCCT

11 560 - 15530           
(D-LOOP - CYB)

CCAAACCCCA
13 13 0

yes no no 488 - 14329 5.0%                          
for 1x MDD subject's DLPFCCCACAACCACCACCCC ATCATAC

12 488 - 14329           
(D-LOOP - ND6)

 ATACAACCCCCGCCC   ATCCTAC
12 12 0

yes no no 467 - 14122 5.0%                          
for 1x BD subject's DLPFCCTTCCCACTCA

13 467 - 14122           
(D-LOOP - ND5)

CCTCCCACTCC
44 44 0

high cumulative deletion read % (Figure 5A). We also iden-
tified a significant difference in the number of unique dele-
tions detected (per 10K coverage) after correcting for cov-
erage and age (Figure 5B). Again, BLOOD had the lowest
number of deletions with 36.4± 20.1 (mean ± SD; range
15.3–78.4 deletions), followed by the CAUN with 118.1 ±
60.7 (mean ± SD; range 75.1–161.0 deletions), the HIPP
with 118.5 ± 36.9 (mean ± SD; range 80.0–153.6 dele-
tions), the SALIVA with 118.5 ± 45.6 (mean ± SD; range
47.7–171.9 deletions), the PUT with 170.0 ± 19.7 (mean ±
SD; range 153.2–191.8 deletions), the DLPFC with 195.1 ±
100.3 (mean ± SD; range 30.3–481.2 deletions), and finally
the ACC with 205.1 ± 99.3 (mean ± SD; range 47.0–508.6
deletions). Lastly, we also detected a significant difference
in the % burden per deletion after correcting for coverage
and age (Figure 5C).

We discovered a significant and positive correlation be-
tween brain regions (ACC versus DLPFC; n = 35) for all
three of the cumulative deletion metrics, but no significant
correlation between brain and whole blood (DLPFC ver-
sus BLOOD; n = 9) (Figure 5D–F). Analysis of the cu-
mulative deletion read % in paired brain regions from the
same subjects demonstrated a significant and positive cor-
relation between these cortical regions (Pearson’s r: 0.842;
P = 2.2e−10), but no correlation in cumulative deletion read
% in paired blood and brain samples (Pearson’s r: –0.495; P

= 0.175) (Figure 5D). Likewise, analysis of the number of
deletions detected (per 10k coverage) demonstrated a signif-
icant and positive correlation between these cortical regions
(Pearson’s r: 0.769; P = 6.8e−8), but no correlation in paired
blood and brain samples (Pearson’s r: –0.179; P = 0.644)
(Figure 5E). Lastly, analysis of the % burden per deletion
demonstrated a significant and positive correlation between
these cortical regions (Pearson’s r: 0.871; P = 9.9e−12), but
no correlation in cumulative deletion read % in paired blood
and brain samples (Pearson’s r: –0.198; P = 0.609) (Figure
5F). The correlation tests for both the cumulative deletion
% and the % burden per deletion between brain regions were
influenced by a single outlier subject that had a ‘high im-
pact’ deletion in both the ACC and DLPFC; however, these
cortical brain regions were still significantly correlated if
this subject was removed (cumulative deletion read %; Pear-
son’s r: 0.645; P = 3.7e−5) (% burden per deletion; Pearson’s
r: 0.460; P = 0.006).

Our final set of analyses revealed several significant and
positive correlations between the brain regions’ cumulative
deletion metrics and subject age, but no significant correla-
tions between age and the deletion levels detected in blood
(Figure 5G–I). Linear regression models between the cu-
mulative deletion metrics and age were evaluated after cor-
recting for coverage ± pH and RIN. Analysis of the cu-
mulative deletion read % demonstrated a significant, pos-
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Figure 5. Tissue, age and paired analyses. Tissue analyses of (A) the cumulative deletion read %, (B) number of deletion species detected (per 10k cov-
erage) and (C) the % burden per deletion. Statistical results shown (letters above tissue groups) are from Tukey’s post-hoc analyses after correcting for
coverage and age. Paired analyses of subject-matched brain regions (ACC x DLPFC, n = 35) and tissues (DLPFC × BLOOD, n = 9) for (D) the cumu-
lative deletion read %, (E) number of deletion species detected (per 10k coverage) and (F) the % burden per deletion. Statistical results shown are from
Pearson’s correlation tests. Age analysis of (G) the cumulative deletion read %, (H) number of deletion species detected (per 10k coverage) and (I) the
% burden per deletion in ACC (anterior cingulate cortex, n = 35), DLPFC (dorsolateral prefrontal cortex, n = 41), and BLOOD (whole blood, n = 9).
Statistical results shown are linear regression models after correcting for coverage, pH and RIN.

itive correlation with age for both the DLPFC (n = 41;
Adj. R2 of model: 0.591; Age P-value: 6.3e−7) and ACC
(n = 35; Adj. R2 of model: 0.400; Age P-value: 0.004), but
not for BLOOD (n = 9; Adj. R2 of model: –0.012; Age P-
value: 0.628). In contrast, analysis of the number of dele-
tions (per 10k coverage) did not show a significant correla-
tion with age in any of the tissues evaluated (ACC, DLPFC
and BLOOD) (Figure 5H). Lastly, analysis of the % bur-
den per deletion demonstrated a significant and positive
correlation with age for both the DLPFC (n = 41; Adj.
R2 of model: 0.550; Age P-value: 7.9e−6) and ACC (n =
35; Adj. R2 of model: 0.312; Age P-value: 0.0018), but not

for BLOOD (n = 9; Adj. R2 of model: 0.115; Age P-value:
0.341) (Figure 5I).

In order to assess if these biological findings would be
lost or retained using a different mtDNA deletion detection
approach, we have reproduced Figure 5 in its entirety but
with results for the 93 samples obtained from MitoDel (us-
ing MapSplice alignment for alignment consistency) instead
of Splice-Break (Supplemental Figure S14). Results for the
cumulative deletion read % were largely identical between
methods (Figure 5A, D and G versus Supplemental Figure
S14A, D and G). This result was also reflected in our highly
significant Pearson’s correlation analysis of the cumulative
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deletion read % between Splice-Break and MitoDel (Pear-
son’s r: 0.950; P = 2.98e−50) (Supplemental Figure S14J).
Results for the number of unique deletions detected (per
10k coverage) after correcting for coverage and age were
quite different between methods, however, with ∼10-fold
more deletion species being detected with Splice-Break ver-
sus MitoDel (Figure 5B, E and H versus Supplemental Fig-
ure S14B, E and H). This had an effect on the ordering of
which brain regions had the most/least deletion species, and
analysis of paired brain regions (ACC × DLPFC) was much
less significant using MitoDel (Supplemental Figure S14E).
Again, Pearson’s correlation of the number of unique dele-
tions detected (per 10k coverage) between Splice-Break and
MitoDel was significant (Pearson’s r: 0.392; P = 6.64e−5),
albeit to a lesser extent than the cumulative deletion read %
(Supplemental Figure S14J and K).

Disease effects

We evaluated the cumulative deletion read % (Figure 6)
and number of deletions (per 10k coverage) for disease ef-
fects in the ACC and DLPFC after correcting for cover-
age and subject age. Subjects were grouped based on pri-
mary diagnosis, and disease effects were tested across 9 sub-
jects with Major Depressive Disorder (MDD), 10 subjects
with Bipolar Disorder (BD), 12 subjects with Schizophre-
nia or Schizoaffective Disorder (SZ), 8 subjects with none
of the above diagnoses but a history of alcohol dependence,
drug abuse, and possibly other mental health issues (ADO),
and 2 healthy controls (CTRL) with no history of psychi-
atric symptoms or alcohol/drug abuse (Supplemental Ta-
ble S1). We identified no significant difference in the cu-
mulative mtDNA deletion read % in the ACC (P = 0.518)
or in the DLPFC (P = 0.338) across disorders (Figure 6A
and B). Likewise, our initial analysis of the DLPFC/ACC
ratio for the cumulative deletion read % did not reveal a
significant difference across disorders (P = 0.128) (Figure
6C). However, this data did appear intriguing in that the SZ
and BD subjects had a higher DLPFC/ACC ratio than the
CTRL, ADO or MDD subjects, so we performed a post-
hoc analysis on these pooled groups (Figure 6D). When
combined, the BD + SZ group had a significantly higher
DLPFC/ACC cumulative deletion read % ratio (P = 0.009)
than the MDD + ADO + CTRL group (Figure 6D). We saw
no significant disease effects in the number of unique dele-
tions (per 10k benchmark coverage) identified in the ACC
(P = 0.065) or DLPFC (P = 0.566) nor in the DLPFC/ACC
ratio (P = 0.879) (data not shown).

While the above analyses were important to look for
group mean differences across psychiatric disorders, we be-
lieve that performing an ‘analysis of outliers’ is equally as
important when investigating a heterogeneous cohort where
a small subset of subjects may be predicted to have a mi-
tochondrial pathology. In addition, we compared our data
to subjects with known mitochondrial pathologies, specif-
ically Kearns–Sayre syndrome (KSS) muscle and Pearson
syndrome (PS) blood (Figure 6E–K), in order to assess if
any outlier we identified had mtDNA deletions at or above
the levels observed in ‘hallmark disorders’. Using a cut-off
of 1.5-times the interquartile range (IQR) of all brain sam-
ples, an outlier would be defined as a sample with a cumu-

lative deletion read % of 52.01 or more; however, we used
a more conservative threshold of 78.1% for this analysis of
outliers, which we defined as 2-fold more than the 95th per-
centile of all brain samples not be considered outliers by
the IQR rules. We performed this analysis across all avail-
able brain regions, and identified two MDD subjects (three
brain tissue samples) that met our threshold to be called an
outlier (Figure 6I–K). These samples also displayed smaller
LR PCR band(s) on the agarose gel (Supplemental Fig-
ure S2), and exhibited a sharp ‘shelf-like’ drop in cover-
age at the mtDNA deletion breakpoints (Figure 6I, J and
Supplemental Figure S6). One MDD subject was from our
SBB cohort; this subject had the No. 1 ‘high impact’ dele-
tion (1243–15340) at deletion read %’s of 90.1% (DLPFC)
and 85.0% (ACC) (Table 2). This single deletion made up
the vast majority of the cumulative deletion read %’s iden-
tified in this subject, which were 93.1 and 90.9% for the
DLPFC and ACC, respectively (Figure 6J–K). This sub-
ject was a 75-year-old male with MDD and diabetes mel-
litus, which we believe is a clinical anecdote worth men-
tioning given its association with mitochondrial pathologies
and deletions, specifically (5,8,9,11,42–45). The other MDD
subject was from our UCI Brain Bank cohort; this subject
was a 46-year-old male with MDD who committed suicide.
Five brain regions (ACC, DLPFC, HIPP, PUT, CAUN) and
whole blood (BLOOD) were evaluated in this subject, but
only the caudate nucleus (CAUN) of this subject was iden-
tified as an outlier (Figure 6I and K); this MDD subject’s
CAUN had the No. 2, 4, 7 and 8 ‘high impact’ deletions
at deletion read %’s of 52.4%, 26.5%, 10.2% and 8.5% (Ta-
ble 2). Cumulatively, these four clonally expanded deletions
had a deletion read % of 97.6%, which (like the other sub-
ject) made up the vast majority of the cumulative deletion
read % (101.5%) identified in this sample (Figure 6i and
k). This result is particularly intriguing because it provides
evidence that clonally expanded mtDNA deletions can be
found exclusively in specific brain regions in humans while
being absent (or at low levels) in other cortical regions.

We performed a hypergeometric mean distribution test
on the proportion of MDD subjects that had a brain re-
gion identified as an outlier (2/9) in comparison to the
entire cohort of subjects (2/41), and identified a signifi-
cant (P = 0.044) enrichment in MDD (Figure 6K). This
data supports a link between mtDNA deletions and depres-
sion, specifically suggesting a subset or subgroup of MDD
cases may be due to an mtDNA deletion pathology in the
brain (46). Based on the mtDNA deletion profiles we ob-
served in these two distinctive MDD subjects, we suspect
the ‘high impact’ deletion(s) occurred and/or were clon-
ally expanded early during brain development, although we
speculate they may not have accrued a high enough rate to
supersede a pathological threshold until later in life. This
disease analysis is particularly intriguing as there is evi-
dence from both mouse and human studies suggesting de-
pression is a phenotype associated with mitochondrial dys-
function. Specifically, transgenic mice that express mutant
POLG and accumulate mtDNA deletions in the brain have
been characterized as having ‘mood disorder-like’ pheno-
types and ‘depression-like episodes’ that include distorted
activity patterns in diurnal rhythmicity and may reflect the
circadian rhythm dysfunctions observed in MDD (47–49).
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Figure 6. Psychiatric disorder effects and comparisons to mitochondrial pathologies. Cumulative deletion read % across diagnoses in the (A) ACC (anterior
cingulate cortex) and (B) DLPFC (dorsolateral prefrontal cortex), (C) the ratio of these two brain regions, and (D) pooled analysis of (C) after combining
BD and SZ groups. Splice-Break coverage plots of mtDNA from (E) a typical blood sample with very few deletions, (F) a blood sample from a subject
with Pearson’s Syndrome, (G) a muscle sample from a subject with Kearns–Sayre syndrome, (H) an aging/adult brain sample with many low level mtDNA
deletions (but no single, clonally amplified deletion), (I) two brain regions from one MDD subject, where the caudate nucleus (CAUN) displayed a large,
clonally amplified deletion but the dorsolateral prefrontal cortex (DLPFC) did not and (J) two brain regions from another MDD subject, where both the
anterior cingulate cortex (ACC) and DLPFC were affected by the same clonally amplified deletion. (K) Analysis of outliers based on threshold criteria (>2-
fold more than 95th percentile of all other brain regions). Arrowheads point to one MDD subject where only the caudate nucleus (CAUN) was identified as
an outlier, while all other brain regions from this subject were considered normal; full arrows denote one MDD subject where both brain regions analyzed
(ACC and DLPFC) were identified as outliers. Positive controls of PS blood and KSS muscle are shown alongside for comparison. Statistics shown for are
from one-way ANOVA (A–G) or hypergeometric mean distribution tests.
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Likewise, both children and adult patients with diagnosed
mitochondrial diseases have displayed concurrent psychi-
atric symptoms that often include depression (46,47,50–
54). The two MDD subjects (three brain tissue samples) we
identified as outliers also had cumulative deletion read %’s
greater than KSS muscle (90.1%; Figure 6G and K) or PS
blood (35.9%; Figure 6F and K), which further supports
our hypothesis that these mtDNA deletions are at levels
high enough to cause mitochondrial dysfunction, cellular
pathology and ultimately brain circuit dysfunction (i.e., de-
pression).

CONCLUSIONS

This study demonstrates the efficacy and reliability of the
Splice-Break pipeline to detect and quantify mtDNA dele-
tions. Splice-Break can be used to study large datasets of in-
dividual mtDNA deletions rates as well as cumulative dele-
tion metrics with respect to tissue, brain region, age and
disease. The catalogue of 4489 mtDNA deletions we de-
scribe here only includes those with breakpoints between
positions 357–15925 (NC 012920.1) of the mitochondrial
genome as we filtered out the majority of the control re-
gion in this analysis. Future studies may include analysis of
mtDNA deletion breakpoints in the D-loop and extended
control region, which includes a 3′ breakpoint ‘hotspot’ at
position 16071, perhaps using different primers (with dif-
ferent binding positions) for the LR PCR (7,14,32). Indeed
any analysis of mtDNA deletions that utilizes LR PCR will
be limited to only discover molecules that can be success-
fully amplified with the primers chosen. Interestingly, the
‘common deletion’ (MapSplice 8471–13449; adjusted 8482–
13460) was actually the third most common deletion in this
collective dataset and was detected in 85/93 (91.4%) sam-
ples at a deletion read % of 0.37 ± 0.32% (mean ± SD).
The most frequent deletion we detected (MapSplice 6335–
13999; adjusted 6341–14005) was observed in 92/93 (98.9%)
biological samples at a deletion read % of 0.65 ± 0.57%
(mean ± SD). This latter deletion has additionally been
confirmed as the most frequent mtDNA deletion detected
by the Splice-Break pipeline using an independent group of
∼90 brain samples (data not shown).

We observed a significant correlation (P = 3.43e−17) be-
tween the qPCR results of the 4977 bp ‘common dele-
tion’ and our Splice-Break results for this mtDNA deletion.
Using artificial data of five different mtDNA deletion se-
quences, we observed that the test sensitivity of our pipeline
can vary between deletions (range 38.8–74.6%), which we
believe is a reflection on how MapSplice handles reads that
contain the various repeat sequences associated with dele-
tion breakpoints. We also observed a high level of test speci-
ficity for these five mtDNA deletions (range 93.2–100%),
and were able to optimize our filtering parameters so that
low abundance deletions (i.e. 1% heteroplasmy) in partic-
ular would be called with 100% specificity. Analysis of a
complex artificial file that had 60 deletions combined to-
gether also had a high detection sensitivity (71.2%) that
we were unable to match with the other methods tested.
Taken together, these results demonstrate that our Splice-
Break pipeline can quantify the relative levels of mtDNA
deletions with high confidence, but our deletion read % de-

scribed should not be interpreted as a direct measure of
heteroplasmy rate due to factors of PCR amplification bias
and deletion-specific differences in test sensitivity. We also
observed a significant correlation (P = 2.98e−50) in the cu-
mulative deletion read % determined by our Splice-Break
pipeline and the MitoDel analysis tool (when the same
alignment algorithm was used for both), but detected ∼10-
times more deletion species with Splice-Break and a more
significant correlation between paired brain regions. These
methods comparisons are encouraging and suggest our bio-
logical conclusions would largely remain the same with the
usage of either analysis tool (if an RNA-Seq aligner was
used for read mapping); however, our Splice-Break pipeline
is particularly well-suited for the analysis of homogenate tis-
sue where many deletion species are predicted to occur con-
currently at a low rate.

We observed significantly more deletions in brain than
in blood using all three of our cumulative deletion metrics-
these results were expected and the analysis was performed
largely for assessment of the Spice-Break pipeline. This dis-
crepancy in tissue differences is also not surprising given
that adolescent and adult patients with diagnosed mito-
chondrial deletion pathologies often do not have observ-
able mtDNA deletion loads in their blood even though
their muscles are highly affected (1,2,11). Our results fur-
ther suggest that mtDNA deletion levels observed in periph-
eral whole blood are not good biomarkers for predicting
what the mtDNA deletion levels are in the brain; however,
there are significant correlations between brain regions that
may have some value for forensic studies. We also observed
a significant and positive correlation between subject age
and the cumulative deletion read % observed in the brain
(ACC or DLPFC), but did not detect a significant corre-
lation between subject age and the deletion levels observed
in blood. This corroborates previous reports that have ob-
served a progressive accumulation of mtDNA deletions and
mutations in post-mitotic (non-dividing) tissues, but a loss
(or purging) of these aberrant mitochondria in blood with
advanced age due to the rapid division of leukocytes (11,12).
The age correlations we observed in the brain will be inter-
esting to investigate with regards to late-onset neurological
disorders such as Alzheimer’s disease, Parkinson’s disease
and mild cognitive impairment, in addition to complex dis-
orders with symptoms outside of the central nervous system
such as chronic fatigue syndrome, diabetes, and age-related
eye diseases.

Finally, it will be worthwhile to pursue these mtDNA
findings with Splice-Break in greater depth in multiple brain
regions using a larger cohort of individuals with psychiatric
disorders and controls. We found that clonally expanded,
‘high impact’ deletions can be present at high levels in one
brain region, but remain absent or at very low levels in other
regions from the same subject. This result indicates that
screening efforts for mtDNA deletion loads in the brain may
require multiple brain regions in order to see the full pic-
ture. In addition, analysis of mtDNA deletions in specific
cell populations (e.g. neurons versus glia, in specific neu-
ron types and/or cortical layers) will be important follow on
studies; however, the fact that we were able to detect signif-
icant differences and correlations with frozen, homogenate
brain tissue is encouraging and may provide a more high-
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throughput and cost-effective approach for an initial assess-
ment of disease and aging. The highest and most overt dele-
tion burdens we observed occurred in two MDD subjects,
one of which had only the caudate nucleus affected with
‘high impact’ mtDNA deletions. This region, in particular,
should be examined in a larger cohort of subjects with psy-
chiatric diagnoses, and should be evaluated for possible cor-
relations with depression rating scales and other prognostic
indicators. We suggest that future mtDNA deletion screen-
ing efforts focused on depression should evaluate multiple
brain regions within the cortico–striatal–thalamic loop cir-
cuits. These circuits include all of the brain regions that we
observed significant mtDNA deletion accumulation in, and
are important for cognition, emotion, and motor control
(55,56).

DATA AVAILABILITY

The catalogue of 4489 mtDNA deletions can be found
in Supplemental Data S12, and updated versions of this
list will be provided on the MitoBreak website: http://
mitobreak.portugene.com. Raw sequence data (unaligned,
paired-end FASTQ files) for all 93 postmortem samples
described in this study can be downloaded from GEO
(GSE118615).
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